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Background 

 
The work describe here is part of an on-going study addressing Mechanically Coupled (Composite) 

Laminates. 

 

24 distinct classes of coupled laminate have previously been identified, containing all possible 

interactions between Extension, Shearing, Bending and Twisting.  

 

These laminate classes were derived for UD material using (but not restricted to) combinations of 

standard fibre angle orientations, i.e. 0, 90 and/or ±45 (= ±). 

 

The derivation of these laminate classes involves the added restrictions that each layer in the laminate:  

 

 has identical material properties;  

 has identical thickness;  

 differs only by its orientation.  

 

This presentation focuses on important aspect of laminate designs, including taper and ply contiguity, 

firstly for UD material and then for thin-ply Non-Crimp Fabric and Woven cloth materials, in which:  

 

 stacking sequence symmetries are unconstrained; 

 the coupling matrix, B = 0!  
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Laminate Characterisation 

The thermo-mechanical behaviour of coupled laminates may be determined from the specific form of 
the ABD stiffness matrix: 

 

 

 

 

 

 
Couplings exist between: 

 in-plane and out-of-plane actions, when Bij  0 (5 independent forms of the B matrix!),  

 extension and shearing, when A16, A26  0, and  

 bending and twisting, when D16, D26  0. 

 
A given laminate can be described in terms of its physical response, due an applied set of force and/or 

moment resultants ….. 
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Table 1 – Response based labelling for the 4 laminate classes of interest. 

Illustrations represent exaggerated thermal contraction responses (in-plane only, since coupling matrix 

B = 0!) following a typical high temperature curing process.   

 

Uncoupled in Extension Extension-Shearing 

Uncoupled in Bending  Bending-Twisting Uncoupled in Bending Bending-Twisting 

[/2//2/]T 

 
Simple laminate 

 

[///]T 

 
B-T coupled 

laminate 

[////3//3//]T 
 

E-S coupled laminate 

[/]T 

 
E-S;B-T coupled 

laminate 
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1. Simple laminates (balanced and 

symmetric?) 

2. B-T coupled laminates (balanced and 

symmetric!?)  

 

Tapered designs are certified for symmetric 

laminate construction, but have severe design 

constraints, e.g., 1 angle-ply termination requires 

a further 3 angle-ply terminations to maintain 

balanced and symmetric construction! 

 

B-T coupled laminates are known to be weaker in 

compression buckling than the equivalent Simple 

laminate (with matching stiffness properties), but 

are potentially stronger in shear buckling 

(direction dependent!). 

 

 

 

 

Figure 1 – Buckling interaction envelopes for an 

infinitely long plate with simply supported edges, 

highlighting the effect of isolated mechanical 

coupling properties. 
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Table 2 – Number (%) of B-T coupled laminate stacking sequences for each ply number grouping, n, 

arranged by sub-sequence symmetry.  

 
Grid-stiffened Fuselage  Traditional Fuselage  

 

 
  

n 8 9 10 11 12 13 14 15 16 

NC          
NN  16.7 

 

35.8 20.0 52.1 32.0 68.0 54.0 

NS    7.5 6.2 10.8 11.2 10.5 11.8 

SC    3.8 2.8 0.9 
 

0.9 1.1 
SN      4.8 4.8 4.3 4.0 

SS 100 83.3 100 52.8 71.0 31.4 52.0 16.3 29.1 

 15 36 56 212 290 1,336 1,500 9,666 10,210 

C – Cross-symmetric; N – Non-symmetric; S – Symmetric 
NC:  

[////////////////]T 

SC:  

[//////////]T 

NN:  

[/////]T 

SN:  

[//////////]T 

NS:  

[]T 

SS:  

[]T 
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Table 3 – Number of Bending-Twisting coupled laminates from (n =) 16 plies down to (n =) 8 plies, 

subject to contiguity constraints. 

 

 

Table 4 – Single ply termination algorithm applied to B-T coupled laminates between (n =) 16 plies 

and (n =) 8 plies; with ply contiguity  2. 

 

 

 Ply Contiguity  

n 1 2 >2  

16 210 5,717 4,283 10,210 
15 602 5,452 3,612 9.666 

14 40 940 520 1,500 

13 156 722 458 1,336 

12 6 197 87 290 

11 40 108 64 212 

10 - 42 14 56 
9 14 14 8 36 

8 - 12 3 15 

 

(1) (2) (3) (4) (5) (6) 

n No. Seq. from n 
(Compatible with n+1.) 

No. Seq. from n 
(Compatible with n-1.) 

No. Solutions  

( or / or ) 

No. Seq. from n 
(Compatible with n-1.) 

No. Solutions  

( or / or ) 

16 2,844 (3,066) (18) 36 (18/0) (286)  752 (286/0) 

15 1,496 (2,976) (18) 18 36 (18/0) (286) 286 286 (143/0) 

14 484 (954) (18) 18 36 (18/0) (294) 286 588 (294/0) 

13 332 (492) (18) 18 36 (18/0) (294) 294 294 (147/0) 

12 96 (203) (18) 18 36 (18/0) 198  

11 62 (98) (18) 18 36 (18/0)   
10 22 (42) (18) 18 36 (18/0)   

9 18 (22) (18) 18 18 (9/0)   

8 - (12) 12    
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Table 5 – Sub-sequence symmetries in compatible Bending-Twisting coupled laminate stacking 

sequences for single ply terminations, corresponding to the results of: (a) Column (2) and; (b) Column 

(5) of Table 4. 

 

 

  

  (a)  (b) 

  Ply contiguity = 1/Ply contiguity = 2  Ply contiguity  2 

n 

 

8 9 10 11 12 13 14 15 16  12 13 14 15 16 

NN      4/24 8/84 34/170 74/490 81/1,654  (44) 58 58 58 58 

NS       -/16 -/16 -/152 -/152  (6) 12 12 12 12 
SC      2/2 -/12 -/- -/- 8/25  (2) 4 4 4 4 

SN        -/24 -/76 -/96       

SS  (-/6) 12/10 -/22 32/44 -/72 102/170 -/274 286/676 -/968  (146) 220 212 212 212 
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3. E-S coupled laminates (unbalanced!) 

Laminate tailoring strategies for E-S or E-S;B-T coupled laminates 

(a) 

(b) 
Figure 1 – Illustration of (a) Extension-Shearing (E-S) coupling as a result of fully populated A matrix 

[AF], producing (b) Bending-Twisting deformation in aircraft wing-box structures when top and 

bottom skins have identical (n+) fibre alignment (eliminated with opposing alignment!), essential for 

avoiding divergence in forward-swept wings or for reducing drag in aft-swept wings. 

 

  

   

A F   
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4. E-S;B-T coupled laminates 

Table 6 – Number (%) of E-S;B-T coupled laminate stacking sequences for each ply number grouping, 

n, arranged by sub-sequence.  Symmetric laminates of the form [/…./]T have been disregarded in all 

of the results presented.   

 

 

  

n 8 9 10 11 12 13 14 15 16 

AC 
       

0.03 

 AN 

       

0.03 

 AS 

 

1.9 

 

1.3 

 

0.7 

 

0.3 

 NC 
       

0.1 
 NN 4.0 20.6 13.4 37.3 23.5 53.1 40.1 67.9 56.2 

NS 

 

5.0 3.3 9.3 6.2 10.1 8.5 9.5 9.4 

SC 
    

0.7 1.4 1.1 0.7 0.4 
SN 

 

2.5 

 

1.8 1.3 3.2 2.1 3.7 3.5 

SS 96.0 70.1 83.3 50.3 68.3 31.5 48.2 17.7 30.5 

 50 321 241 1,843 1,191 11,651 6,847 83,573 43,830 

A – Anti-symmetric; C – Cross-symmetric; N – Non-symmetric; S – Symmetric 
AC:  

[//////////////]T 

NC:  

[//////////////]T 

SC:  

[/////////]T 

AN:  

[//////////////]T 

NN:  

[///]T 

SN:  

[///////]T 

AS:  

[]T 

NS:  

[]T 

SS:  

[]T 
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Table 7 – Number of Extension-Shearing and Bending-Twisting coupled laminates from (n =) 16 plies 

down to (n =) 8 plies, subject to contiguity constraints. 

 

 
Table 8 – Single ply termination algorithm applied to E-S-B-T coupled laminates between (n =) 16 

plies and (n =) 8 plies; with ply contiguity  2. 

 

 

 Ply Contiguity  

n 1 2 >2  

16 414 19,949 23,467 43,830 
15 3,413 39,622 40,538 83,573 

14 88 3,463 3,296 6,847 

13 925 5,382 5,344 11,651 

12 10 665 516 1,191 

11 243 845 755 1,843 

10 4 145 92 241 
9 75 122 124 321 

8 - 35 15 50 

 

(1) (2) (3) (4) (5) (6) 

n No. Seq. from n 
(Compatible with n+1.) 

No. Seq. from n 
(Compatible with n-1.) 

No. Solutions  

( or //) 

No. Seq. from n 
(Compatible with n-1.) 

No. Solutions  

( or //) 

16 20,329 (20,355) (1,791)  3,582 (934/930/784) (4,373)  7,911 (2,086/2,020/1,719) 

15 11,273 (21,243) (1,791) 1,791 1,791 (467/465/392) (4,391) 4,391 4,391 (1,156/1,118/961) 

14 3,167 (3,551) (637) 637 1,274 (340/324/270) (1,637) 1,637 3,274 (948/714/664) 

13 2,111 (3,645) (637) 637 637 (170/162/135) (1,637) 1,637 1,637 (474/357/332) 

12 623 (675) (231) 231 462 (122/126/92) 675 - 

11 463 (673) (231) 231 231 (61/63/46)   
10 137 (149) (87) 87 174 (52/36/34)   

9 107 (141) (87) 87 87 (26/18/17)   

8 - (35) 35 -   
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Table 9 – Sub-sequence symmetries in compatible Extension-Shearing and Bending-Twisting coupled 

laminate stacking sequences for single ply terminations, corresponding to the results of: (a) Column 

(2) and; (b) Column (5) of Table 8. 

 

  

  (a)  (b) 

  Ply contiguity = 1/Ply contiguity = 2  Ply contiguity  2 
n 

 

8 9 10 11 12 13 14 15 16  12 13 14 15 16 

AC         4/20 -/-       

AN         8/8 -/-       
AS   -/6 -/- -/24 -/- 24/74 -/- 40/186 -/-     16  

NC         -/32 -/-       

NN  (-/2) 6/28 4/12 24/364 8/128 218/3,056 64/1,240 1,184/28,212 59/10,454  (136) 280 280 1,165 1,147 
NS   -/4 -/2 -/68 -/32 32/442 16/212 120/3,074 8/1,394  (32) 60 60 216 232 

SC    -/2 8/20 2/4 24/108 8/50 100/336 6/118  (6) 14 10 85 57 

SN   -/4 -/- -/8 -/4 -/148 -/48 64/1,316 16/616  (4) 4 8 85 113 
SS  (-/33) 69/80 -/129 211/361 -/497 627/1,554 -/1,913 1,893/6,438 -/7,367  (497) 1,279 1,279 2,824 2,824 
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C-Ply (bi-angle) non-crimp fabric material 

 

… two plies of carbon fibre, at 0° and a shallow angle (shown here 

at 45°), stitched together. 

 

The new design solutions, reported here, follow the repeating bi-

angle philosophy, [/0]rT, which possesses Extension-Shearing and 

Bending-Twisting coupling, but now with immunity to thermal 

warping distortions; warping is eliminated in [/0]rT laminates only 

when the number (r) of repeats becomes very large.   

 
n Uncoupled in Extension Extension-Shearing 
 Uncoupled in Bending Bending-Twisting Uncoupled in Bending Bending-Twisting 

4 (8) - 4 - 5 

5 (10) - - - - 

6 (12) - - - 88 

7 (14) - - - - 

8 (16) 35 419 - 683 

(n) for UD laminate equivalent. 

 

Note that a 24-ply fully isotropic (p/4) laminate can also be constructed from 0/45 and 0/-45 bi-angle 

NCF: 

[-45/90/0/45/0/45/90/45/-45/0/-45/90/-45/90/45/90/0/-45/0/45/0/45/-45/90]T 

 

by are either flipping/reversing (-45/0), rotating (90/45) or both (45/90 and -45/90).    
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Balanced plain weave material 

What lessons can be brought forward from UD to woven cloth architectures? 

 

  

Figure 2 – Balanced plain weave architecture  TeXtreme
TM

 

Due to the balanced nature of a single layer of plain weave, i.e. equal reinforcement (fibre volume 

fraction) in the 0 and 90º directions, the warp and weft directions are indistinguishable from each 

other. 

 

Hence standard ply angle orientations, 0, 90 and ±45º, simplify to 0 and 45º if the equal modulus (E1 = 

E2) condition is assumed; orthogonal counterparts, 90 and -45, have identical properties, respectively. 

 

A single layer of balanced plain weave material also possesses equal thermal expansion coefficients 

(1 = 2; 12 = 0 is implied) and is known to be immune to thermal warping distortions.  
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Stiffness matrices and associated lamination parameters  

The elements of the extensional, [A], coupling, [B] and bending [D] stiffness matrices can be 

calculated from laminate invariants, Ui, and lamination parameters i:  

    {            }      {         } 
 /      {             } 

 /   

        {        }          {     } 
 /          {        } 

 /   

        {     ⁄   
 
  }          {     ⁄   

 
  } 

 /          {      ⁄   
  
  } 

 /   

    {            }      {          } 
 /      {             } 

 /   

        {     ⁄   
 
  }          {     ⁄   

 
  } 

 /          {      ⁄   
  
  } 

 /   

    {        }      {     } 
 /      {         } 

 /   

H = n  t. 

 

Note that laminate invariant U2 = (Q11 – Q22)/2  

where    Q11 = E1/(1  1221) 

and    Q22 = E2/(1  1221) 

However, for balanced plain weave material with E1 = E2 

   Q11 = Q22 

hence    U2 = 0  
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Stiffness matrices and associated lamination parameter simplifications  

For balanced plain weave material, the elements of the ABD matrix can be calculated from a reduced 

set of laminate invariants, Ui, and lamination parameters i:  

    {       }      {    } 
 /      {        } 

 /   

        {        }          {     } 
 /          {        } 

 /   

        {    }          {    } 
 /          {     } 

 /   

    {       }      {    } 
 /      {        } 

 /   

        {     }          {     } 
 /          {      } 

 /   

    {        }      {     } 
 /      {         } 

 /   

H = n  t. 

Lamination parameters are defined by: 

 
 
 ∑                

 

   

  
 
 ∑          

      
  / 

 

   

  
  
 ∑          

      
  / 

 

   

 

 
 
 ∑                

 

   

  
 
 ∑          

      
  / 

 

   

  
  
 ∑          

      
  / 

 

   

 

zk = k
th

 layer interface distance with respect to the laminate mid-plane. 
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Similarly, the thermal force and moment vectors: 

         

         

 

Thermal

x 1 4 1 2 2 1 2 1 2 1 2 1 3 4 1 2

Thermal

y 1 4 1 2 2 1 2 1 2 1 2 1 3 4 1 2

Thermal

xy 3 2 1 2 1 3 4 1 2

N U +U α +α +U α -α +ξ [U α +α + U +2U -U α -α ]
H

N = U +U α +α +U α -α -ξ [U α +α + U +2U -U α -α ] ΔT
2

N ξ [U α +α +(U +2U -U )(α -α )]

   
   
   
   

  

 

  

  

  

Thermal

x 5 2 1 2 1 2 4 1 22

Thermal

y 5 2 1 2 1 3 4 1 2

Thermal

xy 7 2 1 2 1 2 4 1 2

M ξ [U (α +α )+ U +2U -U α -α ]
H

M = -ξ [U (α +α )+ U +2U -U α -α ] ΔT
8

M ξ [U (α +α )+ U +2U -U α -α ]

   
   
   
   

  

 

 

simplify substantially due to the assumption of equal moduli (E1 = E2, hence U2 = 0) and equal thermal 

coefficients (1 = 2 = Iso; 12 = 0 is implied): 

  (Thermal isotropy!) 

 

  

 

 

Thermal

x 1 4

Thermal

y 1 4

Thermal

xy

iso

iso

N U +U α

N = U +U

0

α ΔT

N

H

   
   
   
   

  

Thermal

x

Thermal

y

Thermal

xy

M 0

M = 0

M 0
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Lamination parameter design spaces for tapered B-T coupled UD laminates with 8-16 plies: 

 

Isometric view of (9,10,11) 

design space: 

 

 
Corresponding tapered 

laminate: 

 

 

Strings of points are clearly discernible in these design spaces, and in fact represent a series of 9 

compatible stacking sequences forming, collectively, the tapered solutions identified.  

 
(a) 

 
(d) 

 
(b) 

 
(c) 

 

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0


11

9

(90°) (0°)

(±45°)
-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0


2

1

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0


1

0

9

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0


1

0

11

[///////////////]T(SS) 

[//////////////]T(SS) 

[/////////////]T(SS) 

[////////////]T(SS) 

[///////////]T(SS) 

[//////////]T(SS) 

[/////////]T(SS) 

[////////]T(SS) 

[///////]T(SS) 
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Lamination parameter design spaces for tapered E-S;B-T coupled UD laminates with 12-16 plies: 

 

 

 

 

 
Single angle-ply terminations! 

 
(a) 

 
(d) 

 
(b) 

 
(c) 
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-1.0
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0.5
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1

0

11

[///////////////]T(SN) 

[//////////////]T(SN) 

[/////////////]T(SN) 

[////////////]T(SN) 

[///////////]T(SN) 

[///////////////]T(SS) 

[//////////////]T(SS) 

[/////////////]T(SS) 

[////////////]T(SS) 

[///////////]T(SS) 

 
[///////////////]T(SN) 

[//////////////]T(SN) 

[/////////////]T(SN) 

[////////////]T(SN) 

[///////////]T(SN) 

[///////////////]T(SS) 

[//////////////]T(SS) 

[/////////////]T(SS) 

[////////////]T(SS) 

[///////////]T(SS) 

 
[///////////////]T(SC) 

[//////////////]T(SC) 

[/////////////]T(SC) 

[////////////]T(SC) 

[///////////]T(SC) 

[///////////////]T(SN) 

[//////////////]T(SC) 

[/////////////]T(SC) 

[////////////]T(SC) 

[///////////]T(SC) 

 
[///////////////]T(NN) 

[//////////////]T(NN) 

[/////////////]T(NN) 

[////////////]T(NN) 

[///////////]T(NN) 

[///////////////]T(NS) 

[//////////////]T(NS) 

[/////////////]T(NS) 

[////////////]T(NS) 

[///////////]T(NS) 

 
[///////////////]T(NN) 

[//////////////]T(NN) 

[/////////////]T(NN) 

[////////////]T(NN) 

[///////////]T(NN) 

[///////////////]T(NS) 

[//////////////]T(NS) 

[/////////////]T(NS) 

[////////////]T(NS) 

[///////////]T(NS) 
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Balanced plain weave material, continued…. 

Simplifications with respect to UD material 

 

Only two parent classes are possible for laminates with balanced plain weave and standard ply angle 

orientations, in comparison to the 24 parent classes for UD material (or unbalanced weave):  

 

 
 

Simple E-B-S-T  

Figure 3 – Parent laminate classes with balance plain weave. Illustrations represent free thermal 

contraction responses; the response of the E-B-S-T coupled laminate (Bij  0) represents un-balanced 

plain weave since balanced plain weave is hygro-thermally curvatures stable, i.e. warp-free. 

  

ASB0DF 

[///]T 

 

 
 

ASBlDF 

[//2//]T 

 

 
 

ASBtDF 

[/3/2]T 

 

 
 

ASBltDF 

[/2//2/]T 

 

 
 

ASBSDF 

[/2//]T 

 

 
 

ASBFDF 

[//]T 

 

 
 

 

ASB0DS 

[2///2/]T 

 

ASBlDS 

[////////]T 

 

ASBtDS 

[/]T 

 

ASBltDS 

[///]T 

 

ASBSDS 

[/2//2//]T 

 

ASBFDS 

[/2/////]T 
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Mechanical Coupling in Balanced Plain Weave Laminates. 

Coupling characteristics can be obtained from the parent laminate classes by applying off-axis material 

alignment (… the parent class with non-zero coupling [B] stiffness matrix is omitted here! 

 

The form for the extensional [A] and bending [D] matrices may be either Simple or possess Extension-

Shearing and Bending-Twisting, respectively.  All matrices are Square symmetric! 

 

Table 10 – Square symmetric forms of the Extensional [A] and Bending [D] stiffness matrices for 

Simple ( = mp/2) and coupled ( mp/2) behaviour (m = 0, 1, 2, 3). 

Extensional [A] Bending [D] 

Simple E-S Simple B-T 

 

















66

1121

1211

A00

0AA

0AA

 

 

 

















661616

161121

161211

AA-A

A-AA

AAA

 

 

 

















66

1121

1211

D00

0DD

0DD

 
 

 

















661616

161121

161211

DD-D

D-DD

DDD
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Table 11 – Summary on the number of Simple laminates for each ply number grouping, n, and the 

number of quasi-homogeneous or fully isotropic laminates, where    β   p/4. 

n 
Simple 

ASB0DS 

Quasi-homogeneous 

ASB0DS 

Fully Isotropic 

AIB0DI 
Fully Isotropic stacking sequences 

8 9 1 1 [/β2//β/2/β]T  [45/02/45/0/452/0]T 

9 26 1   

10 24 1   

11 76 5   

12 69 1 1 [/β//β3/3/β//β]T 

13 236 12   

14 214 7   

15 760 12   

16 696 7 7 [/β3/4/β2//β2//β/]T 

Quasi-homogeneity signifies that A* (= Aij/H) = D* (= 12Dij/H
3
) 
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Concluding Remarks 

 

UD laminates: 

 

Thin laminates must exploit non-symmetric and potentially unbalanced stacking sequence 

configurations to fully exploit the available design space. 

 

Tapered laminate solutions have been demonstrated in non-symmetric laminates, whereby immunity to 

thermal warping and consistent mechanical coupling (or uncoupled!) properties are maintained. 

 

 

Balanced plain weave laminate architecture  TeXtreme
TM

 

 

Benchmark stacking sequences have been derived for uncoupled balanced plain weave laminates 

including those with either extensionally isotropic or fully isotropic properties. 

 

All solutions (including those with non-zero coupling [B] stiffness matrices) possess immunity to 

thermal warping and therefore provide a robust manufacturing solution for integrating (complex) 

mechanical coupling response, as an enabling technology, in future smart materials and structures. 
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Concluding Remarks continued 

 

Prospects for exploitation of thin-ply technologies: 

 

Whilst not explicitly stated in the foregoing, it is clear that thin-ply technologies will facilitate a 

significant reduction in overall laminate thickness and therefore allow an exponential increase in 

tailoring opportunities; this will bring design flexibilities found only in traditionally thick laminate 

construction into the thin laminate domain. 

 

This statement is evident from details of the exploitable design spaces for the 4 Hygro-Thermally 

Curvature-Stable (or warp-free) laminate classes, e.g. where solutions exist only with 7 plies and 

above for Simple laminates and 14 plies and above for Extension-Shearing coupled laminates. 

Additionally, the relative increase in design flexibility for thickness tapering, as the minimum number 

of plies is increased, has been demonstrated for laminates with Extension-Shearing and/or Bending-

Twisting coupling.  
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Instron E10000 Tension-

Torsion test for 

Extension-Twisting 

coupled laminates. 

 

 

Lamination parameters: 

 

A and D matrices

 

B matrix 

Figure 4 – Twist Rate vs Axial Force simulations for Extension-Twisting coupled laminates with 

unidirectional and balanced plain weave of equal thickness.  Maximum force applied corresponds to 

Tsai-Wu (first ply) failure prediction. 
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