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Neutralizing antibodies (NAbs) are believed to comprise an essential component of the protective

immune response induced by vaccines against feline immunodeficiency virus (FIV) and human

immunodeficiency virus (HIV) infections. However, relatively little is known about the role of NAbs

in controlling FIV infection and subsequent disease progression. Here, we present studies where

we examined the neutralization of HIV-luciferase pseudotypes bearing homologous and

heterologous FIV envelope proteins (n5278) by sequential plasma samples collected at 6 month

intervals from naturally infected cats (n538) over a period of 18 months. We evaluated the

breadth of the NAb response against non-recombinant homologous and heterologous clade A

and clade B viral variants, as well as recombinants, and assessed the results, testing for evidence

of an association between the potency of the NAb response and the duration of infection, CD4+

T lymphocyte numbers, health status and survival times of the infected cats. Neutralization profiles

varied significantly between FIV-infected cats and strong autologous neutralization, assessed

using luciferase-based in vitro assays, did not correlate with the clinical outcome. No association

was observed between strong NAb responses and either improved health status or increased

survival time of infected animals, implying that other protective mechanisms were likely to be

involved. Similarly, no correlation was observed between the development of autologous NAbs

and the duration of infection. Furthermore, cross-neutralizing antibodies were evident in only a

small proportion (13 %) of cats.

INTRODUCTION

Neutralizing antibodies (NAbs) are elicited in response to
feline immunodeficiency virus (FIV) and human immuno-
deficiency virus (HIV) infections, and are believed to be an
essential component of the protective immune responses
required for successful vaccination against lentiviruses
(Kwong et al., 2012). However, relatively little is known
about the role of humoral immunity in controlling lenti-
viral infections and subsequent disease progression, parti-
cularly for FIV infection (Piantadosi et al., 2009, Gray et al.,
2011; Hosie et al., 2011), in spite of there being a vaccine
available commercially that protects cats against FIV
infection (Pu et al., 2005).

In HIV infection, NAbs specifically target epitopes on SU
and TM, including receptor- and co-receptor-binding sites
(Binley et al., 2008). However, their efficacy is subject to

significant challenges. The viral envelope (Env) protein
contains host glycans that shield neutralization epitopes on
Env proteins, often rendering them inaccessible to NAbs
(Myers & Lenroot, 1992). Furthermore, HIV and FIV Env
proteins may display significant length polymorphisms
(Kraase et al., 2010; Euler & Schuitemaker, 2012) that may
result in conformational changes, concealing neutralization
epitopes (Hoxie, 2010).

Antibodies recognizing HIV-1 Env appear ~2 weeks after
infection, but lack neutralizing activity (Tomaras &
Haynes, 2009). Autologous, highly strain-specific, poly-
clonal NAbs appear within 3 months after infection, exert
selection pressure and lead to the emergence of escape
mutants (Moore et al., 2008; Li et al., 2009). It has been
documented in HIV-1 infection that autologous NAbs have
little or no protective effect on disease progression (Bunnik
et al., 2008; Mahalanabis et al., 2009; van Gils et al., 2010;
Gray et al., 2011), largely as a result of the rapid emergence
of escape mutants (Bunnik et al., 2010; van Gils et al.,
2010). The emergence of neutralization escape mutants

Four supplementary tables are available with the online Supplementary
Material.
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with altered glycosylation patterns has been demonstrated
both in HIV (Burton et al., 2005; van Gils et al., 2010)
and FIV (Samman et al., 2010) infections. Neutralization
escape, accompanied by the subsequent evolution of the
antibody response, occurs during the course of infection in
response to the evolving viral Env, until the eventual
exhaustion of the immune system (Euler & Schuitemaker,
2012). This explains why NAbs from a specific time point
can neutralize viruses isolated from earlier time points, but
fail to neutralize contemporaneous viral variants (Mascola
& Montefiori, 2010; Overbaugh & Morris, 2012).

It has been suggested that NAbs appear too late following
infection with HIV-1 to be effective in controlling disease
progression (Richman et al., 2003; Moore et al., 2009; Rong
et al., 2009). However, NAbs have been shown to have a
potential role in controlling simian immunodeficiency
virus (SIV)–HIV (SHIV) infection of macaques depleted
of cytotoxic T lymphocytes (Rasmussen et al., 2002).
Furthermore, pre-exposure passive transfer of broadly
neutralizing mAbs conferred protection against SIV and
SHIV-1 in the rhesus macaque model (Veazey et al., 2003;
Ferrantelli et al., 2004; Hessell et al., 2009), providing
evidence that NAbs do indeed play a protective role and are
likely an essential component of a protective vaccine
response (Hoxie, 2010).

HIV infection, in the majority of patients, leads to the
robust production of antibodies that often possess the
ability to neutralize autologous but not heterologous viral
variants (Zolla-Pazner et al., 2004). Broadly cross-reactive
NAbs (Cr-NAbs) are relatively rare; elicited in some
individuals, Cr-NAbs neutralize not only autologous viral
variants, but also neutralize other viral subtypes (Walker
et al., 2011). Several broadly neutralizing mAbs have been
isolated (including b12, 2G12, 2F5 and 4E10), their binding
epitopes have been characterized (Muster et al., 1993;
Burton et al., 1994; Gorny et al., 1994; Trkola et al., 1996;
Zwick et al., 2001) and protective roles in animal models
have been demonstrated (Mascola et al., 1999; Mascola
et al., 2000; Binley et al., 2004). Recent evidence suggests
that Cr-NAbs are more common than previously esti-
mated, arising in approximately one-third of HIV-1-
infected individuals (Stamatatos et al., 2009; Bonsignori
et al., 2011; Medina-Ramı́rez et al., 2011; Mikell et al.,
2011; Walker et al., 2011; Euler & Schuitemaker, 2012).
However, neutralization breadth does not develop until ~3
years post-infection (Gray et al., 2011; Mikell et al., 2011).
It remains unknown why, and by which mechanism, such
antibodies develop in some individuals or why the broadly
neutralizing response is significantly delayed in response to
infection (Gray et al., 2011). Furthermore, it is unclear
whether neutralization cross-reactivity can be attributed to
a single, highly potent antibody or a combination of
antibodies acting in synergy (Scheid et al., 2009).

The strength and breadth of the NAb response was greater
in HIV progressors compared with aviraemic or long-term
non-progressors (Doria-Rose et al., 2009). Studies of elite

controllers revealed that individuals who controlled viral
replication, such that their viraemia was below detectable
levels, had the lowest levels of NAbs (Lambotte et al., 2009;
Pereyra et al., 2009). Consistent with this observation, the
breadth of Cr-NAbs was positively correlated with higher
plasma viral loads, lower CD4+ T lymphocyte counts and
disease progression (Piantadosi et al., 2009; Sather et al.,
2009; van Gils et al., 2009; Euler et al., 2010). These results
suggested that the development of Cr-NAbs is influenced
by strong antigenic stimulation (Gray et al., 2011).
However, individuals who did not develop Cr-NAbs might
have failed to do so as a result of insufficient antigenic
stimulation and possibly non-specific hypergammaglobu-
linaemia (Euler & Schuitemaker, 2012). Despite the
breadth and potency of Cr-NAbs in vitro, such antibodies
do not appear to influence HIV-1 disease progression;
rather, their incremental development is associated with
increased viral loads and declining numbers of CD4+ T
lymphocytes (Piantadosi et al., 2009; van Gils et al., 2009;
Euler et al., 2010; Gray et al., 2011).

Little is known about the role of NAbs in controlling
natural FIV infection and subsequent disease progression
(Hosie et al., 2011), although NAbs appear to be involved
in vaccine-induced protective immunity (Hosie & Flynn,
1996; Pu et al., 2001). What is the relationship between the
duration of infection, health status, survival time and the
NAb response in FIV-infected cats? Can a strong NAb res-
ponse delay disease progression? Is there evidence for
broadly Cr-NAbs in plasma samples from naturally infected
cats? Although the gold standard neutralization assay utilizes
primary PBMCs as target cells, as well as uncloned primary
field isolates, the reproducibility of such systems is limited
by the variability in susceptibility of PBMCs to infection, as
reviewed previously (Hosie et al., 2011). Therefore, in this
study we utilized a pseudotype-based neutralization assay,
similar to the assay systems that have been shown to be
robust and highly reproducible for measuring HIV neutral-
ization, to measure NAb responses in cats naturally infected
with FIV in order to investigate the role of neutralization.

RESULTS

FIV-infected cats display variable neutralization
patterns

Plasma samples from 38 cats displayed variable autologous
and heterologous neutralization patterns, ranging from
strong, through moderate to no neutralization (Table S1,
available in the online Supplementary Material). Plasma
samples from 16 cats (16/38, 42.1 %) strongly neutralized
pseudotypes bearing autologous Env variants. This pattern
was observed in eight (8/16, 50 %) of the cats that
remained alive for the duration of the study and eight
(8/16, 50 %) of the cats that died during the study. Six
cats (6/38, 15.8 %) displayed moderate neutralization of
pseudotypes bearing autologous Env variants; all but one of
these cats remained alive during the observation period.
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Plasma samples from 16 cats (16/38, 42.1 %) failed to
neutralize pseudotypes bearing autologous Env variants;
nine of these cats (9/16, 56 %) remained alive, whereas
seven (7/16, 44 %) of the cats with no detectable NAbs died
during the study period. Only five cats (5/38, 13 %)
demonstrated strong heterologous neutralization of at least
one pseudotype; all of those cats remained alive during the
study.

Autologous NAbs and duration of infection

We investigated whether the development of autologous
neutralization was positively correlated with the age of
the cats and the duration of infection. Fig. 1 illustrates the
relationship between the potency of autologous NAb
response and the duration of infection for cats from the
entire study group. The median duration of infection for
cats with strong, moderate and absent autologous NAb
responses was 3.1 (1.1–6.3), 2.9 (1.5–5.4) and 3.8 (range
0.8–8.8) years, respectively. No statistically significant
differences between the groups were observed.

NAb responses in cats infected with recombinant
and non-recombinant viruses

We hypothesized that cats infected with recombinant env
viruses (n514) would have more potent autologous and
heterologous NAb responses than cats infected with non-
recombinant env viruses (n524). However, no statistically
significant differences were observed between the strength
of autologous neutralization in cats infected with recom-
binant compared with non-recombinant viruses (Fig. 2).

Next, we asked whether cross-reactive NAb responses were
more common in cats infected with recombinant env
viruses compared with cats infected with non-recombinant
env viruses. There was no statistically significant difference

between the two groups; of five cats that demonstrated
heterologous neutralization (against at least one pseudo-
type), three were infected with non-recombinant viruses,
whilst two were infected with recombinant viruses.

NAb response and health status of infected
animals

We examined the data for an association between the
presence of autologous NAbs and the health status of
infected cats (Fig. 3). Health status was assessed by a board-
certified feline medicine specialist, but was nevertheless
subjective, and so we also examined the data to test for an
association between autologous NAbs and declining CD4+
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Fig. 1. Relationship between the duration of infection and the
development of autologous NAbs. Duration of infection for cats
with strong (n516), moderate (n56) and absent (n516)
autologous neutralization responses is shown from left to right
(median 3.1, 2.9 and 3.8 years, respectively).
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Fig. 2. Autologous neutralization responses in cats infected with
non-recombinant (n524) and recombinant (n514) env viruses.
Entire env sequences from the study group (n5355), together with
reference full-length env sequences obtained from GenBank
(n519), were subjected to rigorous fivefold recombination testing
as described previously (Bęczkowski et al., 2014).
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Fig. 3. NAb responses according to health status. Within the
group of cats expressing strong and moderate autologous NAb
responses (n522), there were 12 healthy and 10 sick cats. Within
the group with no autologous neutralization (n516), there were
eight healthy and eight sick cats.
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T lymphocyte numbers. As demonstrated in Table 1, all
but two of the cats within the Memphis cohort (n524)
demonstrated a progressive decline in CD4+ T lympho-
cytes. The median DCD4+ over the 18 month observation
period was –340 cells ml21 (ranging from 21120 to +30
cells ml21). In contrast, within the Chicago cohort (n514),
seven cats displayed progressive declines in CD4+ T
lymphocyte numbers, five displayed increased numbers,
whilst two cats maintained their CD4+ T lymphocyte
numbers over a period of 12 months (Table 1). The median
DCD4+ was calculated as 215 cells ml21 (ranging from
–760 to +240 cells ml21).

We then asked whether a strong autologous NAb response
might protect cats against a progressive decline in CD4+ T
lymphocytes. We compared three groups of cats: those
with absent (n515), moderate (n55) or strong (n515)
NAb responses for which DCD4+ values were available
(n535). DCD4+ values were not available for three cats
(3/38; M3, M33 and M44) as these cats died prior to the
second blood sampling (Table 1). As demonstrated in Fig.
4, there was no evidence that cats with strong NAb
responses were less likely to display progressively declining
CD4+ T lymphocyte numbers (median DCD45–270 cells
ml21); a similar range of DCD4+ values was observed
within the group of cats which failed to mount autologous
NAb responses (median DCD45–250 cells ml21) and there
were no statistically significant differences between the two

groups. Three animals with moderate levels of NAbs
maintained their CD4+ T lymphocyte numbers, whilst two
animals showed declining CD4+ T lymphocyte numbers.

Table 1. CD4+ T lymphocyte counts for each time point (A, B, C and D) unless a cat was deceased (X) or a sample was not available
(NA)

DCD4+ in the final column represents the difference between the first (A) and the last available sampling. All but two cats from the Memphis

cohort (M) displayed a progressive decline in CD4+ T lymphocyte numbers over the 18-month observation period. Five cats from the Chicago

cohort (P) (5/14) displayed increasing CD4+ T lymphocyte numbers over the 12 month observation period.

Cat CD4+ count (�103 cells ml”1) DCD4+

(�103 cells ml”1)

Cat CD4+ count (�103 cells ml”1) DCD4+

(�103 cells ml”1)
A B C D A B C D

M2 1.74 0.36 0.76 0.62 21.12 M5 0.56 0.15 0.16 X 20.40

M29 1.48 0.62 0.93 0.62 20.86 M50 1.38 1.32 X X 20.07

M1 0.87 0.36 0.34 0.26 20.61 M33 0.20 X X X NA

M15 0.87 1.03 1.09 0.47 20.40 M3 0.33 X X X NA

M8 0.55 0.21 0.2 0.15 20.40 M44 1.24 X X X NA

M49 0.41 0.31 0.27 0.04 20.38 P4 0.09 0.34 0.33 NA 0.24

M28 1.23 0.89 1.77 0.90 20.34 P14 0.97 1.16 1.09 NA 0.12

M14 0.45 0.29 0.15 0.14 20.30 P8 0.50 0.86 0.60 NA 0.10

M25 0.36 0.39 0.68 0.09 20.27 P6 0.48 0.35 0.57 NA 0.09

M20 1.50 0.81 NA 1.25 20.25 P7 0.40 0.26 0.40 NA 0

M47 0.29 0.14 0.14 0.10 20.19 P11 0.45 0.35 0.45 NA 0

M32 0.38 0.32 0.35 0.21 20.17 P13 0.46 0.28 0.27 NA 20.18

M30 0.13 0.15 0.26 0.10 20.04 P17 0.49 0.55 0.28 NA 20.21

M46 0.15 0.19 0.18 0.18 0.03 P9 0.63 0.35 0.18 NA 20.45

M11 0.98 0.14 0.48 X 20.50 P5 0.79 0.72 0.30 NA 20.49

M16 0.35 0.37 0.36 X 0.01 P2 0.40 0.36 X NA 20.03

M26 0.54 0.14 0.13 X 20.41 P21 NA 0.93 0.57 NA 20.36

M31 0.80 0.88 0.26 X 20.55 P22 NA 1.55 0.79 NA 20.76

M41 0.34 0.35 0.12 X 20.22 P18 NA 0.73 0.75 NA 0.02
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Fig. 4. Changes in CD4+ lymphocyte count (�103 cells ml”1) over
the course of infection in cats with strong (n515; median ”0.27,
range ”1.12 to +0.24), moderate (n55; median 0.0, range ”0.49
to +0.03) or absent (n515; median ”0.25, range ”0.86 to
+0.10) NAb responses. DCD4+ values were not available for
three cats (Table 1).
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NAb response and survival time of infected
animals

We examined the relationship between the autologous
neutralization responses and survival times of infected
cats since the estimated time of infection. Kaplan–Meyer
survival curves were constructed for three groups of cats
expressing strong (n516), moderate (n56) or no (n516)
autologous neutralization (Fig. 5).

The estimated median survival time for cats with strong
autologous NAb responses was 2840 (range 1061–2840) days
and for the group with no NAbs was 2476 (range 1384–
3387) days. There was insufficient data within the mode-
rate neutralization group to estimate median survival. A
comparison of the Kaplan–Meyer curves [log-rank (Mantel–
Cox) test] revealed that survival times were not significantly
different amongst the three groups (P50.48). Further
testing (log-rank test for trend) revealed no significant
trend between the three survival curves (P50.36).

NAbs in the terminal stages of disease

Finally, we asked whether the NAb response was preserved
in the terminal stages of disease, when the immune system
was weakened. There were 13 cats in the study group with
CD4+ T lymphocyte counts ,200 cells ml21 recorded at
the final sampling (Table 1), indicative of terminal
infection (by analogy to HIV infection). Plasma samples
from six (6/13; 46 %) of these cats did not neutralize
pseudotypes bearing homologous Env proteins, whilst
plasma samples from seven (7/13; 54 %) of the cats
neutralized pseudotypes bearing autologous Env proteins,
in spite of the cats being assumed to be in the terminal
stage of disease.

DISCUSSION

We demonstrated that cats naturally infected with FIV have
variable NAb responses against pseudotypes bearing
autologous and heterologous Env proteins. When neutral-
ization assays were conducted against pseudotypes bearing

Env proteins from autologous and heterologous viruses, no
correlation was evident between either the health status or
the survival time following infection and the strength of
the NAb response. Similar neutralization profiles were
observed for plasma samples tested from healthy and
unhealthy cats as well as cats that survived or died during
the study period. Such findings argue against a role for
NAbs in controlling disease progression. Furthermore, our
results demonstrate that FIV-infected cats, regardless of the
strength of the NAb response induced, showed progressive
declines in CD4+ T lymphocyte numbers; NAb responses,
even when potent, did not appear to protect against the
loss of CD4+ T lymphocytes. A similar trend has been
reported for HIV-1 infection, where the presence of
autologous, Cr-NAbs was not associated with a prolonged
AIDS-free, asymptomatic period (Schmitz et al., 2003;
Piantadosi et al., 2009; van Gils et al., 2010; Euler et al.,
2010). Several studies have suggested that neutralization
breadth and potency depend on the duration of infection
(Moog et al., 1997; Deeks et al., 2006; Sather et al., 2009).
However, the results presented here do not support this
proposal; rather, no association was observed between the
duration of infection and the potency of autologous
neutralization.

Almost half of the cats examined displayed strong auto-
logous NAb responses; 24 % of the cats showed a steady
increase in neutralization potency during the course of
infection. A similar increase in the strength of autologous
NAb response has been reported for HIV-1 infection
(Arendrup et al., 1992; Geffin et al., 2003; Richman et al.,
2003). Although NAbs failed to protect against contem-
poraneous viruses, it was suggested that such antibodies
might exert selection pressure on the emergence of viral
variants of lower fitness, e.g. with decreased replicative
capacity, and thus might indirectly delay HIV-1-associated
disease progression (Friedrich et al., 2004; Leslie et al.,
2004). However, in this study we found no evidence of any
correlation between the strength of NAb response and
survival time in cats naturally infected with FIV.

The remaining half of the cats that were examined did not
develop NAbs. As a high level of antigenic stimulation is
crucial for the development of broad and potent NAb
responses (Rodriguez et al., 2007; Doria-Rose et al., 2009;
Sather et al., 2009), it is possible that the immune systems
of those cats that did not neutralize pseudotypes bearing
autologous Env proteins had not been exposed to sufficient
antigenic stimulation following infection to induce NAbs.
This is most likely the case with cat M1, which acquired the
virus vertically (Bęczkowski, 2013) and failed to mount a
NAb response. Given that a high viral load and high viral
diversity following infection influence the development of
potent and broad NAbs (Piantadosi et al., 2009; Sather
et al., 2009; Euler et al., 2010; Gray et al., 2011), it is
tempting to speculate that those cats in our study group
which failed to develop NAb responses may have had
relatively low viral load set points compared to the cats
which developed NAbs. Unfortunately, viral load set point

0 1000 2000 3000 4000
0

20

40

60

80

100

Strong neutralization
Moderate neutralization
No neutralization

Duration of infection (days)

S
ur

vi
va

l (
%

)

Fig. 5. Kaplan–Meyer survival curves for cats with strong (n516)
(red), moderate (n56) (orange) or weak/absent (n516) (green)
autologous neutralization.
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data following the postulated transmission events were not
available to test this hypothesis.

Furthermore, the non-specific CD4+ T lymphocyte-depen-
dent polyclonal hypergammaglobulinaemia that arises as an
initial response to FIV infection (Recher et al., 2004; Lang
et al., 2007) might also contribute to the lack of effective
neutralization observed in this group. It is possible that high
numbers of CD4+ T lymphocytes at the time of virus
acquisition might be responsible for a non-specific, over-
whelming hypergammaglobulinaemia and subsequent fail-
ure of NAb responses to develop (Euler et al., 2010; Gray
et al., 2011). This scenario could also explain why only a
small fraction of cats in our study demonstrated cross-
neutralization of the heterologous GL-8 and B2542 pseu-
dotypes, regardless of whether they were infected with
recombinant or non-recombinant viruses.

A study examining the breadth of neutralization in a
similar number of HIV-1-infected individuals (n540)
revealed that 17.5 % of patients developed broadly NAbs
(Gray et al., 2011). Other studies reported higher numbers
(up to 30 %) of individuals with broadly NAbs (Doria-Rose
et al., 2009; Gray et al., 2009; Piantadosi et al., 2009; Sather
et al., 2009; Euler et al., 2010). In contrast, only 13 % of
plasma samples from our study group displayed cross-
reactivity. This may suggest that Cr-NAbs are rarer in FIV-
infected cats than in HIV-1-infected individuals. However,
a limitation of this study was that plasma samples were
tested for neutralization against only two reference pseu-
dotypes bearing heterologous FIV Env proteins; it is
possible that testing a greater number of pseudotypes
bearing Env proteins from more strains of FIV might have
revealed a higher prevalence of Cr-NAbs. In studies of HIV,
it has been suggested that neutralization breadth develops
slowly over a period of 2–4 years post-seroconversion
(Gray et al., 2011; Mikell et al., 2011). Given the duration
of infection in our study group, it would be predicted, by
analogy, that more cats would have developed Cr-NAbs,
but this scenario was not supported by the data presented
here.

Finally, differences in neutralization profiles might have
been related to different kinetics of viral replication between
the various strains of FIV infecting the cats. It is possible that
more virulent, and more replication competent, viral strains
are more likely to induce effective humoral responses
compared with isolates of lower replicative capacity.

The results presented here demonstrate that humoral
immunity was preserved in cats that subsequently
developed AIDS, consistent with the observation that the
rate of viral evolution slows during the terminal stage of
disease (Bęczkowski, 2013). Thus, autologous antibodies
elicited during the earlier stages of infection remain capa-
ble of neutralization, owing to the relatively high genetic
stability of the virus terminally (Bęczkowski, 2013).
However, such NAbs, although capable of neutralization
in vitro and despite being preserved in terminal disease,
failed to prevent disease progression.

Pseudotypes bearing 1–18 Env variants from each time
point were used to assess sensitivity to neutralization by
autologous plasma. It is difficult to assess how represent-
ative the cloned Env proteins were compared to the pool of
Env variants within the cats. Nevertheless, the alternative
approach of testing a single ‘representative’ clonal Env
variant would have led to an underestimation of viral
diversity within the host. The sensitivities to neutralization
amongst pseudotypes bearing Env variants isolated from
each cat tended to be similar; these data suggest that, where
changes were observed, these were likely a true indication
of the range of neutralization sensitivity and resistance
amongst the pool of variants in individual cats.

Any assay system used to assess NAb responses in vitro will
be limited in its representation of in vivo neutralization.
Nevertheless, the indicator cell line transduced with CD134
that was selected for use in this study displayed a pattern of
susceptibility to infection consistent with that of the MYA-
1 cell line, an IL-2-dependent, CD4+ feline T cell line
expressing CD134 and CXCR4 that has been utilized
previously in neutralization assays (Hosie et al., 2011). This
suggests that the pattern of CD134 and CXCR4 expression
on the indicator cell line recapitulates the cell surface
phenotype of the IL-2-dependent primary T cell line used
formerly in neutralization assays.

We demonstrated that humoral immunity did not
significantly alter the clinical course of natural FIV
infection and, although this study was limited by the size
of the cohort examined, and thus the statistical power
obtained, it provides the basis for future studies. One
explanation for this apparent lack of correlation is that any
factor promoting a strong NAb response may negatively
influence other immune responses, e.g. leading to the
exhaustion of polyfunctional CD4+ and CD8+ T lym-
phocytes (Harari et al., 2004; Betts et al., 2006; Streeck et al.,
2008). In light of recent evidence from studies with HIV-1,
it is plausible that cell-mediated immunity, as well as host
genetic factors, are more likely to influence the clinical
course of lentiviral infection than NAbs (Huang et al.,
2012; Nomura & Matano, 2012). It will be intriguing to
evaluate the performance of FIV vaccination in the field by
measuring the development of NAbs in vaccinated cats, in
order to determine whether NAbs are protective in the face
of natural challenge.

METHODS

Cats and plasma samples. Forty-four cats from Memphis, TN,
USA (n527) and Chicago, IL, USA (n517) were enrolled in the study
on the basis of a history of FIV infection, regardless of breed, sex, age
and health status (Bęczkowski, 2013). Twenty-seven of the FIV-
positive cats enrolled were housed together in a large multi-cat
household in Memphis. The remaining 17 FIV-positive cats had been
previously adopted from a large metropolitan adoption-guarantee
shelter (PAWS Chicago) and lived in single-cat households in
Chicago, except for seven cats: two cats (P7 and P4) cohabited in a
two-cat household, one cat (P13) lived in a two-cat household with a
FIV-negative cat, one cat (P9) was housed at PAWS Chicago for the
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first 11 weeks of the study and then was adopted into a house with an
FIV-positive cat not enrolled in the study, and three cats (P2, P15 and
P21) were housed at PAWS Chicago in a room containing up to
three FIV-positive cats before they were each adopted into single-cat
households at 2, 14 and 58 weeks after enrolment, respectively. The
FIV status of each cat was confirmed by virus isolation (Hosie et al.,
2009). All cats were feline leukemia virus antigen-negative at
enrolment. Four blood samples (denoted A, B, C and D, related to
each collection time point) were obtained from each cat at 6 month
intervals over an 18 month period, unless the cat had died during the
interim period. During the study, one of 17 (5.9 %) cats from the
Chicago cohort and 17 of 27 (63 %) FIV-positive cats from the
Memphis cohort died. Analysis of CD4+ and CD8+ T lymphocyte
subsets (Table 1) and post-mortem findings (Bęczkowski, 2013)
suggested that, in the majority of cases, FIV infection played a role in
the observed morbidity and mortality. Detailed recording of
signallement, clinical history, physical examination data and body
weight, and flow cytometry analysis of CD4+ and CD8+ lymphocyte
subsets were performed at the time of each sampling (Bęczkowski,
2013), and are summarized in Table S2.

The study and its aims were reviewed and approved by the University
of Glasgow Ethics Committee and the Purdue Animal Care and Use
Committee. Cat owners provided written informed consent for their
participation in the study.

Amplification and cloning of WT FIV env genes. Full-length FIV
env genes (~2500 bp) were amplified from whole-blood samples
using a two-step nested PCR protocol. First-round PCRs were
performed using Phusion Blood Direct II Polymerase (Thermo Fisher
Scientific) followed by direct nucleic acid sequence determination.
The nucleic acid sequence of the first-round PCR product informed
primer design for the second-round PCR, which was performed using
Roche High Fidelity Master (Roche); strain-specific primers for
second-round PCR incorporated restriction sites to facilitate
subcloning into the expression vector for pseudotyping (Table S3).
In addition, reference env genes from clade A (GL-8) and clade B
(B2542) were cloned into the eukaryotic expression vector VR1012
(Hartikka et al., 1996) and transformed into Escherichia coli MAX
Efficiency DH5a Competent Cells (Invitrogen). Next, VR1012
plasmids expressing FIV env genes were transiently co-transfected
with the HIV pNL4-3-Luc-E2R2luc plasmid (an env-deleted HIV
provirus containing the luciferase reporter gene) (Connor et al., 1995)
into HEK 293T cells (Graham et al., 1977), using Superfect
Transfection Reagent (Invitrogen). Following 72 h incubation in
six-well culture clusters (Corning), culture fluids containing pseudo-
viruses were harvested, centrifuged at 1000 r.p.m. (~200 g) for 5 min,
passed through 0.45 mm filters and stored at 280 uC until required.

In this way, pseudotypes (n5278) were prepared, bearing naturally
occurring (n5276) and reference (n52) FIV Env proteins on an HIV
backbone; the single-round, replication-competent pseudoviruses were
used to assess the neutralization properties of test plasma samples.
Pseudotypes were prepared bearing Env proteins from 38 cats (38/44,
86.4 %); it was not possible to produce viable pseudoviruses bearing
Env proteins from five cats (5/44, 11.4 %; largely because of premature
stop codons occurring in the env sequences) and plasma samples from
one cat were not available for testing.

Neutralization assay. Plasma samples from 38 cats were tested for
NAbs using HIV(FIV)luc pseudotypes. Plasma samples were heat
inactivated at 56 uC for 30 min in order to inactivate complement
and diluted 10-fold from a starting dilution of 1 : 10 in complete
RPMI 1640 medium (Invitrogen). For 1 h at 37 uC, 25 ml of each
plasma dilution (1 : 10, 1 : 100 and 1 : 1000) were incubated in
triplicate with 25 ml HIV(FIV)luc pseudotype [luciferase activity on
CLL-CD134 cells (Willett et al., 2006) of ~56107 c.p.m.] before
56104 CLL-CD134 cells were added in 50 ml and cultured in

CulturPlate-96 assay plates (Perkin Elmer) for 72 h. Next, luciferase
activity was quantified following the addition of 100 ml Steadylite
HTS (Perkin Elmer) substrate and single-photon counting was
conducted using a MicroBeta luminometer (Perkin Elmer).

The neutralization activity of the tested plasma samples is presented
as ‘fold neutralization’. Fold neutralization was calculated by dividing
the mean luciferase counts of control wells containing no plasma (NP
luc) by the mean luciferase counts for wells containing 1 : 10 plasma
dilutions (P luc). Fold neutralization may be compared with the
percentage neutralization calculated according to:

Neutralization (%)
NP luc P luc

NP luc
= ( ) ×

−
100

Plasma samples were classified as not neutralizing, or weakly,
moderately or strongly neutralizing according to the empirical cut-
off values shown in Table S4.

Graphs and statistical analyses. Graphs and statistical analyses
were performed in Prism version 5.00 (GraphPad Software).
Descriptive data were shown as medians and interquartile range
(fifth and 95th quartile). Binary data were analysed using Fisher’s
exact test. Kaplan–Meier curves were compared using the Mantel–
Cox ‘log-rank’ test and tested with the log-rank test for trends.
Significance was set at P,0.05. For clarity, values for fold
neutralization at 1 : 10 plasma dilutions are shown in Table S1.
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