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Abstract

Structural first-price auction estimation methods, built upon Bayesian Nash Equilibrium (BNE), have

provided prolific empirical findings. However, due to the latent nature of underlying valuations, the assump-

tion of BNE is not feasibly testable with field data, a fact that evokes harsh criticism on the literature. To

respond to skepticism regarding credibility, we provide a focused answer by scrutinizing estimates derived

from experimental asymmetric auction data in which researchers observe valuations. We test the statistical

equivalence between the estimated and true value distributions. The Kolmogorov-Smirnov test fails to reject

the distributional equivalence, strongly supporting the credibility of structural asymmetric auction estimates.
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1 Introduction

By scrutinizing the estimates derived from the experimental auction data in which researchers observe

laboratory-assigned valuations, and by statistically testing the equivalence between estimated and observed

valuations, this research establishes the credibility of broadly used asymmetric first-price auction estimates,

both structural and semi/nonparametric, which has not been reported in the literature.1

In empirical first-price auction literature, researchers are interested in describing strategic interactions among

bidders for understanding and designing auction markets based on underlying economic incentives. Tradi-

tionally, reduced-from regressions had been used, despite the restriction on linearity had been the hindrance

to describe strategic behaviors and to obtain profound insights. In order to overcome the linearity restriction,

structural2 and nonparametric estimation methods arose and have been widely used over the last twenty

years for investigating testable implications and drawing policy recommendations supported by counterfac-

tual experiments.3 In addition, due to the ubiquity of asymmetry among bidders, the estimation methods are

extended to asymmetric auctions. In such empirical auction research, estimated valuations are particularly

important to both researchers and industry practitioners as market designs, such as setting reserve prices or

detecting collusions, essentially depend on empirical estimates. As a result, asymmetric auction estimates

now come to serve as the vital foundations of many auction market research for addressing numerous positive

and normative questions.

However, while more and more asymmetric first-price auction estimates are reported in the literature, there

is a fundamental difficulty in evaluating the performance of these estimates. Structural methods, in which

researchers strictly assume that observed bids are derived from the Bayesian Nash equilibrium, estimate the

bidders’ valuations. However, despite the fact that the comparison between estimated and true valuations

is essential in accurately measuring the performance of estimates, the truth is bidders’ valuations are latent

in empirical first-price auctions. This latent nature of bidders’ valuations in empirics lead to an infeasible

1In this paper, we repeatedly use the terminology of “performance” and “accuracy” to mean the results of statistical tests that

compare the distributions of estimated and true valuations. Specifically, we use the two-sample Modified Kolmogorov-Smirnov test.

2Given the assumption of Bayesian Nash Equilibrium (BNE), the structural elements are potentially heterogeneous von-

Neumann-Morgenstern (vNM) payoff functions and potentially affiliated bidders’ value distributions.

3The cornerstone work in the dawn of empirical and structural first-auction literature should be credited. To the best of our

knowledge, the literature was initiated by the contribution made by the Ph.D. thesis of Paarsch (1992) [65] with parametric models.

Donald and Paarsch (1993, 1996) [22] [23], Elyakime, Laffont, Loisel, and Vuong (1994) [24], Laffont, Ossard, and Vuong (1995) [46]

established statistically rigorous yet flexible parametric estimation methods. The survey paper of Hendricks and Paarsch (1995)

[30] and Perrigne and Vuong (1999) [67] concisely illustrate the early contributions in the literature.
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Figure 1: Research Outline
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comparison between estimated and true valuations.4 Such an infeasible comparison, along with the rigid

Bayesian Nash equilibrium assumptions for describing bidders’ behavior, then becomes the target of harsh

criticism and skepticism on empirical auction estimates.5

Against such criticism and skepticism, Bajari and Hortaçsu (2005) [12] provide a concrete and focused6

response by using symmetric first-price auction data from laboratory study in which researchers observe

4This difficulty has been widely recognized from the beginning of the literature. The survey of Hendricks and Paarsch (1995)

[30] concisely summarizes the difficulty as “The difficulty with field data.....is that neither the valuations of potential buyers nor the

probability law determining these valuations is observed by the researcher.” In addition, McAfee and Vincent (1992) [56] commented

the difficulty of unobserved valuation (signal) as “The most obvious roadblock to test auction theory is the heavy use made of

unobservables in the theory. Bidders choose optimal bids based on signals that are not observed by econometrician studying auction

behavior.”

5There are at least two sorts of reported criticism. The first is made by the group of robust mechanism design researchers who

have the skeptical view on the bidders’ abilities to find Beyesian Nash Equilibrium, especially in asymmetric auctions, that is the

solutions of intricate best-response functions. These theoretical researchers claim bidders are not able to find BNE and suggest to

use weaker equilibrium concepts, such as the prior-distribution-free iterations of dominated-strategy eliminations in second price

auctions, to design auction markets. See Wilson (1987) [76] for the critique on BNE. The second criticism comes from the group

of labor economics researchers who claim assumptions made for structural analyses are implausibly strong. For example, Angrist

and Pischke (2010) [4] describe structural elements as “superstructure of assumptions” and “industrial disorganization” and suggest

to use reduced-from analyses of field-experiment data to obtain policy implications. As Bajari and Hortaçsu (2005) [12] mention,

these skepticism are not without merit.

6Here, we use the word “focused” as Bajari and Hortaçsu (2005) [12] use laboratory experimental data, which has a more

simplified framework compared to field auctions.
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experimentally-assigned true valuations, as depicted in Figure 1.7 By using the valuations observed in the

experiment as a benchmark, they compare the estimates generated by various structural models with non-

parametric estimation methods. Their analyses shows that estimates based on the Constant Relative Risk

Averse (CRRA) Bayes-Nash model can recover the distributions of latent valuations in symmetric auctions

with a statistically acceptable degree of accuracy,8 at least under but not limited to a laboratory environment,

and demonstrates the great potential of structural and nonparametric auction estimation methods.

This research contributes to the empirical auction literature by extending the seminal symmetric first-price

auction study of Bajari and Hortaçsu (2005) [12] to an asymmetric auction framework. Given the ubiquity

of asymmetry among bidders in real-world auctions, prevalence of structural asymmetric first-price auction

studies over the last 10 years,9 and difficulties reported in theoretical asymmetric auction literature,10 it is

our belief that establishing the credibility of asymmetric auction estimates by testing the performance and

pointing out the potential improvements are invaluable, as they crucially matter to auction research and

auction market design policies. Following the precedent set by Bajari and Hortaçsu (2005) [12], we likewise

use laboratory data as it is able to capture insightful views on the performance of auction estimates. Both

strengths and shortcomings of estimates are explicitly detected with laboratory data, and such findings are

essential for improving the performance of asymmetric first-price auction estimates. Also, despite the fact

that empirical asymmetric auctions have been and continue to be actively investigated, to the best of our

knowledge, direct evaluations of asymmetric auction estimates have not previously been investigated in the

7In a typical auction laboratory experiment, valuations of an object is exogenously and randomly assigned to bidders, often by

using computer-generated random numbers, and researchers are able to observe valuations.

8In Bajari and Hortaçsu (2005) [12], the accuracy of estimates is statistically supported by the two-sample Modified Kolmogorov-

Smirnov test.

9The nonparametric and structural auction estimation methods are extended to an asymmetric auction framework by Campo,

Perrigne, and Vuong (2003) [17]. Numerous empirical asymmetric auction studies follow. The incomplete list of such empirical

asymmetric auction studies includes Flambard and Perrigne (2006) [25] for Canadian snow removal contracts, Marion (2007) [57]

for bid preference in Californian highway procurement, Lu and Perrigne (2008) [55] for US Forest Service timbers, Krasnokutskaya

(2011) [43] for Californian highway procurement, Krasnokutskaya and Seim (2011) [44] for bid preference in Californian highway

procurement, Campo (2012) [16] for Californian construction procurement, Nakabahashi (2013) [63] for small businesses set-aside

in Japanese construction procurement, and Balat (2013, working paper) [14] for dynamic analysis of Californian construction

procurement. All of the empirical asymmetric auction studies use estimated latent valuations to investigate the policy implications

in which performances (accuracy) of estimated valuables are crucial for answering important policy questions. By establishing the

credibility of asymmetric auction estimates, our research indirectly supports these empirical studies and findings.

10Krishna (2009) [45], one of the most popular auction-theory textbooks, describes the theoretical difficulties in extending

symmetric auction results to asymmetric environments as “Much of the theory developed in the symmetric case is fragile and does

not extend to situations in which bidders are asymmetric.”
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literature, and it is these estimated valuations that market designs heavily reply upon.

Specifically, we investigate the performance of de-facto standardly used asymmetric first-price auction estima-

tion methods introduced by Isabelle Perrigne, Quang Vuong, and their coauthors.11 We choose these methods

since, due to the versatility in allowing asymmetry in value distributions and computational tractablity, they

are now the standard used by numerous empirical works for investigating auction markets.

For this investigation, we use the unique dataset from the asymmetric private value first-price auctions

collected in the laboratory experiment conducted by Chernomaz (2012) [20]. The data contains submitted

bids and laboratory-assigned valuations for each bidder in a repeatedly-conducted experiment. Addition-

ally, Chernomaz (2012) [20] investigates the effects caused by asymmetry among bidders under exogenously

changing auction environments, while the majority of bidder valuations remain fixed before and after such

exogenous changes. Figure 2 visually illustrates the details of such exogenous changes and repetition in the

laboratory environment.

Given such exogeneity and repetition in the laboratory experiment, this is the bottom line of our estimations

strategy: exploiting exogenous changes in auction environments to identify both bidders’ payoff functions

and underlying value distributions, as bid distributions vary before and after the exogenous change while the

valuations that bidders hold remain unchanged. We construct, then estimate, the compatibility conditions

based on such exogenous changes. For empirical investigation, this bottom line ideas allows us to scrutinize

the accuracy of derived estimates.

The primary analytic methodology employed in our research straightforwardly follows those implemented

in Bajari and Hortaçsu (2005) [12], as depicted in Figure 1, yet we newly extend their analyses to three

empirically important dimensions.12 The first extension is that we investigate asymmetric value distributions

11Specifically, we investigate the accuracy of structural and semi/nonparametric estimation methods for asymmetric auctions

with exogenous variations proposed by Campo, Perrigne, and Vuong (2003) [17], Guerre, Perrigne, and Vuong (2009) [28], and

Campo, Guerre, Perrigne, and Vuong (2011) [18]. In the literature, these methods are proposed and evolve as follows: based on the

cornerstone work of Guerre, Perrigne, and Vuong (2000) [27] that proposes a method for symmetric first-price auctions, Campo,

Perrigne, and Vuong (2003) [17] extend the nonparametric estimation method to asymmetric auctions in which bidders draw their

valuations from asymmetric distributions. In addition, Guerre, Perrigne, and Vuong (2009) [28], and Campo, Guerre, Perrigne,

and Vuong (2011) [18] broaden the estimation method to allow both homogeneous and heterogeneous risk-averse preferences among

bidders.

12Bajari and Hortaçsu (2005) [12] also conduct the analyses of Adaptive Learning and Quantal Response Models. We exclude

these models from this research as they are not popularly used in empirical auction literature, although we recognize these models

have intriguing aspects for understanding bidding behavior.
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among bidders. Second, we allow and test potential affiliations among underlying value distributions as

empirical researchers seldom have priori knowledge of the independence of underlying valuations. The last,

but not least, extension is that, in addition to the semi-parametric models, we investigate the nonparametric

von-Neumann-Morgenstern (vNM) functions that allow flexibility of bidders’ risk preferences.

Based on the comparisons between estimated and true private valuations, we report these main conclu-

sions: (1) the risk-neutral model assumption, which is often assumed for simplicity and tractability in the

literature, tends to inflate estimated valuations; (2) the assumption of risk-averse bidders is indispensable

as it enables nonnegligible improvements in the accuracy of estimates; (3) among semi and nonparamet-

ric risk-averse models, the nonparametric model with conventional-wisdom-based shape restrictions provides

the most accurate results;13 (4) when advanced risk-averse models are employed, the two-sample Modified

Kolmogoro-Smirnov test fails to reject the statistical equivalence between the estimated and tue value distri-

butions, positively supporting the empirical findings reported in the empirical asymmetric auction literature;

(5) estimated value distributions of stochastically-dominated bidders are relatively more accurate compared

to those of stochastically-dominating bidders;14 and (6) if the true data generating process is independent

private value, the assumption of affiliated or independent private value only create a negligible difference in

accuracy, strongly encouraging the usage of affiliated private value models originally proposed by Li, Perrigne,

and Vuong (2002) [52] in any empirical auction research. While degrees of accuracy and improvements differ

by applications, the facts we find in this research are widely extendable to any empirical asymmetric auction

research. Additionally, these findings are achieved through relatively small sample size, keeping them in line

with most empirical auction research that also have restrictions in terms of sample size available to researchers.

The paper is organized as follows: Section 2 illustrates the experimental data that contains both valua-

tion and bid information; Section 3 explains the theoretical auction models that are the basis for structural

estimations; Section 4 describes the semi and nonparametric asymmetric auction estimation methods that

are used to generate estimates; Section 5 visually reports the estimation results then statistically tests the

performance of asymmetric auction estimates; and lastly, Section 6 provides the external validity and con-

clusions.

13We employ the nonparametric sieve estimation method with shape restrictions in which restrictions are based commonly

accepted economic theory. Specifically, we restrict the lower bound of slope on nonparametrically estimating functions in the

regions where identifications are challenging.

14As Bajari and Hortaçsu (2005) [12] mention, and as auctions in the laboratory could differ from those in the real-world, the

strong caveat to the external validity (validity outside the reach of the experimental laboratory) should be explicitly noted. We will

discuss the external validity in the conclusion section.
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2 Data Descriptions

In this section, we illustrate the laboratory auction data used to obtain results described in the empirical

section. Key to this section is that bidders in experiments participated in two exogenously varying formats

of auctions while the majority (two out of three, as illustrated in Figure 2) of their valuations remained

unchanged. Such exogeneity provides us with the exclusion restrictions and enables us to identify both risk-

averse vNM payoff functions and value distributions in the empirical section. With the emphasis on such

exogenous change, we first describe the laboratory auction procedures, then explicate the summary statistics

for illustrating the differences in bidding behavior before and after the change.

The data is from Chernomaz (2012) [20], which investigates the results of joint bids in independent pri-

vate value first-price auctions.15 The participants were recruited from undergraduate students at Ohio State

University and paid a $6 show-up fee. There were three experiment runs (denoted as Experiment Run I, II,

and III), conducted at different times, and participants were not allowed to join more than one experiment

run. A computer-based laboratory was used for this experiment, and participants interacted only through

computer screens. Table 1 summarizes the number of participating bidders and observed bids in each exper-

iment run. At the beginning of each experiment run, bidder types (joint and solo) were randomly assigned,

and every participant remained the same type throughout the experiment run. Thus, a participating bidder

kept playing the same type throughout an entire experiment run. In each experiment run, bidders initially

experienced two practice rounds, then they participated in twenty-four rounds involving monetary incentives.

Figure 2 depicts the stages within each round.16 At the beginning of each round, participating bidders were

randomly matched to form a three-bidder group. Out of three within a matched group, two were from the

pool of joint-type bidders, and the remaining one was from the pool of solo-type bidders. Then, valuations

were drawn from i.i.d. uniform distribution U r$0, $18.75s, denoted by v1 to a joint-type bidder, v2 to another

joint-type bidder, and v3 to a solo-type bidder, as depicted in Figure 2. Within each round, there were

symmetric- and asymmetric-auction stages. In a symmetric-auction stage, three bidders submitted one bid

15A joint bid (also known as a consortium bid) is defined as two or more bidders who form a group and submit one joint

(consortium) bid in an auction. Joint bids were allowed in Mexico and Louisiana Gulf Outer Continental Shelf (OSC) wildcat

auctions, and as a result the implications of joint bids are now intensively scrutinized in empirical auction literature. Hendricks and

Porter (1998) [35], Campo, Perrigne, and Vuong (2003) [17], and Hendricks, Pinkse, and Porter (2003) [37] investigate joint bids in

wildcat auctions and the associated asymmetry in available economic resources. Note that our laboratory procedures in Figure 2

can be viewed as a miniature of hypothetical wildcat auctions in which both (non-collusively) individual and joint bids are allowed

to submit to an auction where an auctioneer randomly determines whether or not to allow a joint bid.

16In summary, there were three experiment runs (I, II, and III). In each run, there were twenty-four rounds, excluding the two

practice rounds. In each round, there were several stages, including symmetric- and asymmetric-auction stages, as depicted in

Figure 2.
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each (denoted as b1, b2, and b3), yet the outcome of a symmetric-stage auction was not announced until the

result-announcement stage. Next, at the beginning of an asymmetric-auction stage, the two joint-type bidders

aggregated their valuations as max tv1, v2u.
17 In an asymmetric-auction stage, a solo-type bidders submitted

a bid bSolo, based on her valuation of v3. On the other hand, each joint-type bidder submitted a respective bid,

based on the aggregated valuation of max tv1, v2u.
18 At an asymmetric-auction stage, these two joint-type

bids (denoted as b1,Joint and b2,Joint) were separately submitted by each joint-type bidder; then the experiment

organizer (i.e. the auctioneer) randomly chose one of them with equal probability (described as 50% and 50%

in Figure 2) to be the chosen joint-type bid.19 At the result-announcement stage, within-a-matched-group

results, including assigned valuations (v1, v2, and v3), aggregated valuation (max tv1, v2u), bids in each stage

(b1, b2, b3, chosen bJoint, and bSolo), and winning/losing statuses in each stage were announced to the matched

group members, yet the identities of bidders were kept hidden. Therefore, the participants in experiment

played against anonymous opponent bidders. In addition, monetary payoffs were calculated and added to

each participating bidder’s account.20,21 Lastly, at the end of each round, a matched group was dissolved,

17This way of value aggregation, adopting a maximum valuation among joint-type bidders, corresponds to the empirical observa-

tions that joint (consortium) bidders share their economic resources, such as the most available cost-saving technology, the closest

geographical locations, and the information of best-available resale opportunities. In our experiment, this means that one of the

joint-type bidders kept having the same valuation before and after the exogenous value aggregation, and this invariant nature is

exploited in the estimation section.

18In an asymmetric-auction stage, the two within-a-matched-group joint-type bidders are informed of their aggregated valuation

(i.e. max tv1, v2u) through their respective computer screens. However, verbal or textual communication between joint-type bidders

was strictly forbidden. Therefore, a bid made by a joint-type bidder in an asymmetric stage (i.e. b1,Joint or b2,Joint in Figure 2)

was derived from a single-agent payoff-maximization problem. This single-agent decision nature is advantageous for estimating

preferences among bidders in the estimation section.

19This randomized choice among joint-type bids (i.e. among b1,Joint and b2,Joint) with equal probability was designed for in-

vestigating behavioral difference in bidding behavior between a consortium-leader-firm-like joint-type bidder whose valuation draw

was originally max tv1, v2u and a consortium-follower-firm-like joint-type bidder whose valuation draw was originally min tv1, v2u.

We encourage interested researchers to see Chernomaz (2012) [20] for further details on the experiment design and behavioral

differences.

20Monetary payoffs were calculated as follows. After a result-announcement stage, the experiment organizer (i.e. the auctioneer)

randomly selected with equal probability an auction stage in which an outcome was actually paid. Note that as far as bidders’

vNM functions are additively separable, which is usually assumed and accepted in auction literature, this random selection does not

affect bidders’ payoff-maximization problems in each auction stage. This randomized selection process was empirically motivated

by the factual observation of timber auctions in which the U.S. Forest Service randomized different auction rules. Lu and Perrigne

(2008) [55] and Athey, Levin, and Seira (2011) [10] exploit such randomization of timber auctions for detailed investigations of

identifications and bidding behavior.

21In addition, if an asymmetric-stage auction was selected (by the experimental organizer) and if a chosen (by the experimental

organizer) joint-type bid exceeded a solo-type bid, the payoff of the joint-type bidders was equally split. This means that, conditional
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and participants returned to the pool of bidders.

Results were announced only to matched-group members at the end of each round, and the results of a

specific matched group were NOT available to members of any other groups. As a natural consequence, we

observe sizable learning and adjusting behavior in the first half of the rounds in each experiment run. For

investigating the strategic interactions and estimates of valuations without concern for the learning effect,

this research excludes the data from the first half of the rounds, and only the data from the second half of

the rounds is used in the empirical investigations. Table 1 summarizes the sample size in each auction stages.

Table 2 lists the summary statistics of observed bids in both symmetric- and asymmetric-auction stages.

In theory, bidders are predicted to bid less in asymmetric-auction stages, as symmetric-auction stages consist

of three bidders while asymmetric-auction stages consist of only two bidders (i.e. a chosen joint-type bidder

and a solo-type bidder). In most of the experiment runs, both joint- and solo-type bidders decreased their

bids in asymmetric-auction stages, yet we observe a small increase in bids in Experiment Run II that could

negatively affect the performance of structural estimations. Figure 3 depicts the pairs of symmetric-auction

stage bids and chosen (and also announced announced) asymmetric-auction stage bids in each experiment run

for which we later apply apply kernel density estimations. Although we observe the slight rounding-up/down

effect (eg. bidders tend to bid in increments of five -$0, $5, $10, and $15), this does not seem to severely

affect the estimates of distributional functions as, overall, bids appear widely spread out.22

on being selected, chosen, and winning, each joint-type bidder’s payoff was 1
2
pmax tv1, v2u�b

chosen
Joint q as illustrated in Figure 2, where

bchosen
Joint is a chosen joint-type bid. Although this splitting rule does not affect the risk neutral and CRRA models, it affects the

estimation methods of joint-type bidders’ risk preferences for CARA and nonparametric models. See Appendix for details.

22As this research emphasizes the empirical perspective of asymmetric auction data, we refrain from examining the data of

laboratory-assigned valuations until Estimation Result section. Nonetheless, the plots of laboratory-assigned valuations and bids

are reported in Appendix, and we observe large overbidding (bidding more than risk neutral BNE) in our laboratory auction data.
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Figure 2: Stages within a Round
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Table 1: Sample Size

Number of Symmetric-Auction Asymmetric-Auction

Participants Stage Bids Observed Stage Bids Observed

Experiment Run I
Joint Type 14 Bidders 168 Bids (84 Chosen Bids) 84 Bids

Solo Type 7 Bidders 84 Bids 84 Bids

Experiment Run II
Joint Type 16 Bidders 192 Bids (96 Chosen Bids) 96 Bids

Solo Type 8 Bidders 96 Bids 96 Bids

Experiment Run III
Joint Type 12 Bidders 142 Bids (72 Chosen Bids) 72 Bids

Solo Type 6 Bidders 72 Bids 72 Bids

Table 2: Summary Statistics of Bid Data (in U.S. Dollars)

Mean Standard Quantile

Deviation 10th 25th 50th 75th 90th

Experiment Run I

Joint Type

Symmetric 8.77 3.13 5.00 6.38 8.88 10.50 12.62

Asymmetric 8.17 3.22 4.22 5.53 7.84 10.38 12.55

Difference 0.60 0.78 0.85 1.04 00.13 00.07

Solo Type

Symmetric 7.09 4.38 1.57 3.44 6.94 10.69 12.63

Asymmetric 7.01 4.47 1.50 3.49 6.50 10.28 13.15

Difference 0.08 0.08 -0.05 0.44 0.41 -0.52

Experiment Run II

Joint Type

Symmetric 9.54 3.75 5.00 6.28 9.99 12.40 14.98

Asymmetric 9.58 3.95 4.75 6.76 9.28 12.34 15.00

Difference -0.04 0.25 -0.49 0.71 0.06 -0.02

Solo Type

Symmetric 6.79 4.60 1.02 2.58 6.69 11.06 12.96

Asymmetric 6.92 4.64 0.75 2.56 7.22 10.93 13.75

Difference -0.13 0.27 0.01 -0.54 0.14 -0.79

Experiment Run III

Joint Type

Symmetric 10.60 4.30 3.16 7.55 11.49 14.18 15.79

Asymmetric 10.22 4.39 3.16 7.38 11.25 13.64 15.63

Difference 0.38 0.00 0.17 0.24 0.54 0.17

Solo Type

Symmetric 8.52 4.88 2.03 4.53 8.61 12.78 15.27

Asymmetric 8.43 4.85 2.03 4.53 8.31 12.75 15.08

Difference 0.09 0.00 0.00 0.30 0.03 0.19
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Figure 3: Observed Bids: LEFT - Symmetric Auction Stages; RIGHT - Asymmetric-Auction Stages

(a) Experiment Run I: bSym
�i and bSym

i (b) Experiment Run I: bAsym
Solo and bAsym

Joint

(c) Experiment Run II: bSym
�i and bSym

i (d) Experiment Run II: bAsym
Solo and bAsym

Joint

(e) Experiment Run III: bSym
�i and bSym

i (f) Experiment Run III: bAsym
Solo and bAsym

Joint
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3 Auction Models

This section describes the theoretical models of an affiliated private value (APV) auction that include an

independent private value (IPV) auction as a special case. Although the bid data used in this research

is generated from the experiments of IPV auctions, APV models are initially employed for the following

empirically pragmatic considerations.23 In many empirical investigations, researchers seldom have enough

prior evidence to determine the independence of underlying value distributions. Given the pervasiveness

of insufficient initial information, therefore, it is empirically prudent for researchers to first estimate latent

valuations with a model that can allow potential affiliations, then test independence. Formal and statistical

tests for distributional independence are demonstrated in the Estimation Result section.24 These cautious

model-specification procedures are also based on the robustness requisition proposed by the well-known

and influential critique by Leamer (1983) [47], which is largely concerned with the credibility of estimates in

general empirical research due to the lack of robustness in changes to model assumptions.25 With the emphasis

on generality in modeling assumptions, we first explain the symmetric auction models, then illustrate the

asymmetric auction models.

3.1 Symmetric Auction Models

A single and indivisible object is sold in an auction to N bidders who have the von-Neumann-Morgenstern

(vNM) function Up�q that is twice differentiable with U 1p�q ¡ 0 and U2p�q ¤ 0 to allow potential risk aversion.

As a vNM function is unique up to the positive-affine transformation, the normalization of Up0q � 0 and

Up1q � 1 is imposed without loss of generality. For the same of clear notations, we use a capital letter

for describing a random variable and a lower-case letter for describing the realization of a random variable.

Assuming that N � 3 bidders in an auction with index i P t1, 2, 3u, bidders draw private valuations tv1, v2, v3u

from the potentially affiliated joint distribution FV1,V2,V3
pv1, v2, v3q. The arguments of the joint distribution

are exchangeable in its N � 3 elements, meaning that the model is distributionally symmetric.26 Given that

23Surprisingly, APV models provide slightly more precise estimates compared to those derived from IPV models, and we will

investigate the reasons behind this in the Estimation Result section.

24Given the existence of behavioral bidders who may not strictly play BNE, the independence of observed bids does not imply

the independence of valuations (vice versa).

25See the recent development on the Leamer Critique argued in Angrist and Pischke (2010) [4] and Sims (2010) [74] for a detailed

description of model robustness.

26This setting is called the symmetric affiliated private value (APV) model, and its econometric identification and rationalizability

are intensively investigated in Li, Perrigne, and Vuong (2002) [52]. By the Monte Carlo simulations, they investigate the problem of

misspecification, estimating distributions of valuations under the IPV assumption when the true data-generating process is APV.

They report that such misspecification tends to result in overestimation of private values, specifically in the upper domain of

private values. This overestimation is caused by the neglect of modeling a strategic behavior in an APV environment; if a bidder
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other bidders employ a symmetric equilibrium strategy, bidder i’s expected payoff maximization problem is

max
bi

Upvi � biq � FY�i|Vipφpbiq|viq,

where Y�i is a random variable of the highest valuations among opponent bidders with its realization y�i �

maxj�i vj , and φp�q is the inverse of a symmetric equilibrium bidding function. In addition, FY�i|Vipy�i|viq

denotes the conditional distribution function of Y�i given vi. The first-order necessary condition27 of the

above maximization problem, where a bidder equates marginal cost and benefit of changing her bid, can be

written in the form of

vi � bi � λ�1

�� FY�i|Vipφpbiq|viq
FY�i|Vi pφpbiq|viq

dy�i
� φ1pbiq

�
looooooooooooooooooomooooooooooooooooooon

Shading Function

,

where, according to the tradition of empirical auction literature, we define λp�q � Up�q{U 1p�q and λ�1p�q as a

corresponding inverse function. We refer to a function λ�1p�q as a shading function after its role of describing

the difference between a valuation and a bid. We also refer to the argument of the shading function as a

reciprocal factor.28 Since in field-auction data we cannot empirically observe latent valuations that appear

in the argument of the shading function, we now need to replace unobserved valuations with observed bids.

We denote that B�i is a random variable of a highest bid among opponent bidders with its realization

b�i � maxj�i bj . In addition, we denote the conditional distribution of B�i given bi as GB�i|Bipb�i|biq and

its derivative as gB�i|Bipb�i|biq. By assuming bidder i also employs a symmetric equilibrium bidding strategy,

the probabilistic relation between observable bids and latent valuations is GB�i|Bipx|biq � FY�i|Vipφpxq|viq.

Moreover, by the fundamental theorem of calculus, the conditional density is obtained as gB�i|Bipx|biq ��
dFY�i|Vipφpxq|φpbiqq{dy�i

�
� φ1pxq. Then, by using these probabilistic relations that bridge the unobservable

has a high valuation, other bidders are also likely to have high valuations, and she needs to bid aggressively. Conversely, we in

this research investigate the empirically prudent misspecification with the laboratory data, estimating value distributions under

the APV assumption when the true data-generating process is IPV. We are happy to report that empirical asymmetric auction

estimates in our research are robust (and even more accurate) against such empirically prudent misspecification, as we explain in

the Estimation Result section.

27Throughout this research, we assume that second-order conditions are satisfied.

28This slightly awkward naming comes after the fact that Guerre, Perrigne, and Vuong (2009) [28] use the notation R to express

this argument (see p.1202 of their paper for details), yet they do not provide a memorable name for this object. “R”eciprocal factor

represents a quotient of “probability of winning” divided by “marginal probability of winning.” It is actually the reciprocal of

semi-elasticity � rpdhpxq{dxq{hpxqs where hpxq is a winning probability and dx is a change in bid.

13



to the observable, the first-order necessary condition can be equivalently written as

vi � bi � λ�1

�
GB�i|Bipbi|biq

gB�i|Bipbi|biq



, (1)

where components of the right-hand side of the equation are observable or estimatable. Furthermore, as the

distributional functions in the right hand side of equation (1) share the same conditional variable, we exploit

the definitions of conditional density and distribution functions, as suggested by Li, Perrigne, and Vuong

(2002) [52], gB�i|Bipz|biq � gB�i,Bipz, biq{gBipbiq and GB�i|Bipx|biq �
�³x
b
gB�i,Bipz, biqdz

	
{gBipbiq where b

is the lower bound of bid distribution. Thus, the equation (1) can be re-written in an unconditional fashion

as

vi � bi � λ�1

��³bi
b
gB�i,Bipz, biqdz

gB�i,Bipbi, biq

�. (2)

For the sake of organized notations for later empirical use, we introduce the convenient terms of Γpx, bi|gB�i,Biq �³x
b
gB�i,Bipz, biqdz and of reciprocal factor as Rrx, y|ΓB�i,Bi , gB�i,Bis

= Γpx, y|gB�i,Biq{gB�i,Bipx, yq. Given these simplified notations, we can denote the first-order necessary

condition of symmetric auction as

vSym
i � bSym

i � λ�1

����RSym,Affi
�
bSym
i , bSym

i

���ΓSym,Affi
B�i,Bi

, gSym,Affi
B�i,Bi

�looooooooooooooooooooooooooomooooooooooooooooooooooooooon
(i)

���, (3)

where the upper indices of “Sym” and “Sym,Affi” emphasize that the auction model is symmetric and of

affiliated value. In addition, if a researcher further assumes the independence of private valuations, the bi-

variate functions are simplified as gB�i,Bipz, biq � gB�i
pzq and

³x
b
gB�i,Bipz, biqdz � GB�i

pxq. Accordingly,

first-order necessary condition equation (3) becomes the well-known equation in empirical auction literature,

vi � bi � λ�1

�
GB�ipbiq

gB�ipbiq



. (4)

Lastly, by denoting a reciprocal factor as Rrx|GB�i , gb�is � GB�ipxq{gB�ipxq, we can write the first-order

necessary condition as

vSym
i � bSym

i � λ�1

����RSym,Inde
�
bSym
i

���GSym,Inde
B�i

, gSym,Inde
B�i

�loooooooooooooooooooooooomoooooooooooooooooooooooon
(ii)

���, (5)

where the upper indices of “Sym” and “Sym,Inde” emphasize that the auction model is symmetric and of

independent value.
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3.2 Asymmetric Auction Models

We next introduce asymmetric auction models. In order to be notationally minimalistic, we henceforward

focus on the simplest environment, a two-type and two-bidder asymmetric auction on which our experimental

asymmetric auction data is based. We define the index of the bidder type as t P tJoint,Solou. By exploiting

the two-type-two-bidder nature, we use a convenient notation of �t for representing an opponent bidder’s

type. We denote Utp�q as a vNM function of type t bidder, as we allow for the possibility of joint- and

solo-type bidders having different payoff functions. Bidders draw their private valuations from joint distribu-

tion FV�t,Vtpv�t, vtq in which arguments are not exchangeable and valuations are potentially affiliated.29,30

Assuming a type t bidder draws her valuation of vt and assuming an opponent bidder employs an equilibrium

strategy φ�tp�q, her expected payoff maximization problem is31

max
bt

Utpvt � btq � FV�t|Vtpφ�tpbtq|vtq, (6)

where FV�t|VtpV�t|vtq denotes the conditional distribution function of V�t given vt. By differentiating the

above expected payoff function with respect to bt, a type t bidder equates the marginal cost and benefit of

changing her bid, and we have the first-order necessary condition, written as

vt � bt � λ�1
t

�� FV�t|Vtpφ�tpbtq|vtq
dFV�t|Vt pφ�tpbtq|vtq

dv�t
� φ1�tpbtq

�
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Shading Function

,

where λtp�q � Utp�q{U
1
tp�q for each type of t P tJoint,Solou and λ�1

t p�q is its inverse function (called as a shading

function in this research). Next, similar to the symmetric case, we derive the relations between empirically

unobservable valuations and observable bids. We denote the conditional distribution of an opponent type’s

bid B�t given bt as GB�t|Btpb�t|btq and its derivative as gB�t|Btpb�t|btq. By further assuming a type t bidder

employs an equilibrium strategy φtp�q, the probabilistic relation between latent valuations and observable bids

29The model explored in this subsection is the simplest version of an asymmetric and affiliated private value auction model, and

its econometric identifications and rationalizability are established by Campo, Perrigne, Vuong (2003) [17].

30According to theoretical asymmetric auction literature, for example, Maskin and Riley (2000a, 200b) [59] [60], we assume all

types share the common support of private values. We follow Milgrom and Weber (1982) [61] for the definition of affiliation among

private values.

31Technically speaking, as joint-type bidders equally split a monetary payment, the maximization problem for a joint-type bidder

is maxbJointtUJointppvJoint�bJointq{2q�FVSolo|VJoint
pφSolopbJointq|vJointqu. Here, for simplicity’s sake, we abbreviate explanation as seen in (6)

and continue using it for maximization problems of both joint- and solo-type bidders. The detailed explanations are found in

Appendix. Note that this equal-split-payment rule does not affect the discussion of theoretical asymmetric auction models (as we

can re-define a vNM function as rUJointpxq � UJointpx{2q), yet it slightly affects the structural estimations.
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is GB�t|Btpx|btq � FV�t|Vtpφ�tpxq|vtq. In addition, by the fundamental theorem of calculus, the conditional

density is obtained as gB�t|Btpx|btq �
�
dFV�t|Vtpφ�tpxq|vtq{dv�t

�
�φ1�tpxq. Therefore, using these probabilistic

relations, the first-order necessary condition can be equivalently written as the function of observable bids,

vt � bt � λ�1
t

�
GB�t|Btpbt|btq

gB�t|Btpbt|btq



. (7)

Furthermore, similar to the symmetric case, by exploiting the definitions of conditional density and distribu-

tion functions, gB�t|Btpz|btq � gB�t,Btpz, btq{gBtpbtq and GB�t|Btpx|btq

�
�³x
b
gB�t,Btpz, btqdz

	
{gBtpbtq where b is the lower bound of bid distributions, the first order necessary

condition equation (7) can be written in an unconditional fashion as

vt � bt � λ�1
t

��³bt
b
gB�t,Btpz, btqdz

gB�t,Btpbt, btq

�. (8)

To simplify notations, we again introduce the convenient terms of Γpx, bt|gB�t,Btq �
³x
b
gB�t,Btpz, btqdz and of

reciprocal factor as Rrx, y|ΓB�t,Bt , gB�t,Bts � Γpx, y|gB�t,Btq{gB�t,Btpx, yq. Given these simplified notations,

we can denote the first-order necessary condition as

vAsym
t � bAsym

t � λ�1
t

����RAsym,Affi
�
bAsym
t , bAsym

t

���ΓAsym,Affi
B�t,Bt

, gAsym,Affi
B�t,Bt

�loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon
(iii)

���, (9)

where upper indices of “Asym” and “Asym,Affi”emphasize that the auction model is asymmetric and of

affiliated value. In addition, if a researcher further assumes the independence of private valuations, the bi-

variate functions are simplified as gB�t,Btpz, btq � gB�tpzq and
³x
b
gB�t,Btpz, btqdz � GB�tpxq. Accordingly,

equation (8) becomes

vt � bt � λ�1
t

�
GB�t

pbtq

gB�tpbtq



. (10)

Lastly, by denoting a reciprocal factor as Rtrx|GB�t
, gB�t

s � GB�t
pxq{gB�t

pxq, we can write the first-order

necessary condition as

vAsym
t � bAsym

t � λ�1
t

����RAsym,Inde
�
bAsym
t

���GAsym,Inde
B�t

, gAsym,Inde
B�t

�looooooooooooooooooooooooooomooooooooooooooooooooooooooon
(iv)

���. (11)

where the upper indices “Asym” and “Asym,Inde” emphasize that the auction model is asymmetric and of

independent value.
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Figure 4: Estimation Steps and Methods

Step 1: Estimating Distributional Functions 

Step 2: Estimating Shading Functions 
             (CRRA, CARA, and Nonparametric  
               vNM Function Models) 

Step 3: Estimating Valuations 

𝛤 s, 𝐺 s, 𝑔 s 

𝛤 s, 𝐺 s, 𝑔 s 

𝜆 −1(⋅)s 

Step Object Method

Step 1
pΓ s, pgs Nonparametric Kernel Density
pGs Empirical CDF

Step 2
CRRA pλ�1p�qs OLS

CARA pλ�1p�qs NLLS

Nonparametric pλ�1p�qs Sieve

Step 3
Substituting the objects

pvs estimated in Step 1
and Step 2 in f.o.c.s

4 Structural Estimation Methods

In this section, we illustrate the estimation methods for recovering valuations. Estimation procedures are

summarized into the three steps as depicted in Figure 4: Step 1 – nonparametrically estimating distributional

functions; Step 2 – by applying semi or nonparametric methods, estimating shading functions (i.e. λ�1
t p�qs);

Step 3 – estimating valuations based on estimated distributional functions and shading functions. As the main

purpose of this research is to investigate the accuracy of asymmetric auctions estimates, we primarily recover

valuations from bids observed in asymmetric auctions, and bid data from symmetric auctions is subsidiarily

used solely for the purpose of estimating the shading functions. For the sake of clear notations, we intro-

duce the following indices: r P t1, . . . , Ru as an auction round index; m P t1, . . . ,Mu as a (within-a-round)

matched group index; and i P t1, . . . , Nu where N � 3 as a bidder index in a symmetric-auction stage. In ad-

dition, as estimates are separately calculated for each experiment run, we omit an index for experiment runs.32

Given the goal of obtaining the estimates of valuations, this section is organized as follows. The first sub-

section illustrates Step 1 with descriptions of nonparametric estimation method for distributional functions.

The following subsections illustrate Step 2 and Step 3 in the order of risk neutral, general estimation frame-

work for risk-averse models, constant relative risk averse (CRRA), constant absolute risk averse (CARA),

nonparametric vNM function, and heterogeneous risk averse attitude models, as the latter models require

incrementally advanced estimation methods.33

32Any estimation results reported in the rest of this research are separately calculated for each experiment run.

33As the rest of this research focus on private-value auctions, implications of risk averse preferences in a common-value auction

should be concisely mentioned here. In a common-value framework, risk-aversions does not play a major role in explaining bidding

behavior as there are two opposing and canceling effects. In a common-value first-price auction, a risk averse bidder have incentives

to (1) raise her bid to insure a higher winning probability (with the cost of additional payment) and (2) reduce her bid to avoid

the payoff fluctuations caused by stochastic common valuation (with the cost of lower probability of winning). As (1) and (2) are

canceled out, the assumption of risk averse or neutral bidders does not create empirically meaningful differences. See Paarsch (1992)
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4.1 Nonparametric Estimations of Distributional Functions

Here, as Step 1, we nonparametrically estimate the distributional functions that are the basis for further

estimations of shading functions and valuations. Nonparametric kernel estimation methods are employed

throughout this research, and we use the Gaussian kernel with Silverman’s rule of thumb bandwidths. For

bi-variate distributional function estimations, we use a product kernel. In addition, we exploit the anonymous-

identity nature of our experiment; a bidder did not know identities of opponents in each auction game. This

anonymous-identity nature enables us to aggregate the distributional functions against which a bidder is best

responding.34

4.1.1 Affiliated Value Assumption

The distributional functions under affiliated private value assumption are estimated as follows. By using

symmetric-auction stage bid data, we estimate (remind that b�i is the highest of opponents’ bids)35,36

pΓSym,Affi
B�i,Bi

px, yq �
{» x

b

gSym,Affi
B�i,Bi

pz, yqdz

�
1

hSym,Affi
Γ

1

RMN

Ŗ

r�1

M̧

m�1

Ņ

i�1

1pbSym
r,m,�i ¤ xq �K

�
bSym
r,m,i � y

hSym,Affi
Γ

�
,

(12)

[65], Li, Perrigne, and Vuong (2000) [51], Hendricks, Pinkse, and Porter (2003) [37], and Philip, Hong, and Shum (2003, working

paper) [29] for empirical investigations of common-value auctions with risk-neutral bidders.

34We can interpret a bidder (say, bidder i) in equilibrium is best responding to: (i) the average bidding strategy of all bidders

(including bidder i herself in other auction rounds) in symmetric-auction stages [described by Equation (12), (14) (18), and (20)];

and (ii) the average bidding strategy of all opponent-type bidders in asymmetric-auction stages [described by Equation (13), (15)

(19), and (21)] .

35In this subsection (and only in this subsection), we generically use x for a first functional argument, y for a second functional

argument, and z for an integrating variable. Note that a first function argument is a realized random variable of an opponent

who has the highest valuation in a symmetric-auction stage or of an opponent-type bidder in an asymmetric-auction stage. A

second functional argument is a realized random variable of a bidder i in a symmetric-auction stage or of a type t bidder in an

asymmetric-auction stage.

36Note that, in round r P t1, . . . , Ru within matched group m P t1, . . . ,Mu , we use tbr,m1, br,m,2, br,m,3u in a symmetric auction

stage and tbr,m,Joint, bm,r,Solou in an asymmetric-auction stage for estimating distributional functions. Although there are two

observed joint-type bids in an asymmetric-auction stage (as depicted in Figure 2), only a chosen (and announced) joint-type bid in

an asymmetric-auction stage is used for estimations of distributional functions. In other words, a non-chosen (and unannounced)

joint-type bid in an asymmetric-auction stage is not used for estimations of distributional functions.
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and by using asymmetric-auction stage bid data, for each type of t P tJoint,Solou, we estimate37

pΓAsym,Affi
B�t,Bt

px, yq �
{» x

b

gAsym,Affi
B�t,Bt

pz, yqdz

�
1

hAsym,Affi
Γ

1

RM

Ŗ

r�1

M̧

m�1

1pbAsym
r,m,�t ¤ xq �K

�
bAsym
r,m,t � y

hAsym,Affi
Γ

�
,

(13)

where hSym,Affi
Γ � cΓ � pRMNq

�1{5
and hAsym,Affi

Γ � cΓ � pRMq
�1{5

with cΓ � 1.06 � σ̂b, and σ̂b is the empirical

standard deviation of corresponding observed bids.38 For the bi-variate density functions, we estimate

pgSym,Affi
B�i,Bi

px, yq �
1

hSym,Affi
gx � hSym,Affi

gy

1

RMN

Ŗ

r�1

M̧

m�1

Ņ

i�1

K

�
bSym
r,m,�i � x

hSym,Affi
gx

�
�K

�
bSym
r,m,i � y

hSym,Affi
gy

�
, (14)

and for each type of t P tJoint,Solou,

pgAsym,Affi
B�t,Bt

px, yq �
1

hAsym,Affi
gx � hAsym,Affi

gy

1

RM

Ŗ

r�1

M̧

m�1

K

�
bAsym
r,m,�t � x

hAsym,Affi
gx

�
�K

�
bAsym
r,m,t � y

hAsym,Affi
gy

�
, (15)

where hSym,Affi
gx � cg � pRMNq�1{6, and hAsym,Affi

gx � cg � pRMq�1{6 with cg � 1.06 � σ̂b and σ̂b is the empirical

standard deviation of corresponding observed bids. In addition, hSym,Affi
gy and hAsym,Affi

gy are determined in

the same manner. Given these estimated distributional functions with affiliated value assumption, we can

calculate reciprocal factors as

RSym,Affi
�
bSym
r,m,i, b

Sym
r,m,i

��� pΓSym,Affi
B�i,Bi

, pgSym,Affi
B�i,Bi

�loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon
xpi)

� pRSym,Affi
B�i,Bi

�
bSym
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Sym
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�loooooooooooooomoooooooooooooon
Shorthand Notation
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B�i,Bi

pbSym
r,m,i, b

Sym
r,m,iqpgSym,Affi
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pbSym
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Sym
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, (16)

and for each type of t P tJoint,Solou,

RAsym,Affi
�
bAsym
r,m,t , b

Asym
r,m,t

��� pΓAsym,Affi
B�t,Bt

, pgAsym,Affi
B�t,Bt

�loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon
ypiii)

� pRAsym,Affi
B�t,Bt

�
bAsym
r,m,t , b

Asym
r,m,t

�looooooooooooooomooooooooooooooon
Shorthand Notation

�
pΓAsym,Affi
B�t,Bt

pbAsym
r,m,t , b

Asym
r,m,t qpgAsym,Affi

B�t,Bt
pbAsym
r,m,t , b

Asym
r,m,t q

. (17)

The plots of these affiliated value distributional function estimates based on observed bids are found in Online

Appendix.

37As there are only two bids in an asymmetric-auction stage used for estimations, (one is submitted by a solo-type bidder, and

the other is submitted by a chosen joint-type bidder) and as we estimate asymmetric-auction stage distributional functions for each

type of bidder, we drop summations over bidder types in the following equations.

38Following Bajari and Hortaçsu (2005) [12], in this research we use the unbounded-support Gaussian kernel with rule of thumb,

c � 1.06 � σ̂b (see Li and Racine (2007) [53] page 26, for example). Note that, some of preceding and influential works (eg. Li,

Perrigne, and Vuong (2002) [52] and Campo, Perrigne, and Vuong (2002) [17]) use the bounded-support triweight kernel with the

rule of thumb, c � 2.978 � 1.06 � σ̂b. See Härdle (1990, 1991) [31] [32] for the detailed description of bandwidth choices.
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4.1.2 Independent Value Assumption

Next, the distributional functions under independent private value assumption are estimated as follows. By

using symmetric-auction stage bid data, we derive the empirical CDF as

pGSym,Inde
B�i

pxq �
1

RMN

Ŗ

r�1

M̧

m�1

Ņ

i�1

1pbSym
r,m,�i ¤ xq, (18)

and by using symmetric-auction stage bid data, for each type of t P tJoint,Solou, we derive

pGAsym,Inde
B�t

pxq �
1

RM

Ŗ

r�1

M̧

m�1

1pbAsym
r,m,�t ¤ xq. (19)

For uni-variate density functions, we estimate
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and, for each type of t P tJoint,Solou,
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Ŗ

r�1

M̧

m�1

K

�
bAsym
r,m,�t � x

hAsym,Inde
gx

�
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where hSym,Inde
gx � cg � pRMNq�1{5, and hAsym,Inde

gx � cg � pRMq�1{5 with cg � 1.06 � σ̂b and σ̂b is the empirical

standard deviation of corresponding observed bids. Accordingly, we can calculate reciprocal factors as
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r,m,iq

, (22)

and for each type of t P tJoint,Solou,

RAsym,Inde
�
bAsym
r,m,t

��� pGAsym,Inde
B�t

, pgAsym,Inde
B�t

�looooooooooooooooooooooooooomooooooooooooooooooooooooooon
ypiv)

� pRAsym,Inde
B�t

�
bAsym
r,m,t

�looooooooooomooooooooooon
Shorthand Notation

�
pGAsym,Inde
B�t

pbAsym
r,m,t qpgAsym,Inde

B�t
pbAsym
r,m,t q

. (23)

The plots of these independent value distributional function estimates based on observed bids are found in

Online Appendix.

4.2 Estimation Method for Risk Neutral Model

We begin by assuming bidders behave according to the simplest model, risk neutral (RN) vNM function with

Utpxq � x, λtpxq � Utpxq{U
1
tpxq � x, and the shading function λ�1

t pyq � y. Under the risk neutral model,

by substituting estimated distributional functions, equilibrium first order condition equations (9) under the
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APV assumption and (11) under the IPV assumption become

pvAsym,Affi
RN,r,m,t � bAsym

r,m,t �RAsym,Affi
�
bAsym
r,m,t , b

Asym
r,m,t

��� pΓAsym,Affi
B�t,Bt

, pgAsym,Affi
B�t,Bt

�loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon
ypiii)

(24a)

pvAsym,Inde
RN,r,m,t � bAsym

r,m,t �RAsym,Inde
�
bAsym
r,m,t

��� pGAsym,Inde
B�t

, pgAsym,Inde
B�t

�looooooooooooooooooooooooooomooooooooooooooooooooooooooon
ypiv)

(24b)

for each type of t P tJoint,Solou. Accordingly, by substituting observed bids with estimated distributional

functions in the right hand side of the above equations, we obtain the estimates of valuations tpvAsym,Affi
RN,r,m,t u

m�1,��� ,M

r�1,��� ,R

under the APV assumption and tpvAsym,Inde
RN,r,m,t u

m�1,��� ,M

r�1,��� ,R
under the IPV assumption for each type of t P tJoint,Solou.

4.3 Semi & Nonparametric Estimations of Risk Averse Models

In empirical auctions, the assumption of risk neutrality is justified when a bidder can be seen as a large

firm whose wealth is relatively large compared to the to the value of an object under auction. However, in

reality, a bidder is likely to be a representative of a firm whose personal incentives (eg. individual bonus,

promotion, or opportunity costs) depend on the result of an auction. Under such situation, bidders are seen

to have risk averse preferences, and derived model implications could be largely different from those derived

from the risk neutral model.39 Accordingly, for investigating bidders’ risk averse preferences, we now assume

that bidders have preferences with type-homogeneous (i.e. bidders share the same risk attitude within a

same type) risk averse vNM functions,40 Utp�q. In Step 2, we use quantile restrictions to derive compatibility

conditions, which in turn are used for semi and nonparametrically estimating the shapes of type-homogeneous

shading functions, λ�1
t p�qs.41 We introduce the notation for bSym

i,α to denote the αth quantile for distribution

of observed symmetric-auction stage bids submitted by all types of bidders. Similarly, we denote bAsym
t,α for

the αth quantile for distribution of observed asymmetric-auction stage bids submitted by type t bidders. In

addition, we denote vi,α as αth quantile of value distribution among all types of bidders and vt,α as αth

quantile of value distribution among type t bidders. Then, the quantile notations of equilibrium first order

39The empirical evidences and estimates of risk averse preferences are reported by Athey and Levin (2001) [9], Lu and Perrigne

(2008) [55], and Campo, Guerre, Perrigne, and Vuong (2011) [18] in their investigations of U.S. Forest Service timber auctions

and Campo (2012) [16] in her scrutiny of Los Angeles construction contract auctions. Specifically, these empirical investigations

emphasize the risk-averse preferences among small-size firms.

40To avoid the verbal confusions, in this research, the terminologies of symmetric and asymmetric are used to express the

diversity in value distributions, while the terminologies of homogeneous (type-homogeneous) and heterogeneous are used to express

the diversity in bidders’ risk preferences.

41Quantile restrictions with the resulting compatibility conditions are proposed by Guerre, Perrigne, and Vuong (2009) [28],

Campo, Guerre, Perrigne, and Vuong (2011) [18], Campo (2012) [16] and also used by Bajari and Hortaçsu (2005) [12].
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conditions (3) and (5) for the symmetric-auction models are

vSym,Affi
i,α � bSym

i,α � λ�1
�
RSym,Affi

�
bSym
i,α , bSym

i,α

���ΓSym,Affi
B�i,Bi

, gSym,Affi
B�i,Bi

�	
(25a)

vSym,Inde
i,α � bSym

i,α � λ�1
�
RSym,Inde

�
bSym
i,α

���GSym,Inde
B�i

, gSym,Inde
B�i

�	
, (25b)

and of equilibrium first order conditions (9) and (11) for the asymmetric-auction models are

vAsym,Affi
t,α � bAsym

t,α � λ�1
t

�
RAsym,Affi

�
bAsym
t,α , bAsym

t,α

���ΓAsym,Affi
B�t,Bt

, gAsym,Affi
B�t,Bt

�	
(26a)

vAsym,Inde
t,α � bAsym

t,α � λ�1
t

�
RAsym,Inde

�
bAsym
t,α

���GAsym,Inde
B�t

, gAsym,Inde
B�t

�	
. (26b)

Next, by exploiting the fact that the majority of bidders in experiments did not change their valuations within

a round while they submitted distinct bids in symmetric- and asymmetric-auction stages, we take advantage

of the observed differences of bids between auction stages. Note that, as the valuations of a solo-type bidder

and of one of the joint-type bidders were unchanged in both symmetric- and asymmetric-auction stages, we

have the equivalence of valuations, vSym
r,m,i�t � vAsym

r,m,t with the slight abuse of notation i � t for each type of

t P tJoint,Solou, meaning that a type t bidder did not change her valuation across auction stages. Accordingly,

by using this unchanged nature of valuations, we match the quantiles of bidders’ private value distribution

vSym
i�t,α � vAsym

t,α , where vSym
i�t,α and vAsym

t,α denote the αth quantiles of type t bidders’ value distribution.42 Thus,

for each type t P tJoint,Solou, we can equate the equilibrium first order condition equations (25a) and (26a)

under the APV assumption and (25b) and (26b) under the IPV assumption. Then, by assuming that a type

t bidder reveals the same preference Utp�q and λ�1
t p�q in different and exogenously changing auction stages,

we have the following compatibility condition equations for each type of t P tJoint,Solou:

bSym
i�t,α � bAsym

t,α �

λ�1
t

�
RAsym,Affi

�
bAsym
t,α , bAsym

t,α

���ΓAsym,Affi
B�t,Bt

, gAsym,Affi
B�t,Bt

�	
� λ�1

t

�
RSym,Affi

�
bSym
i�t,α, b

Sym
i�t,α

���ΓSym,Affi
B�i,Bi

, gSym,Affi
B�i,Bi

�	 (27a)

bSym
i�t,α � bAsym

t,α �

λ�1
t

�
RAsym,Inde

�
bAsym
t,α

���GAsym,Inde
B�t

, gAsym,Inde
B�t

�	
� λ�1

t

�
RSym,Inde

�
bSym
i�t,α

���GSym,Inde
B�i

, gSym,Inde
B�i

�	
,

(27b)

42Note that, as we exploiting the invariance of laboratory assigned valuations, our quantile restrictions are unconditional. Guerre,

Perrigne, and Vuong (2009) [28] Campo, Guerre, Perrigne, and Vuong (2011) [18] and Campo (2012) [16] establish identifications

based on conditional quantile restrictions (that allow, observed characteristics of auction objects, endogenous participation, and

unobserved heterogeneity) that accommodate a broad class of auction models and data generating processes. Our unconditional

restrictions in this subsection are the special case of their conditional restrictions.
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where we use the notation of bSym
i�t,α for the αth quantile of observed bids made by type t bidders in symmetric-

auction stages.43 See Appendix for a detailed description on the constructions of quantile points.44 Given

the quantiles of bid distributions, in Step 2, the equation (27a) and (27b) can be estimated by the semi

and nonparametric methods explained later in this subsection. Once we obtain the estimates of shading

functions, pλ�1,Affi
t p�q from the equation (27a) and pλ�1,Inde

t p�q from the equation (27b), in Step 3, we can

obtain the estimates of valuations by substituting observed the bids and estimated objects in Step 1 and Step

2 in first order necessary conditions as

pvAsym,Affi
r,m,t � bAsym

r,m,t �
pλ�1,Affi
t

�����RAsym,Affi
�
bAsym
r,m,t , b

Asym
r,m,t

��� pΓAsym,Affi
B�t,Bt

, pgAsym,Affi
B�t,Bt

�loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon
ypiii)

���� (28a)

pvAsym,Inde
r,m,t � bAsym

r,m,t �
pλ�1,Inde
t

�����RAsym,Inde
�
bAsym
r,m,t

��� pGAsym,Inde
B�t

, pgAsym,Inde
B�t

�looooooooooooooooooooooooooomooooooooooooooooooooooooooon
ypiv)

����. (28b)

We now introduce the semi and nonparametric specifications of shading functions.45

4.3.1 Semiparametric Estimation for CRRA Model

We assume that bidders have the preference of constant relative risk averse (CRRA) vNM functions Utpxq �

xθt where 0   θt ¤ 1 for t P tJoint,Solou. The CARA model has the advantage, as it nests the risk neutral

model as the the special case of θt � 1 that is empirically testable. Under the CARA model, we have

λtpxq � Utpxq{U
1
tpxq � x{θt and the shading function, λ�1

t pyq � θt � y. Then, in Step 2, the compatibility

condition equations (27a) and (27b) with estimated distributional functions (pΓs, pGs, and pgs) for each type of

43Precisely describing, within a matched group (of three bidders), a solo-type bidder and one of the joint-type bidders did not

change valuations as depicted in Figure 2 . For the semi and nonparametric estimations of risk-averse vNM functions, we abandon

the bid data of joint-type bidders whose valuations were exogenously changed within a round.

44To the best of our knowledge, the literature has not settled a method to choose quantile points αs (i.e. how and how many αs

a researcher should use). Guerre, Perrigne, and Vuong (2009) [28] suggest a recursive construction of quantile points, yet they also

indicate the potential problem of serial correlations and accumulated errors. The recent work of Zincenko (2014, working paper)

[77] establishes the identification and uniform consistency of nonparametric λ�1p�q function by using the minmax absolute distance

estimator in which a maximum distance is chosen over quantile points on bid space, and a minimum distance is chosen over a sieve

space.

45Once we estimate pλ�1
t p�q, we can analytically or numerically recover a payoff function pUtpxq by solving the differential equation

of pλ5pxq � pUtpxq{pU 1

tpxq with the normalized initial condition of pUp1q � 1; leading the solution of pUpxq�expr
³x
1 1{pλpzqdzs.
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t P tJoint,Solou become

pbSym
i�t,α �

pbAsym
t,α � θt �

! pRAsym,Affi
B�t,Bt

�pbAsym
t,α ,pbAsym

t,α

�
� pRSym,Affi

B�i,Bi

�pbSym
i�t,α,

pbSym
i�t,α

�)
� εt,α (29a)

pbSym
i�t,α �

pbAsym
t,α � θt �

! pRAsym,Inde
B�t

�pbAsym
t,α

�
� pRSym,Inde

B�i

�pbSym
i�t,α

�)
� εt,α, (29b)

where we use the shorthand notations for simplicity. With the bid quantile data of
!
bSymt,αq

)
q�0,��� ,Q

and
!
bAsym
t,αq

)
q�0,��� ,Q

, we can apply the OLS estimation to the equations (29a) and (29b) to obtain pθAffi
t andpθInde

t for each type of t P tJoint,Solou. Consequently, in Step 3, we obtain the estimates of valuations

tpvAsym,Affi
CRRA,r,m,tu

m�1,��� ,M

r�1,��� ,R
under the APV assumption and tpvAsym,Inde

CRRA,r,m,tu
m�1,��� ,M

r�1,��� ,R
under the IPV assumption by sub-

stituting pλ�1,Affi
t p�q and pλ�1,Inde

t p�q into equations (28a) and (28b).46

4.3.2 Semiparametric Estimation for CARA Model

Next, we assume that bidders have the preference of constant relative risk averse (CARA) vNM functions by

modeling bidders payoff functions as Utpxq�
1�expp�ζt�xq
1�expp�ζtq

. As decisions made by CARA-preference bidders are

not affected by the level of their wealth (i.e. no wealth/income effect), the CARA model has the advantage

to control bidders’ heterogeneity in their wealth levels that are rarely observed in empirical auction research.

Given the CARA model, we have λtpxq�
1
ζt

�rexppζt�xq�1s, and the shading function has the form of λ�1
t pyq� 1

ζt
�

lnp1�ζt�yq. Then, in Step 2, the compatibility condition equations (27a) and (27b) with estimated distributional

functions (pΓs, pGs, and pgs) for each type of t P tJoint,Solou become

pbSym
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pbAsym
t,α �

1

ζt

!
ln
�

1 � ζt � pRAsym,Affi
B�t,Bt

�pbAsym
t,α ,pbAsym

t,α

�	
� ln

�
1 � ζt � pRSym,Affi

B�i,Bi

�pbSym
i�t,α,

pbSym
i�t,α

�	)
� εt,α

(30a)

pbSym
i�t,α �

pbAsym
t,α �

1

ζt

!
ln
�

1 � ζt � pRAsym,Inde
B�t

�pbAsym
t,α

�	
� ln

�
1 � ζt � pRSym,Inde

B�i

�pbSym
i�t,α

�	)
� εt,α, (30b)

where we use the shorthand notations for simplicity. With the bid quantile data of
!
bSymt,αq

)
q�0,��� ,Q

and
!
bAsym
t,αq

)
q�0,��� ,Q

, we can apply the non-linear least square (NLLS) estimation to the equations (30a) and (30b)

to obtain pζAffi
t and pζInde

t for each type of t P tJoint,Solou. Consequently, in Step 3, we obtain the esti-

mates of valuations tpvAsym,Affi
CARA,r,m,tu

m�1,��� ,M

r�1,��� ,R
under the APV assumption and tpvAsym,Inde

CARA,r,m,tu
m�1,��� ,M

r�1,��� ,R
under the IPV

assumption by substituting pλ�1,Affi
t p�q and pλ�1,Inde

t p�q into equations (28a) and (28b).47

46The empirical drawback of the CRRA estimation model under the specification of Upxq � xθ is that the estimated θ is not

guaranteed to be in p0, 1s. pθ could be negative (which is not compatible with economic theory) or larger than 1 (which indicates

bidders are risk loving). Note that, if we affine transform the CRRA vNM function into the form of Upxq� x
1�ν�1
1�ν

, the negative

estimated coefficients could be interpreted as extreme risk aversion.

47As joint-type bidders’ monetary payments are equally split, we need slight modifications to equations (28a), (28b), (30a), and

(30b), for joint-type bidders. See Appendix for details of such slight modifications.
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4.3.3 Nonparametric Estimation for vNM Function Model

Finally, we estimate the nonparametric (NP) vNM function model that is proposed by Guerre, Perrigne, and

Vuong (2009) [28] as it allows the most flexibility to the shapes of shading functions, λ�1
t p�q.48 Based on

the method indicated in their seminal research, we use the sieve method to estimate the shading functions

λ�1
t p�q P Λ�1, where Λ�1 is a set of differentiable and (strict) monotonically increasing functions.49,50,51 In

practice, we choose Λ�1 as the set of polynomial functions Polpy; ηt,nq �
°K
k�1 ηt,k �y

k without intercept terms,

where ηt,n stands for the coefficient vector of nth order polynomial. In addition, a polynomial order K flexibly

changes. Then, in Step 2, as polynomials are linear in their coefficients, the compatibility condition equations

(27a) and (27a) with estimated distributional functions (pΓs, pGs, and pgs) for each type of t P tJoint,Solou

become

pbSym
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Ķ

k�1

ηInde
t,k

"� pRAsym,Inde
B�t

�pbAsym
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�
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B�i

�pbSym
i�t,α

�	k*
� εt,α, (31b)

where we use the shorthand notations for simplicity. Under this polynomial specification, Λ�1 becomes the

linear space, and we can solve the minimization problems by the least square method with the bid quantile

data of
!
bSym
t,αq

)
q�0,��� ,Q

and
!
bAsym
t,αq

)
q�0,��� ,Q

. In practice, we have to select a number of polynomial terms.52 For

selecting pηAffi
t among

 pηAffi
t,1 , pηAffi

t,2 , pηAffi
t,3 , � � � , pηAffi

t,n , � � �
(

and pηInde
t among

 pηInde
t,1 , pηInde

t,2 , pηInde
t,3 , � � � , pηInde

t,n , � � �
(
, we

adopt the Akaike Information Criterion (AIC) [Akaike (1973) [2]].53 Consequently, in Step 3, we obtain the

estimates of valuations tpvAsym,Affi
CARA,r,m,tu

m�1,��� ,M

r�1,��� ,R
under the APV assumption and tpvAsym,Inde

CARA,r,m,tu
m�1,��� ,M

r�1,��� ,R
under the

48To the best of our knowledge, this is the first applied auction work of their nonparametric method for identifying and estimating

risk-averse preferences in auction research.

49Chen (2007) [19] extensively surveys the recent developments of sieve estimations.

50As we normalize a vNM function, for all sieve estimations, we impose the theoretical restrictions of Restriction1: λ�1
t p0q � 0

and Restriction2: 0   d
dR
λ�1
t pRq ¤ 1. In programming, for Restriction1, we remove the intercept terms in polynomials. For

Restriction2, we impose the restrictions ε ¤ d
dR
λ�1
t pRq ¤ 1 where ε � 10�8 on the MATLAB fmincon subroutine.

51This research takes a view that sieve is a nonparametric estimation method. Some researchers use the terminology “semi-

nonparametric” to describe sieve.

52In programming, we choose the maximum number of polynomial terms as Kmax � 14.

53We use the AIC, which assumes error terms are normally and homoskedastically distributed, for the computational tractability.

The cross validation criterion, which is shown to be asymptotically optimal with heteroskedastic error terms by Andrews (1991)

[3], is computationally expensive and is not used in this research.
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IPV assumption by substituting pλ�1,Affi
t p�q and pλ�1,Inde

t p�q into equations (28a) and (28b).54

However, the fundamental limitation of this sieve estimation method based on differenced variables is that

researchers identify a λ�1p�q only on limited domains witch are away from boundaries. This limitation

comes from two facts: (1) we estimate nonlinear shading function λ�1p�q not by applying nonlinear-recursive-

projection estimator (as originally proposed by Guerre Perrigne Vuong (2009) [28]) but by applying a linear

(in coefficient) difference estimator in which researchers cannot obtain data points in near-upper-boundary do-

mains; and (2) researchers practically need to trim the quantile points to avoid the well-know boundary prob-

lem in nonparametric density estimations. See Appendix for details of local identification. To overcome these

difficulties, we apply conventional-wisdom-based shape restrictions to extrapolate sieve polynomial estima-

tions to near-upper-boundary domains while exploiting the additive-coefficient-preserving nature in domains

where data variations are available. Appendix provides the details of these shape restrictions with figures. In

the next section, we report the estimation results based on the following shape restrictions: (1) minimalistic

slope restrictions based only on economic theory;55 (2) shape restrictions based on homogeneously-treated

(across bidder types) slope restrictions; and (3) shape restrictions based on heterogeneously-treated slopes,

and showing empirical usefulness of such restrictions.

5 Estimation and Test Results

This section reports the results of estimations and statistical tests under various modeling assumptions. Here,

we analyze estimates of valuations derived from asymmetric auction models.56 We first visually compare

laboratory-assigned true valuations and estimated variations. Then, we statistically test their distributional

equivalence, independence, and asymmetry. Regarding the model restrictions on vNM payoff functions, we

start with the risk neutral model. Then, we discuss risk-averse models in the order of CRRA, CARA, and

finally nonparametric models, since latter models in general enjoy higher distributional equivalence.

5.1 Estimation Results

The estimation results are plotted in Figure 5, 6, 7, 8 9, and 10, which depict laboratory-assigned true

valuations on the horizontal axis and estimated valuations on the vertical axis. For measuring the deviations

54Similar to the CARA model case, as joint-type bidders’ monetary payments are equally split, we need slight modification to

equations (28a), (28b), (31a), and (31b) for joint-type bidders. See Appendix for details of such slight modifications.

55The minimalistic restrictions are λ�1p0q � 0 and ε   d
dR
λ�1pRq ¤ 1 on R P r0, Rmaxs where ε � 10�8.

56In this research, symmetric-auction stage bid data is subsidiarily used solely for the purpose of recovering bidders’ risk-averse

preferences.
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from true valuations, a 45-degree line is added.57 In addition, for providing crude yet comparable measures

of estimates’ accuracy we also calculate the L1 norm for measuring an averaged distance from true valuation

and L2 norm for measuring a dispersion, defined by

L1
t �

1

RM

Ŗ

r�1

M̧

m�1

���pvAsym
r,m,t � vr,m,t

��� L2
t �

�
1

RM

Ŗ

r�1

M̧

m�1

���pvAsym
r,m,t � vr,m,t

���2� 1
2

for each experiment run and for each bidder type.

There are four empirical findings across these figures. First, in general, more advanced estimation meth-

ods with risk averse vNM functions provide better model fits, accessed by both L1 and L2 measures. Second,

within each estimation method, the estimates of solo-type bidders (i.e. valuations of stochastically dominated

bidders) have smaller norms compared to those of joint-type bidders, indicating that estimated valuations

are relatively more accurate for solo-type bidders. Third, as true valuations become larger, the distance

from true to estimated valuations, on average, also gets larger. Fourth, the assumptions of independent and

affiliated private valuations create minor difference in estimates.58 We now discuss the findings and details of

each model.

5.1.1 Risk Neutral Model Estimates

The estimates of valuations under the assumption of risk neutral bidders are plotted in Figure 5. We discover

a severe over-estimation of asymmetric risk neutral model estimates, and this re-confirms the same finding

detected in the symmetric risk neutral model reported by Bajari and Hortaçsu (2005) [12]. This over-

estimation result suggests that, beyond the standardly-used risk neutral model, empirical auction researchers

are recommended to investigate more advanced alternative models in order to achieve higher accuracy in

estimates. We now discuss the gains in accuracy from such alternative models.

57Also, for creating equally-scaled figures (so that a 45-degree line is exactly tilted at 45 degrees), the estimated valuations are

censored from above at $30. Note that a few of the estimated valuations, especially ones derived from the risk neutral model, exceed

$100. Regarding the order, the plots are ordered from left to right as (a) joint-type bidders under APV, (b) joint-type bidders

under IPV, (c) solo-type bidders under APV, and (d) solo-type bidders under IPV.

58The surprising finding in the estimates of valuations in this research is that affiliated and independent private value models

do not have distinctive differences in estimates, although the true data generating process in our experiment is of independent

private value. This finding strongly encourages the usage of the affiliated private value assumption in empirical auction research,

as originally suggested by Campo, Perrigne, and Vuong (2003) [17].
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5.1.2 Semiparametric CRRA and CARA Model Estimates

The estimated valuations derived from CRRA model plotted in Figure 6. The problem of over-estimation

is largely resolved, yet we now have the systematic under-estimation problem, especially under-estimation

among joint-type bidders is severe. The ordinal least square estimates of risk averse parameters, θts, derived

from CRRA model are reported in Table 3. All CRRA parameters are in the range of p0, 1s as economic

theory predicts, although the degree of Arrow-Pratt relative risk aversion (1 � θt) is remarkably large, and

the null hypotheses of risk neutral bidders (H0: θt � 1) are easily rejected.

Next, the estimated valuations derived from CARA model plotted in Figure 7. The problem of under-

estimation is slightly worsen among the high valuation domains, as shading function of CARA model is

downwardly suppressing compared to that of CRRA model (See Figure 12 and 13 for the differences in func-

tional forms). Table 4 lists the nonlinear least square (NLLS) estimates of risk averse parameters, ζts. While

the estimates for solo-type bidders reveal a slightly large yet predicted signs of risk attitudes, those of joint-

type bidders are remarkably large. We find that these large numbers in estimates of joint-type bidders are

cause by two reasons: (1) the half splitting payoff rule of joint-type bidders and (2) the scale variant nature

of CARA payoff functions.59 Regarding the performance of estimates, we again find the underestimation of

valuations, and such underestimation is severe among joint-type bidders.

Note that these systematic underestimation problems are consistent with the preceding finding of semi-

parametric estimates of symmetric auctions in Bajari and Hortaçsu (2005) [12].60 From the practical point of

view, the systematic underestimations among joint-type (stochastically dominating) bidders are required to

be improved, since they directly cause systematic biases in market design policies, such as setting reservation

prices or calculating expected revenues.

5.1.3 Nonparametric vNM Function Model Estimates with Shape Restrictions

For solving the systematic under-estimation problem in semiparametric estimates, we now advance the non-

parametric sieve estimation results. The estimate are plotted in Figure 8 (with minimalistic restrictions based

on auction theory), 9 (with soft slope restrictions, Shape Restriction 1), and 10 (with slope restrictions, Shape

Restriction 2). See Appendix for the validity and details for the these shape restrictions. We observe that, as

tighter slope restrictions are applied the systematic under-estimation problem is gradually alleviated, proving

the empirical usefulness of nonparametric estimation method.

59Although CARA preferences are invariant to wealth/income levels, it is variant to scale changes. See the detail in Online

Appendix for the details.

60See the histograms on pp. 723 of their work for the under-estimation problem of semiparametric estimates.
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Figure 5: Risk-Neutral Model:
True (horizontal-axis) vs Estimated (vertical-axis) Valuations in Asymmetric Auctions

(a) Joint Type: APV (b) Joint Type: IPV (c) Solo Type: APV (d) Solo Type: IPV

Figure 6: CRRA Model:
True (horizontal-axis) vs Estimated (vertical-axis) Valuations in Asymmetric Auctions

(a) Joint Type: APV (b) Joint Type: IPV (c) Solo Type: APV (d) Solo Type: IPV

Figure 7: CARA Model:
True (horizontal-axis) vs Estimated (vertical-axis) Valuations in Asymmetric Auctions

(a) Joint Type: APV (b) Joint Type: IPV (c) Solo Type: APV (d) Solo Type: IPV
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Figure 8: Nonparametric Model:
True (horizontal-axis) vs Estimated (vertical-axis) Valuations in Asymmetric Auctions

(a) Joint Type: APV (b) Joint Type: IPV (c) Solo Type: APV (d) Solo Type: IPV

Figure 9: Nonparametric Model with Shape Restriction 1:
True (horizontal-axis) vs Estimated (vertical-axis) Valuations in Asymmetric Auctions

(a) Joint Type: APV (b) Joint Type: IPV (c) Solo Type: APV (d) Solo Type: IPV

Figure 10: Nonparametric Model with Shape Restriction 2:
True (horizontal-axis) vs Estimated (vertical-axis) Valuations in Asymmetric Auctions

(a) Joint Type: APV (b) Joint Type: IPV (c) Solo Type: APV (d) Solo Type: IPV
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Table 3:
OLS Estimates of CRRA Risk-Averse Parameters: Utpxq � xθt

CRRA: θ̂t CRRA: θ̂t

Bidder Type under Affiliated PV under Independent PV

Experiment Run II
Joint Type 0.050 ( 0.056, 0.044) 0.051 ( 0.059, 0.043)

Solo Type 0.271 ( 0.302, 0.239) 0.090 ( 0.185, -0.004)

Experiment Run III
Joint Type 0.026 ( 0.028, 0.024) 0.039 ( 0.042, 0.036)

Solo Type 0.056 ( 0.064, 0.049) 0.169 ( 0.196, 0.143)

*Inside of parentheses are 95 % confidence intervals with heteroskedasticity-robust standard errors

Table 4:
NLLS Estimates of CARA Risk Averse Parameters: Utpxq �

1�expp�ζt�xq
1�expp�ζtq

CARA: ζ̂t CARA: ζ̂t

Bidder Type under Affiliated PV under Independent PV

Experiment Run II
Joint Type 14.002 ( 16.048, 11.956) 13.888 ( 16.079, 11.698)

Solo Type 00.568 ( 00.653, 00.483) 01.519 ( 02.793, 00.246)

Experiment Run III
Joint Type 20.134 ( 21.901, 18.367) 18.413 ( 20.006, 16.820)

Solo Type 02.433 ( 02.763, 02.103) 00.804 ( 00.939, 00.669)

*Inside of parentheses are 95 % confidence intervals with heteroskedasticity-robust standard errors
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5.2 Tests of Distributional Equivalence, Independence, and Asymmetry

In this subsection, we examine the testable hypotheses that measures the performance of asymmetric auction

estimates. We first provide the answer to the nitty-gritty of the dispute on empirical auctions, the accuracy

of asymmetric auction estimates. We then address the results from independency and asymmetry tests.

5.2.1 Test of Equivalence between True and Estimated Value Distributions

The core question in the empirical auction literature is the accuracy of estimated valuations. If estimated

valuations are statistically different from true ones, we should not expect any policy insights, such as optimal

reserve prices, derived are not credible as such insights are based on in accurate estimates. For examining the

equivalence between true and estimated value distributions, we here investigate the two-sample Kolmogorov-

Smirnov statistics that is the difference between two empirical distribution functions.

5.2.2 Test of Independence

In many empirical auction research investigations, the independency of valuations are assumed beforehand,

yet it is empirically diligent to test the independency to avoid potential model-misspecification problem.

In this subsection, we test the null hypothesis of independent valuations against the alternative of non-

independent valuations. Formally, we employ the nonparametric test of independence proposed by Blum,

Kiefer, and Rosenblatt (1961, henceforth BKR) [15] with the test statistic of 1
2π

4 � N � BN where BN �

N�4
°N
l�1 tN1plq �N4plq �N2plq �N3plqu

2
with the index l P t1, � � � , RMu where R is the number of rounds

in each experiment run and M is the number of (within-a-round) matched groups.61 Here, N1plq, N2plq,

N3plq, and N4plq are defined as the number of data points that fall in the region of tpx, yq : x ¤ Xl, y ¤ Ylu,

tpx, yq : x ¥ Xl, y ¤ Ylu, tpx, yq : x ¤ Xl, y ¥ Ylu, and tpx, yq : x ¥ Xl, y ¥ Ylu respectively.62 Table 5 reports

the results of the BKR tests.63 Independencies are not rejected in all Experiment Runs.

5.2.3 Test of Asymmetry

In empirical asymmetric auction studies, researchers often assume the asymmetry among bidders (or firms)

based on the priori information, such as differences in firm size, capacity size, or observed bid distributions.

61For instance, RM is equal to 84 (= 12 rounds � 7 matched groups) in Experiment Run I.

62Campo, Perrigne, and Vuong (2003) [17] use the same test statistics to investigate the affiliation of estimated valuations Outer

Continental Shelf (OCS) wildcat lease auction data and reject the null of independent valuations.

63The p-value of the BKR statistic with 5% significance level(� 2.844) is listed in Table II on p.497 of Blum, Kiefer, and

Rosenblatt (1961) [15].
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Figure 11: Comparison between Experimental and Field Auctions
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Table 5: :Testing Bivariate Independence: Nonparametric Blum, Kiefer, and Rosenblatt Statistics (nBn)

BKR Statistic

Experiment Run I: RM � 84

0.0236

(0.5056)

Not Rejected

Experiment Run II: RM � 96

0.0350

(0.2281)

Not Rejected

Experiment Run III: RM � 72

0.0254

(0.4496)

Not Rejected

6 Conclusion

To provide an answer to the criticism and skepticism on empirical asymmetric auction studies, this research

provides laboratory evidence to support the credibility of asymmetric first-price auction estimates. We have

investigated the blind spot of empirical asymmetric auction research, that being latent valuations, and have

provided new statistical and visual evidence of estimate accuracy by manifesting how the estimates of val-

uations fit the true valuations. We have also shown that incorporating the risk-aversion has nonnegligible

improvements in estimates. Although the degree of such improvements will differ by applications, the fact of

improvement is translatable to other empirical research.

Finally, the external validity (i.e. generalizability and translatablity) of our results to other auctions, es-
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pecially empirical auction research with field auction data, must be addressed. We recognize that getting

one good estimate result in one specific auction environment does not guarantee that researchers will get a

similar result in other situations. However, we can deductively bring conservative yet practical insights by

contrasting our experimental auctions to field auctions in the following ways. The experimental auctions differ

from field ones in, at least, three dimensions: (1) strategic intricacies of auctions; (2) bidder sophistication;

and (3) bidder seriousness caused by associated monetary stakes. The discussion below, as depicted in Figure

11, breaks down (1) into two parts (i.e. high/advanced and low/similar strategic intricacies compared to this

research), then examines the generalizability of our results regarding (2) and (3).

Asymmetric auctions with high/advanced strategic intricacies, as compared to this research (left hand side of

Figure 11): If an environment of undertaking empirical asymmetric auction research is more intricate than

the one we have discussed in this research, such as endogenous and strategic participation in auctions or

binding reserve prices, our research has the limited external validity on the accuracy of estimates. Bidders

who face such a high degree of strategic intricacies may behave differently than what we observe in this

research. Further investigation on the accuracy of estimates derived from experimental data, or any field

data that directly or indirectly contains the information of underlying valuations, will extend the results of

our research for such intricate auctions.

Asymmetric auctions with low/similar strategic intricacies, as compared to this research (right hand side

of Figure 11): In our experimental asymmetric auctions, the participants were recruited undergraduate stu-

dents. Thus, given the lack of their real-world business experience, their degree of strategic sophistication is

reasonably expected to be lower than the ones observed in real-world competitive business industry (i.e. low

degree of (2)). In addition, as the monetary stake in our experiment is relatively low compared to the stakes

observed in real-world auctions, the associated seriousness among bidders in the experiment laboratory is

also expected to be low (i.e. low degree of (3)).

However, the positive finding of this research is that structural estimates derived from bids submitted by

such strategically unsophisticated and less seriousness bidders are statistically shown to be accurate. There-

fore, we can deductively translate the positive finding in the accuracy of estimates reported in this research

into the estimates generated from bids submitted by professional industry bidders in field auctions by the

following reasons: first, professional industry bidders must have a high degree of strategic sophistication in

order to survive harsh industry competition (i.e. high degree of (2)), and secondly, as the monetary stakes in

real-world auctions are high, the associated seriousness among bidder is also high (i.e. high degree of (3)). It

stands to reason then, compared to our experiment participants, such professional industry bidders are more

likely to profoundly recognize underlying strategic interactions in auctions as prescribed by BNE and less
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likely to make optimization errors. Accordingly, because structural estimations are rigidly based on BNE,

the estimates derived from such sophisticated and seriously considered bids are likely to be more accurate

than those reported in this research. Thus, we deductively conclude that, as far as the strategic intricacy of

underlying asymmetric auction market is not vastly different from the one discussed in this research and as

far as industry bidders are maximizing expected payoffs, what holds accurate in our laboratory auctions also

holds accurate in a real-world industry setting.

For these reasons, this research not only contributes to providing support for estimates previously reported

in the literature but also pushes the credibility of present and future empirical asymmetric auction research

further.
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7 Appendix

7.1 Shapes of CRRA and CARA Payoff and Shading Functions

Figure 12: Visual Comparison of CRRA and CARA Payoff Functions
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Figure 13: Visual Comparison of CRRA and CARA Shading Functions
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7.2 Construction of Quantile Points

In the semi and nonparametric estimations of vNM functions, this research uses a large number of point αs.

In practice, we choose the sequence of quantile points, tαquq�0,��� ,Q where αq P r0.50, 0.75s and Q � 250, and

calculate the quantiles of bid distributions at equally-spaced quantile points in r0.50, 0.75s and denote them
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as
!
bSym
t,αq

)
q�0,��� ,Q

and
!
bAsym
t,αq

)
q�0,��� ,Q

.64 We use the notation of αlower � 0.50 and αupper � 0.75. As suggested

by Bajari and Hortaçsu (2005) [12] quantile points less than the 25th and larger than the 75th quantiles are

not used in order to avoid the well-known boundary problems in nonparmetric kernel density estimations.

In addition, we do not use α P p0.25, 0.50q, as R function plots (posted earlier in Appendix) suggest that

R functions in this domain suffer from non-monotonicities and discontinuous jumps, potentially due to the

small sample size or bidders’ non-expected-payoff maximizing behavior.65

7.3 Sieve Polynomial Estimation: Details

This subsection explains the sieve polynomial estimation method that provides a local identification and the

conventional-wisdom-based shape restrictions. We first explain the recursively-constructed nonparametric

identification method proposed by Guerre, Perrigne, and Vuong (2009) [28]. As noted in their paper, the

method faces computational and empirical tractability challenges. Second, we explain the sieve polynomial

estimation method that provides not full-range but local identification. Lastly, we illustrate the conventional-

wisdom-based shape restrictions used in this research that supplementally fill the gap between full-range and

local identifications.

7.3.1 Guerre, Perrigne, and Vuong’s (2009) Recursive Identification Method

In their seminal paper, Guerre, Perrigne, and Vuong (2009) [28] propose the following recursive identification

method, which is illustrated in Figure 14,66

PROPOSITION 3 [from Guerre, Perrigne, and Vuong (2009)] : Under the previous assumptions [proposed in their research],

λ�1p�q is identified nonparametrically on R1. Specifically, λ�1p0q � 0 and for any u0 P R1z t0u, λ�1p�q is given by

λ�1pu0q �
�8̧

t�0

∆bpαtq,

where ∆bpαtq � b2pαq � b1pαq and the sequence tαtu is strictly decreasing with 0   αt ¤ 1 satisfying the nonlinear recursive

relation R1pαtq � R2pαt�1q with initial condition R1pα0q � u0. Moreover, F p�q is identified nonparametrically on p1v, vs with

F p�q � Gjpξ
�1
j p�qq for j � 1, 2.

This identification method is computationally and empirically challenging, as researchers have to guess (then

64To enable a high-order nonparametric sieve polynomial estimation, we use this relatively large number of quantile points in

this research.

65In general, non-monotonicity and discontinuous jumps of R functions are especially severe under the affiliated private value

assumption in which the convergence rates of distributional functions are slower than those under the independent private value

assumption.

66Figure 14 is the replication of FIGURE 1 (on pp. 1204) in Guerre, Perrigne, and Vuong (2009) [28].
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match with observed bids) equilibrium bidding functions.67 Also, as the authors mention, the recursive con-

structions of tαtu leads to an accumulated error problem. Additionally, given the small sample size in most

empirical auction research, the identification of near-boundary domain areas is practically challenging, as

estimated bid distributions suffer from the well-known boundary problem.

7.3.2 Sieve Polynomial Estimation

Alternatively, this research pursues the second estimation method that Guerre, Perrigne, and Vuong (2009)

[28] suggest, sieve polynomial estimations. Specifically, in a sieve polynomial estimation, we restrict a shading

function λ�1pRq on the domain ofR P r0, Rα�1.00s to be in the linear space of (without-intercept68) polynomial

functions with the basis of PBpRq �
!
R,R2, R3, � � � , RK

)
, where PB stands for “polynomial basis” and the

order of polynomial K flexibly changes. We henceafter omit the bidder type subscript t P tJoint,Solou for

simplicity. Then, we exploit the additively-coefficient-preserving nature of polynomial linear space. The

(mathematically imprecise yet) intuitive illustration of the estimation strategy is depicted in Figure 15.69

With the polynomial linear space restriction, a compatibility condition becomes70

bSym
α � bAsym

α �

�λ�1pPBpRAsymqqhkkkkkkkkkikkkkkkkkkj
Ķ

k�1

ηk � pR
Asym
α qk �

�λ�1pPBpRSymqqhkkkkkkkkkikkkkkkkkkj
Ķ

k�1

ηk � pR
Sym
α qk

�
Ķ

k�1

ηk �
 
pRAsym

α qk � pRSym
α qk

(
looooooooooooooooooomooooooooooooooooooon

�λ�1pPBpRAsymq�PBpRSymqq

.

Ideally, empirical researchers should obtain an estimate of λ�1pRq on the entire domain, r0, Rα�1.00s. How-

ever, this estimation method proides only local identification. Specifically, as we construct quantile points

between αlower and αupper (and as depicted in Figure 15), it is not possible to estimate λ�1p�q on near-lower-

boundary and near-upper-boundary domains of r0, Rα�1.00s.
71 This is due to two facts: (1) we use not a

67We would like to leave this computational challenge as a future research question by encouraging computationally-skilled

researchers to overcome the numerical difficulties.

68An intercept term is eliminated to enable the theoretical restriction of λ�1p0q � 0.

69The easiest way to understand the right hand side of Figure 15 is by restricting the polynomial basis to order 1, PBpBq � tRu.

In this special case, as a shading function becomes λ�1pRq � η1 � R, a polynomial estimation is equivalent to the semiparametric

CRRA estimation.

70For joint-type bidders, as they equally split their monetary payoffs, we need a slight modification to a compatibility condition

equations. See Appendix for details.

71In a sieve polynomial estimation, we do not have the data points in the near-lower-boundary domain of r0, Rα�1.00s, yet this

is practically less problematic as we can exploit the theoretical restriction of λ�1p0q � 0 in estimations.
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recursive but a linear difference estimator,72 that is, after taking a difference we do not have data points in

the near-upper-boundary area of domain;73 and (2) to overcome the boundary value problem we shrink the

quantiles of data variations by setting αlower and αupper.

In addition, as reported by Bajari and Hortaçsu (2005) [12], who estimate the special case of this seive poly-

nomial estimation method, (i.e. polynomial order K � 1 CRRA specification), it is known that this method

overestimates the risk preferences that, in turn, leads to underestimation of valuations among bidders.74

From a practical point of view, this underestimation of valuations among the upper quantile of valuations is

problematic as many policy implications, such as expected revenue calculations, largely depend on estimated

valuations. Thus, an extrapolation method that has a basis on and extends local identification results is

inevitably required to obtain empirically reasonable estimates of valuations.

7.3.3 Conventional-Wisdom-Based Shape Restrictions

To overcome the local identification problem, we now restrict the shapes of shading function λ�1pRq on the

domain in which researchers cannot obtain data points after variables are differenced. Specifically, we restrict

slopes of λ�1p�q on a near-upper-boundary domain,
��
PBpRAsym

αupper
q�PBpRSym

αupper
q
	
,PBpRAsym

α�1.00q
�

so that we can

smoothly extrapolate the estimate of a shading function, while exploiting the additively-coefficient-preserving

nature of polynomial functions in the domain where data variations are available. One may consider this as

a minimalistic usage of a calibration method for a part of an auction model that is challenging to estimate.75

Specifically, we apply the slope restrictions based on a DRRA (decreasing relative risk aversion) preference

72Notably, by applying a minmax estimator (in which min is chosen over sieve linear space and max is chosen over quantile

pionts with a normed distance), the recent working paper of Zincenko (2014, working paper) [77] establishes the identification of

λ�1p�q on r0, αs where α Ñ 1 as a sample size goes to infinity. We tried this minmax estimator. Although our trial suffered from

the small sample size problem and the results are not reported here, we believe this minmax estimator is an empirically powerful

tool when researchers have a large sample size. Specifically, the property of αÑ 1 is attractive.

73As Figure 14 depicts, the recursively-constructed identification method projects the shading function at a given quantile value

to lower quantile points. From a practical point of view, as researchers often suffer from boundary-value problems, we believe that,

even in the recursive identification method, some sort of shape restrictions are required for obtaining a reasonable estimate of λ�1p�q

on the near-boundary domains.

74See the histogram figures on pp. 723 of Bajari and Hortaçsu (2005) [12] for this problem. They apply the order K � 1

polynomial, CRRA specification, to symmetric auctions in which they use the observed difference of bids between three-bidder (less

competitive) and six-bidder (more competitive) markets.

75Note that this type of minimilistic usage of calibration is common in empirical structural estimations. For example, empirical

structural estimation researchers commonly do not estimate but calibrate a discount factor (eg. Rust (1994) [71]) or an extra cost

of exceeding capacity constraint (eg. Snider (2009, working paper)), as they are practically infeasible to estimate.

39



that has established empirical evidence and a clear interpretation.76 These restrictions behaviorally mean

that as an expected payoff increases, a bidder becomes relatively less risk averse (or becomes relatively closer

to risk neutral) in the measure of the Allow-Pratt relative risk aversion (Pratt (1964)][69]). Furthermore, the

measure of relative risk aversion (RRA), as seen in Figure 13, is linearly associated with the slope of λ�1p�q.

Thus, DRRA is straightforwardly interpreted as gradually increasing slopes of λ�1p�q. In addition, as Rabin

(2000) [70] illustrates, when a researcher exports any reasonable risk preferences on gambling at the lower

wealth level to the higher wealth level, it is well-known in the theoretical literature that an agent becomes

implausibly too risk averse in the higher wealth levels (i.e. her vNM function becomes too curvy in the higher

wealth levels), supporting the usage of DRRA. Specifically, we apply the following slope restrictions (note:

polynomial basis notations are omitted):

Shape Restriction - Minimalistic :

For both joint- and solo-type bidders,

"
10�8 ¤ d

dR
pλ�1pRq ¤ 1.00 for 0 ¤ R   pRα�1.00 ,

Shape Restriction - Homogeneous (Same Restriction across Bidder Types):
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Shape Restriction - Heterogeneous (Different Restrictions across Bidder Types):77
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� pRSym
αupper

q ¤ R   7
8
p pRAsym
αupper

� pRSym
αupper

q � 1
8
pRAsym
α�1.00

0.32 ¤ d
dR

pλ�1pRq ¤ 0.59 for 7
8
p pRAsym
αupper

� pRSym
αupper

q � 1
8
pRAsym
α�1.00 ¤ R ¤ pRAsym

α�1.00

,

76The empirical evidence of the DRRA model with household-level panel data is provided by Morin and Suarez (1983) [62] and

Ogaki and Zhang (2001) [64].

77We apply this heterogeneous treatment across bidder types for the following reasons: (1) joint-type bidders equally split their

payoffs; (2) as listed in Table 4, the estimates of CARA risk averse preference (which is not invariant to payoff scales) parameters

for joint-type bidders provide implausibly high numbers; and (3) a sieve polynomial estimation is also not invariant to payoff scales.
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These RRA numbers are taken from the highly cited work of Holt and Laury (2002) [39], in which the majority

of bidders’ relative risk preferences fall into these bounds. Also, the steeper-slope restrictions in Restriction

2 are motivated by Harrison (1989) [33] work in which expected profits in his experiment are close to the

joint-type expected profits in our experimental setting. As these results are widely accepted in the literature,

we treat their RRA numbers and the bounds listed above as conventional wisdom.78 Intuitively, these DRRA

restrictions assume that, as an expected payoff increases in the domain where researchers cannot obtain data

points (due to the limitations of polynomial difference estimator), the measure of bidders’ risk attitudes

gradually becomes close to the RRA preferences conventionally reported in literature. It is important to note

that under these slope restrictions, although the slopes gradually become closer to d
dRλ

�1pRq � 1 (which

is the slope of shading function in the risk neutral model), this does not mean that the shading function is

getting closer to λ�1pRq � R (the shading function of risk-neutral model), as depicted in the bottom-right

plot of Figure 15. While the validity of applying these shape restrictions to our experimental setting is

debatable and should be scrutinized more in future research, our investigation results plotted in Figure 9 and

10 depict that there are sizable improvements in the accuracy of value estimates, showing empirical usefulness

of these shape restrictions.79

78As Holt and Laury (2002) [39] report, researchers typically observe a wide range of risk averse attitudes in experiments,

from highly risk averse to slightly risk loving participants. Yet, the majority of bidders’ risk preferences in their research fall into

the bounds specified here. Regarding bidders’ preference heterogeneity in our research, although we tried the heterogeneous risk

preference models with CRRA and CARA specifications for estimating individual-bidder-specific vVM functions, our results suffer

from the small sample size problem and are not reported here. MATLAB code for individual bidder specific risk preference models

is available upon request.

79To the extent of minimalistic usage of calibration, in general, the CRRA coefficient estimates reported in Lu and Perrigne

(2008) [55] and Campo, Guerre, Perrigne, and Vuong (2011) [18] are invaluable for many empirical auction investigations, as

researchers may export these CRRA estimates to their own research when exogenous variations are not available. Note that Lu

and Perrigne (2008) [55] estimate the risk attitude by using the difference between first-price and ascending auctions, while Campo,

Guerre, Perrigne, and Vuong (2011) [18] establish then apply the conditional quantile restrictions with observed characteristics of

auctioned objects.
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Figure 14: Nonparametric and Recursive Identification Method in Guerre, Perrigne and Vuong (2009)
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[40] Hortaçsu, Ali, and Steven L. Puller (2008). “Understanding Strategic Bidding in Multi-Unit

Auctions: A Case Study of the Texas Electricity Spot Market.” RAND Journal of Economics, Vol. 39,

No. 1, 2008, pp. 86-114.

[41] Hubbard, Timothy P., and Harry J. Paarsch (2011). “On the Numerical Solution of Equilibria

in Auction Models with Asymmetries within the Private-Values Paradigm.” Handbook of Computational

Economics, Vol. 3, Forthcoming.

[42] Jofre-Bonet, Mireia, and Martin Pesendorfer (2003). “Estimation of a Dynamic Auction Game.”

Econometrica, Vol. 71, No. 5, 2003, pp. 1443-1489.

46



[43] Krasnokutskaya, Elena (2011). “Identification and Estimation of Auction Models with Unobserved

Heterogeneity.” Review of Economic Studies, Vol. 78, No. 1, 2011, pp. 293-327.

[44] Krasnokutskaya, Elena, and Katja Seim (2011). “Bid Preference Programs and Participation in

Highway Procurement Auctions.” American Economic Review, Vol. 101, No. 6, 2000, pp. 2653-2686.

[45] Krishna, Vijay (2009). “Auction Theory.” Academic Press, 2009.

[46] Laffont, Jean-Jacques, Herve Ossard, and Quang Vuong (1995). “Econometrics of First-Price

Auctions.” Econometrica, Vol. 6, No. 4, 1995, pp. 953-980.

[47] Leamer, Edward E. (1983). “Let’s Take the Con out of Econometrics.” American Economic Review,

Vol. 73, No. 1, 1983, pp. 31-43.

[48] Lebrun, Bernard (1996). “First Price Auctions in the Asymmetric N Bidder Case.” International

Economic Review, Vol. 40, No. 1, 1999, pp. 125-142.

[49] Li, Tong (2005). “Econometrics of First-Price Auctions with Entry and Binding Reservation Prices..”

Journal of Econometrics, Vol. 126, No. 1, 2005, pp. 173-200.

[50] Li, Tong, and Isabelle Perrigne (2003). “Timber Sale Auctions with Random Reserve Prices.”

Review of Economics and Statistics, Vol. 85, No. 1, 2003, pp. 189-200.

[51] Li, Tong, Isabelle Perrigne, and Quang Vuong (2000). “Conditionally Independent Private In-

formation in OCS Wildcat Auctions.” Journal of Econometrics, Vol. 98, No. 1, 2000, pp. 129-161.

[52] Li, Tong, Isabelle Perrigne, and Quang Vuong (2002). “Structural Estimation of the Affiliated

Private Value Auction Model.” RAND Journal of Economics, Vol. 33, No. 2, 2002, pp. 171-193

[53] Li, Qi, and Jeffrey S. Racine (2007). “Nonparametric Econometrics: Theory and Practice.” Prince-

ton University Press, 2007.

[54] Li, Tong, and Xiaoyong Zheng (2009). “Entry and Competition Effects in First-Price Auctions:

Theory and Evidence from Procurement Auctions.” Review of Economic Studies, Vol. 76, No. 4, 2009,

pp. 1397-1429.

[55] Lu, Jingfeng, and Isabelle Perrigne (2008). “Estimating Risk Aversion from Ascending and Sealed-

Bid Auctions: The Case of Timber Auction Data.” Journal of Applied Econometrics, Vol. 23, No. 7,

2008, pp. 871-896.

[56] Preston, McAfee R. and Daniel Vincent (1992). “Updating the Reserve Price in Common-Value

Auctions.” American Economic Review, Vol. 82, No.2, 1992, pp. 512-518.

[57] Marion, Justin (2007). “Are Bid Preferences Benign? The Effect of Small Business Subsidies in

Highway Procurement Auctions.” Journal of Public Economics, Vol. 91, 2007, pp. 1591-1624.

[58] Marshall, Robert C., Michael J. Meurer, Jean-Francois Richard, and Walter Stromquist

(1994). “Numerical Analysis of Asymmetric First Price Auctions.” Games and Economic Behavior, Vol.

7, No. 2, 1994, pp. 193-220.

47



[59] Maskin, Eric, and John Riley (2000a). “Asymmetric Auctions.” Review of Economic Studies, Vol.

67, No. 3, 2000, pp. 413-438.

[60] Maskin, Eric, and John Riley (2000b). “Equilibrium in Sealed High Bid Auctions.” Review of

Economic Studies, Vol. 67, No. 3, 2000, pp. 439-454.

[61] Milgrom, Paul R., and Robert J. Weber (1982). “A Theory of Auctions and Competitive Bidding.”

Econometrica, Vol. 50, No. 5, 1982, pp. 1089-1122.

[62] Morin, Roger A., and A. Fernandez Suarez (1982). “Risk Aversion Revisited.” Journal of Finance,

Vol. 38, No. 4, 1983, pp. 1201-1216.

[63] Nakabayashi, Jun (2013). “Small Business Set-Asides in Procurement Auctions: An Empirical Anal-

ysis.” Journal of Public Economics, Vol. 100, 2013, pp. 28-44.

[64] Ogaki, Masao, and Qiang Zhang (2001). “Decreasing Relative Risk Aversion and Tests of Risk

Sharing.” Econometrica, Vol. 69, 2001, pp. 515-526.

[65] Paarsch, Harry J. (1992). “Deciding between the Common and Private Value Paradigms in Empirical

Models of Auctions.” Journal of Econometrics, Vol. 51, No. 1, 1992, pp. 191-215.

[66] Paarsch, Harry J., and Han Hong (2006). “An Introduction to the Structural Econometrics of

Auction Data.” MIT Press Books, 2006.

[67] Perrigne, Isabelle, and Quang Vuong (1999). “Structural Econometrics of First-Price Auction: A

Survey of Methods.” Canadian Journal of Agricultural Economics, Vol. 74, No. 3, 1999, pp. 203-223.

[68] Pesendorfer, Martin (2000). “A Study of Collusion in First-Price Auctions.” Review of Economic

Studies, Vol. 67, No. 3, 2000, pp. 381-411.

[69] Pratt, John W. (1964). “Risk Aversion in the Small and in the Large.” Econometrica, Vol. 32, No.

1/2, 1964, pp. 122-136.

[70] Rabin, Matthew (2000). “Risk Aversion and Expected-Utility Theory: A Calibration Theorem.”

Econometrica, Vol. 68, No. 5, 2000, pp. 1281-1292.

[71] Rust, John (1994). “Structural estimation of Markov decision processes.” Handbook of Econometrics,

Chapter 51, Vol. 4, pp. 3081-3143.

[72] Smith, Vernon L. (1982). “Microeconomic Systems as an Experimental Science.” American Economic

Review, Vol. 72, No. 5, 2000, pp. 923-955.

[73] Snider, Connan (2009). “Predatory Incentives and Rredation Policy: the American Airlines Case.”

Working Paper.

[74] Sims, Christopher A. (2010). “But Economics Is Not an Experimental Science.” Journal of Economic

Perspectives, Vol. 24, No. 2, 2010, pp. 59-68.

48



[75] Vickrey, William (1961). “Counterspeculation, Auctions, and Competitive Sealed Tenders.” The

Journal of Finance, Vol. 16, No. 1, 1961, pp. 8-37.

[76] Wilson, Robert (1987). “Game-Theoretic Analysis of Trading Processes.” Advances in Economic

Theory, Cambridge University Press, 1987, pp. 33-70.

[77] Zincenko, Federico (2014). “Nonparametric Estimation of First-Price Auctions with Risk-Averse

Bidders.” Working Paper.

49


