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Introduction

Apicomplexans form a large phylum of parasitic protists, some

of which cause severe diseases in humans. Most notorious is

Plasmodium, the agent of malaria, which kills around a million

people each year, mostly young children in Africa. Most successful

is Toxoplasma, which parasitizes nearly a third of the human

population, making those people at risk of life-threatening

complications, primarily encephalitis or pneumonia, in case of

immunosuppression. Other apicomplexans of human importance

include Cryptosporidium, Isospora, and Sarcocystis, which are

opportunistic pathogens that cause severe diarrhea often associ-

ated with AIDS. Several apicomplexan parasites cause heavy

losses in livestock, particularly Theileria and Babesia in cattle and

Eimeria in poultry.

Most apicomplexans are obligate intracellular parasites. Their

extracellular stages, called zoites, display several conserved

features: they are elongated and polarized cells, their shape is

maintained by a set of microtubules running longitudinally, and

their anterior pole contains secretory vesicles, called micronemes

and rhoptries, which secrete their content at the anterior tip of the

parasite. Most zoites also share two unique properties among

eukaryotic cells. They move on substrate by a gliding type of

motility, i.e., without overt deformation of the cell shape, at speeds

of several microns per second. They also typically invade host cells

by forming a ring-like junction with the host cell membrane. Zoites

slide through the junction into an invagination of the host cell

surface that becomes the parasitophorous vacuole (PV) after

pinching off from the host cell plasma membrane, in a process that

takes less than a minute. Once inside the PV niche, the zoite can

multiply into multiple new zoites that eventually egress the infected

cell to infect new host cells.

Much work has been performed since the late 1970s to

understand the cellular and molecular bases of host cell invasion

by apicomplexans, using various zoites as models. The overall

invasion process encompasses several steps, including loose

followed by intimate attachment, reorientation relative to the host

cell surface, and organelle discharge with junction formation. The

ultimate step, sliding through the junction inside the PV and called

here internalization, is commonly viewed as powered by the zoite

submembrane actin-myosin motor. The junction is thought to act

as a traction point for the motor, to bridge the cortical

cytoskeletons in the two cells, and to be made of parasite proteins

conserved in the apicomplexan phylum. In this review, we

confront these established notions with genetic data recently

obtained in Plasmodium and Toxoplasma parasites.

The Junction: From ‘‘Moving’’ to Stationary
The first observation of a junction between an apicomplexan

zoite and its host cell was made using Plasmodium merozoites and

their target cells, erythrocytes [1]. Electron microscopy showed

that the merozoite, after initial random binding, reorients so that

its apical tip faces the erythrocyte surface, and then induces a

circumferential zone of close apposition of the zoite and

erythrocyte membranes over ,250 nm and the thickening of

the inner leaflet of the erythrocyte membrane [1]. This junctional

area was described as ‘‘actively moving down the body of the

merozoite,’’ since the poorly motile merozoite was not thought to

be capable of actively moving inside the cell, and was thus termed

‘‘moving junction’’ [1].

Studies in the 1980s focused on the highly motile Eimeria
sporozoites. They showed that several activities at the zoite surface

were dependent on parasite actin, including the posterior

translocation (capping) of various surface ligands and beads [2].

Videomicroscopic studies revealed that host cell invasion by

Eimeria sporozoites was continuous with extracellular gliding [3].

This led to the proposal that the zoite actin-based system would

power both gliding motility and host cell invasion by capping

substrate-binding ligands or the junction, respectively, which

implied that the zoite actively moved inside the host cell [3,4].

After myosins were identified in Toxoplasma [5] and in

Plasmodium [6], it was assumed that an actin-myosin motor

powered the zoite motile processes.

The role of the host cell during zoite invasion has been studied

mainly with Toxoplasma tachyzoites, which can be made to invade

host cells at high frequency and synchronicity. The host cell was

initially described as displaying no detectable actin reorganization

and playing no active role during tachyzoite invasion [7,8]. More
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recent work found that Toxoplasma tachyzoites induced, specifi-

cally at the junction, host actin polymerization and recruitment of

the Arp2/3 complex, an actin-nucleating factor, which is

important for tachyzoite entry [9]. Videomicroscopic studies

showed a stationary ring of host F-actin at the parasite

constriction, in agreement with the junction acting as an anchor

for zoite traction inside the cell. In addition to de novo actin

polymerization at the junction, tachyzoite invasion also requires

disorganization of the host cortical actin meshwork. This activity is

in part dependent on Toxofilin [10], a Toxoplasma protein that

sequesters actin monomers in vitro [11] and promotes actin

turnover at the leading edge of the cell [10]. Localized actin

disassembly might thus release G-actin necessary to feed actin

reassembly at the junction, regulated by recruited Arp2/3

complex, to anchor the junction to the host cortical cytoskeleton.

The Parasite Motor
The motor is located in the space (,20 nm) between the zoite

plasma membrane and the inner membrane complex (IMC), a

continuous layer of flattened vesicles apposed onto the microtu-

bule structure typical of alveolates (Figure 1A) [12]. The

development in the 1990s of gene targeting techniques in

Toxoplasma and Plasmodium has allowed the identification of

some of the main players of the apicomplexan motor. The first

proposed motor-substrate link was the thrombospondin-related

anonymous protein (TRAP), a transmembrane protein of Plas-
modium sporozoites conserved in the phylum that was found to be

essential for sporozoite gliding [13]. The first (and, to date, only)

myosin shown to operate during apicomplexan gliding is MyoA, a

single-headed unconventional myosin of the apicomplexan-specific

XIV class, which was shown to be crucial for gliding of

Toxoplasma tachyzoites [14]. The orientation of the motor was

determined by two main findings: the association of the

cytoplasmic tails of Plasmodium TRAP and its MIC2 ortholog

in Toxoplasma with actin [15] and the localization of the MyoA

light chain (also called myosin A tail domain interacting protein,

MTIP) in the IMC [16].

Actin polymerization in apicomplexans has been studied in

some detail. In these parasites, which contain a limited repertoire

of actin-binding factors [17], actin forms inherently short and

unstable filaments [18], and normal zoite gliding requires rapid

actin dynamics [19]. In the absence of Arp2/3 complex in these

parasites, F-actin nucleation is promoted by formins [20,21],

which were detected as an apical ring at the junction, like actin

itself [22], in the invading Plasmodium merozoite [20]. Actin

depolymerization is controlled by actin-depolymerizing factor

(ADF) [23] while profilin sequesters monomeric actin [24,25].

How actin filaments are connected to the cytoplasmic tails of the

TRAP/MIC2 proteins remains unclear. The link was originally

thought to occur via aldolase [15], a glycolytic enzyme that binds

the cytoplasmic tails of the TRAP/MIC2 proteins and is known

to bundle actin filaments in mammalian cells. However, genetic

data have now clearly shown that aldolase does not play such a

mechanical, bridging role during gliding motility and invasion

[26,27] but is important for providing energy via its glycolytic

activity [28]. Finally, structural components of the motor

complex have also been identified, primarily in Toxoplasma,

called gliding-associated protein 45 (GAP45) [29,30], GAP50

[29], and GAP40 [31]. Although the individual contributions of

the GAP proteins during gliding motility and invasion remain

uncertain, they are thought to maintain the cohesion and

integrity of the pellicle during zoite gliding and invasion,

especially via GAP45 that spans the entire space between the

plasma membrane and the IMC and anchors the motor complex

at the IMC (Figure 1A) [31,32].

The motor is still typically viewed as linear, i.e., as ‘‘linear

arrangements of transmembrane proteins transducing the force

generated by the actin-myosin motor and posteriorly capped,’’ as

originally proposed by King [2]. However, recent studies using

biophysical approaches to measure the force Plasmodium sporo-

zoites exert on the surface during gliding indicate that zoite

movement is not continuous, as predicted by the linear motor, but

follows a stick-and-slip pattern [33]. This involves, in addition to

backward capping of adhesion proteins, the formation/disengage-

ment of adhesion sites at the front and rear ends of the zoite.

Interestingly, TRAP appears to have a key role in the release of

adhesion sites, not in retrograde capping (in stick but not in slip),

while actin is important for both processes. Moreover, sporozoites

lacking the motor-binding TRAP-like protein (TLP), which glide

less efficiently by more frequently detaching from the substrate,

were complemented by the addition of actin stabilizing drugs [34].

These data illustrate the complex bases of apicomplexan gliding,

which may be more akin to crawling of mammalian cells than

previously anticipated.

What Is in the Junction?
Zoite-specific proteins? Numerous proteins in Plasmodium

merozoites have been described as being released from apical

organelles, important for invasion and found at the junction. This

is the case of several members of the micronemal erythrocyte

binding like (EBL) family of proteins, such as Plasmodium
falciparum erythrocyte-binding antigen 175 (EBA175) [35] and

P. knowlesi Duffy binding protein (DBP) [36]. This is also the case

of several rhoptry proteins, including the P. falciparum reticulo-

cyte-binding like (RBL) homologue PfRh1 [37], PfRh2a [38], and

PfRh5 [39], and of the rhoptry-associated leucine zipper-like

protein 1 (RALP1) [40]. However, function is difficult to assess in

the Plasmodium merozoite, typically relying on antibody inhibition

and negative transfection experiments. In Toxoplasma, one

member of the micronemal MIC family of proteins, MIC8, was

shown to be specifically crucial for junction formation [41].

Importantly, none of these proteins is conserved across the phylum

and most are stage-specific. If these proteins are indeed part of the

junction, the latter might then be at least in part zoite-specific. If

instead the junction is composed of a molecular core conserved

across apicomplexans, then these stage-specific proteins may

constitute adaptations to particular zoite-host cell combinations.

Motor-binding proteins? Since the junction is viewed as a

traction point for the motor, other candidates for junction

components were the transmembrane proteins involved in gliding

motility, i.e., the TRAP family of proteins including TRAP, TLP,

and TRAP-related protein (TREP) in the Plasmodium sporozoite

and MIC2 in the Toxoplasma tachyzoite [42]. However, there is

no evidence that any of these proteins participates specifically at

the junction during host cell invasion. In the Toxoplasma
tachyzoite, inactivation of MIC2 impairs but does not preclude

motility or invasion [43] and MIC2 is not specifically enriched at

the junction during tachyzoite internalization. The hypothesis that

TRAP/MIC2 might play a role as junction components was also

favored by the presence in their extracellular domains of one or

more A domains of von Willebrand factor, which are homologous

to integrin I domains and thus potential ligands of host cell surface

receptors [44]. However, the A domains of the TRAP family

member CS and TRAP-related protein (CTRP), expressed by the

Plasmodium motile ookinete stage that does not invade host cells,

were shown to be important for gliding motility [45]. Together,
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Figure 1. Molecular models of apicomplexan gliding and invasion. A. The parasite motor (glideosome) is located in the space between the
parasite plasma membrane (PPM) and the inner membrane complex (IMC) apposed to the microtubules. Gliding motility is mediated by the binding
of the ectodomain of transmembrane TRAP-family proteins to a solid substrate, while the cytoplasmic tail of the protein is linked to the parasite
motor. The integrity of the glideosome is maintained by the gliding-associated protein 45 (GAP45), which is anchored to the PPM at one end and to
the IMC, via GAPs 40 and 50, at the other end. The link between the GAPs, and ultimately the IMC, to actin is provided by Myosin A (MyoA) and the
MyoA Light Chain 1 (MLC1). The movement of the cell is the consequence of the capping, by myosin-actin activity, of the TRAP-family protein. B. The
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these data favor the view that the TRAP family of proteins is

involved in gliding motility, but not specifically for host cell entry.

AMA1-RON complexes? In 2005, two papers identified a set

of parasite proteins in Toxoplasma tachyzoites, called rhoptry neck

proteins (RON), which specifically marked the constriction around

invading zoites in a ring-like manner (Figure 1B) [46,47]. Later, a

ring-like staining of RON proteins was also shown in invading

Plasmodium merozoites [48]. It was additionally found that in

tachyzoite extracts, several RON proteins formed a complex with

apical membrane antigen 1 (AMA1) [46], a transmembrane

protein first identified in Plasmodium merozoites [49] and a

leading malaria vaccine candidate. In humans, evidence suggests

that AMA1 is an important target of naturally acquired protective

antibodies preventing merozoite invasion of erythrocytes [50].

AMA1 vaccines have demonstrated protective efficacy in rodent

and simian models against blood-stage challenge with the

homologous strain [51], although human vaccine trials using

AMA1 have shown poor efficacy so far [52].

Both AMA1 and RON proteins are conserved in the

apicomplexan phylum and the AMA1-RON complex has now

been detected in extracts from Toxoplasma tachyzoites and

sporozoites [53], Plasmodium merozoites of various species [54],

and Neospora [55]. Several independent lines of evidence have

first favored the view that the AMA1-RON complex might

constitute the building block of the junction. (i) The ectodomain of

AMA1 binds RON2 [56,57], which inserts into the host cell

membrane [58] and is thought to bind to the cell cortical

cytoskeleton via other RON proteins, a view recently strengthened

by the observation that Toxoplasma RON4 may bind host cell

tubulin [59]. (ii) The crystal structure of the AMA1–RON2

interaction in Toxoplasma [60] and Plasmodium [61] reveals a

conserved RON2 loop that inserts deep into a hydrophobic groove

in AMA1, suggesting that it might withstand mechanical forces

and act as the traction point for the zoite motor. (iii) Antibodies or

peptides that inhibit the AMA1–RON2 interaction reduce host

cell invasion by Toxoplasma tachyzoites and Plasmodium mero-

zoites [62–65]. These results clearly pointed to the view that cross-

membrane AMA1-RON2 complexes shaped the junction for zoite

internalization [66,67] (Figure 1B). Consequently, the conserved

AMA1–RON2 interaction has sparked much interest as a broad

target for intervention against apicomplexan parasites [68,69].

AMA1-Dependent Attachment and AMA1-Independent
Internalization

The development of conditional mutagenesis techniques in

Toxoplasma [14,70] and Plasmodium [71] has allowed the addressing

of the functions of AMA1 and the RON complex (Table 1). All

attempts to directly inactivate either RON4 or RON2 in Toxoplasma

and Plasmodium have failed so far. P. berghei RON4 conditional

sporozoites, obtained by Flp/FRT-mediated recombination, are

unable to invade hepatocytes [72]. P. berghei RON2 conditional

sporozoites, obtained by a promoter swap strategy, are unable to

invade mosquito salivary gland cells [73]. Toxoplasma gondii RON5
and RON2 conditional tachyzoites, generated with a Tet-repressible

promoter, are drastically impaired in invasion [74,75]. Therefore,

the RON proteins appear to play crucial roles during host cell

invasion by all zoites.

In contrast, all AMA1 knock-down (AMA1KD) or knock-out

(AMA1KO) zoites constructed are still invasive. AMA1KD P.
berghei sporozoites invade hepatocytes 3-fold better than the wild

type (WT) in vitro and in vivo [72], and AMA1KO Toxoplasma
tachyzoites and P. berghei merozoites are internalized into host

cells indistinguishably from the WT, i.e. systematically form

normal RON rings and are internalized at normal speed [72,76].

Nonetheless, AMA1KO Toxoplasma tachyzoites and P. berghei
merozoites display reduced invasion efficiency [72,76,77], along

with a major impairment in host cell attachment [72,76]. A recent

report suggested that the adhesion defect of AMA1KO tachyzoites

might be secondary to a failure to form a normal junction leading

to parasite detachment from the cell, based on immunofluores-

cence (IF) assays of rhoptry secretion [75]. However, what causes

rhoptry secretion is still unknown and no direct evidence was

provided that AMA1KO tachyzoites formed an abnormal junction

before detaching. AMA1KO tachyzoites observed by real-time

imaging did not display abortive invasions and their attachment

defect (upright instead of flattened positioning relative to the cell

surface) concerned the entire population, irrespective of invasion

[72,76]. In Plasmodium, AMA1KO merozoites were 15-fold less

adhesive to erythrocytes than controls after only 3 minutes

incubation, which cannot be accounted for by failed invasions

given that merozoite invasion efficiency is less than 5% [76]. A

primary role of AMA1 in zoite binding to host cells is also in

agreement with earlier work showing that AMA1 mediates

attachment of Toxoplasma tachyzoites [78] and Plasmodium
merozoites [79] to their respective host cells, and that Plasmodium
AMA1 binds erythrocytes [80–82] and to the erythrocyte

membrane receptor Kx [83].

Recent work revealed that the Toxoplasma genome encodes

paralogs of AMA1 and RON2 in specific combinations. In the

tachyzoite, RON2 interacts with AMA1 or AMA2 and RON2L1

with AMA4 [75], while in the sporozoite RON2L2 interacts with

AMA3 in a manner mutually exclusive with tachyzoite paralogs

[84]. Therefore, the hypothesis was raised that AMA1 paralogs

might account for the residual invasive capacity of AMA1KO

tachyzoites [75,84]. In agreement with this, the latter were found,

during parasite selection, to up-regulate AMA2 as well as the

RON2L1–AMA4 pair [75]. However, evidence that these paralogs

model of invasion seen as the junction structured by the AMA1-RON complex. The figure on the left shows a Toxoplasma tachyzoite invading a host
cell. The arrow indicates the direction of movement. Immunostaining of surface MIC2 (sMIC2) stains the part of the zoite cell still extracellular (blue),
while the rest of the cell, already internalized, is not stained. Immunostaining of total RON4 (tRON4, red) marks the junction as a ring at the point of
constriction, indicated by the circle, and the rhoptries at the apical pole of the zoite cell. After a first step of adhesion to the host cell plasma
membrane (HCPM) mediated by parasite surface adhesins and host cell surface receptors, the binding of the transmembrane protein AMA1 to RON2,
inserted at the host cell membrane and complexed with RONs 4 and 5, forms the junction. The link to the parasite motor is as in (A), while host actin
recruited at the junction provides the link to the host cell cytoskeleton. The movement of the zoite towards the interior of the newly formed
parasitophorous vacuole membrane (PVM) is thus a consequence of the capping of AMA1, which would be anchored at the junction by binding to
RON2. C. Models of zoite invasion in which the functions of AMA1 and RONs are dissociated. Color codes and acronyms are as in (A) and (B). After a
first step of adhesion mediated by parasite surface adhesins and host cell surface receptors, AMA1 binding to a host cell receptor provides a strong
attachment between the zoite and host cell membranes, possibly leading to reorientation of the zoite to allow junction formation. Three different
hypotheses could then explain junction formation: 1. A still-unknown transmembrane parasite protein binds to the motor and to RON2, taking the
place previously assigned to AMA1. 2. Unknown proteins structure the junction and connect the parasite motor to the host cell cortical actin, in
which case the role of the RONs at the junction is not structural. 3. Unknown proteins structure the junction without a role of the parasite motor
during invasion.
doi:10.1371/journal.ppat.1004273.g001
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Table 1. Mutants of interest in studies on host cell invasion by apicomplexans.

Gene zoite System Phenotype Ref.

RON4 P. berghei sporozoites Flp/FRT N Knock-down (KD) sporozoites do not invade hepatic cells in vitro [72]

RON2 P. berghei sporozoites Promoter swap N RON2-negative sporozoites do not invade the mosquito salivary glands [73]

RON5 T. gondii tachyzoites Tet repression N KD tachyzoites are unable to invade host cells [74]

N Loss of RON5 results in complete degradation of RON2 and mistargeting of RON4

RON2 T. gondii tachyzoites Tet repression N KD tachyzoites display a severe block in host cell invasion [75]

N RON4 and RON5 are not properly localized within parasites

AMA1 T. gondii tachyzoites Tet repression N KD tachyzoites do not progress from initial to intimate binding with the host cell
membrane.

[78]

N Rhoptry secretion is impaired and invasion is reduced to ,15% that of WT.

AMA1 P. berghei sporozoites and
hepatic merozoites

Flp/FRT N KD sporozoites normally invade hepatic cells in vitro and in vivo
N KD hepatic merozoites cannot induce a blood infection in vivo

[72]

AMA1 T. gondii tachyzoites Tet repression N KD tachyzoites bind to host cells differently from WT [72]

N Internalization appears normal

AMA1 P. berghei merozoites and
sporozoites

Flp/FRT and direct
knock-out

N Knock-out (KO) sporozoites normally invade hepatic cells in vitro
N KO and KD merozoites are impaired in binding to erythrocytes. The growth

rate of KO blood stages in vivo is ,35% that of WT

[76]

AMA1 T. gondii tachyzoites diCre/loxP N KO tachyzoites bind to host cells with a distinct positioning relative to the host cell [76]

N Internalization appears normal but with decreased frequency (30%–40% that of WT)

AMA1 P. falciparum merozoites diCre/loxP N Populations with 80% excised merozoites (with residual AMA1 due to late excision)
show 37% reduction in invasion capacity

[77]

AMA1 T. gondii tachyzoites Direct knock-out N KO tachyzoites display ‘abortive invasions’ [75]

N Residual invasion of AMA1KO tachyzoites is due to compensation by AMA1 paralogs

MIC2 T. gondii tachyzoites Tet repression N KD tachyzoites are impaired in gliding. Attachment to host cells is reduced to 18%
that of the parental strain

[43]

N Invasion is reduced to 22% that of the parental strain.

MIC2 T. gondii tachyzoites diCre/loxP N KO tachyzoites are clonally viable [70]

N Gliding motility and growth in cell monolayer are impaired

TRAP P. berghei sporozoites Direct knock-out N KO sporozoites are impaired in gliding motility. Invasion of mosquito salivary glands
is impaired

[13]

N Infection of mouse liver is compromised

TRAP P. berghei sporozoites Direct knock-out N KO sporozoites glide for one body length in both directions, while remaining
attached to the substrate by one adhesion site

[33]

N The turnover of adhesion sites is impaired. KO parasites cannot detach once attached

TRAP tail P. berghei sporozoites Subtle mutagenesis N Deletion of the entire cytoplasmic tail of TRAP renders sporozoites non-motile
N Deletion of the distal third of the TRAP cytoplasmic tail causes a pendulum gliding

[100]

TREP P. berghei sporozoites Direct knock-out N KO sporozoites are impaired in gliding motility [71]

N Invasion of mosquito salivary glands is impaired

Aldolase T. gondii tachyzoites Tet repression N KD tachyzoites are impaired in gliding motility and invasion [27]

N KD complemented with MIC2-binding impaired versions of aldolase display normal
gliding

Aldolase T. gondii tachyzoites diCre/loxP N KO tachyzoites can be cloned and propagate when grown in vitro in glucose-free
medium

[26]

Actin T. gondii tachyzoites diCre/loxP N Gliding and invasion are 10% that of WT [32]

N KO tachyzoites invade through a junction and multiply, but are not clonally viable
due to abnormal segregation of apicoplasts

MyoA T. gondii tachyzoites Tet repression N KD tachyzoites are impaired in gliding motility [14]

N Host cell invasion is reduced to ,20% that of WT

MyoA T. gondii tachyzoites diCre/loxP N KO tachyzoites are clonally viable. Gliding and egress are impaired [32]

N Invasion is reduced to 16% that of WT. Internalization is through a RON4-stained
junction

GAP45 T. gondii tachyzoites Tet repression N Other motor components redistribute to the cytosol and the glideosome ‘‘collapses’’ [31]

N KD tachyzoites are impaired in gliding and egress. Invasion efficiency is 25% that
of the parental strain
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act at and/or structure the junction is lacking, and the weaker

affinity of RON2 for AMA2 compared with AMA1 [75] is at odds

with the fully efficient internalization of AMA1KO [76] (suppos-

edly mediated by AMA2). In Plasmodium, the compensation

theory appears particularly unlikely. The AMA1KD Flp/FRT

sporozoites undergo AMA1 excision after parasite selection and

yet are 100% invasive [76]. Additionally, Plasmodium expresses no

AMA1 or RON2 paralog. The protein most closely related to

AMA1 is the trans-membrane protein MAEBL, with which it

shares the presence of a cysteine-rich domain but differs by an

unrelated cytoplasmic tail and the absence of RON2-binding

ability. MAEBL was shown by gene targeting in both P. berghei
[85] and P. falciparum [86] sporozoites to function as a stage-

specific adhesion; it mediates oocyst sporozoite binding to the

mosquito salivary glands, but not internalization into hepatocytes.

This further suggests that AMA1, its paralogs in Toxoplasma, and

MAEBL in Plasmodium form a family of stage-specific, host cell–

binding proteins.

Current Hypotheses
If AMA1 primarily mediates zoite intimate binding to host cell

surfaces, irrespective of RON2 interaction and junction assembly,

what could be the role of the conserved and therefore important

AMA1–RON2 interaction? AMA1 might still bind to RON2,

possibly to help further stabilize the zoite prior to internalization,

although direct evidence for such a step is still lacking.

Alternatively, AMA1–RON2 interactions might serve to process

AMA1 at the junction during internalization of the AMA1-

covered zoite. For example, interaction with RON2 might serve to

disengage the AMA1–host cell receptor interaction and help the

zoite slide free inside the PV, separated from the vacuole

membrane. In agreement with this, RON2 binding induces

conformational changes in AMA1 [60], which might impact

AMA1 processing by the substilisin-like protease SUB2 [87] or

intramembrane rhomboids [88]. Likewise, RON2L2 binding alters

AMA3, including allosterically in its membrane-proximal domain

[84]. Such AMA processing function of the AMA–RON2

interactions would be dispensable for internalization and yet block

invasion if perturbed, reconciling the inhibition and genetic data.

The contribution of the apparently essential RON proteins is

also unclear. They might be structural components of the junction,

by linking it to the host cell cytoskeleton (Figure 1C, hypothesis 1),

or might not be part of the force-transducing link (Figure 1C,

hypothesis 2). Perhaps favoring the latter, the RON proteins are

present in apicomplexans that are not known to form a junction,

like Theileria [89], which raises the possibility that another zoite–

host cell interaction might structure the junction, possibly

involving host cell receptor(s). In any hypothesis, the junction

constitutes a traction point for zoite internalization into the host

cell.

Motor-Independent Entry
The Toxoplasma tachyzoite is ideal to study zoite invasion, not

just due to the frequency of observable invasion events but also the

genetic tractability of the parasite. The use of a transcriptional

regulation system based on artificial Tet-transactivators (TATi)

allowed the generation of knock-down mutants and the functional

dissection of individual components of the motor (Table 1). As

already said, knocking down MIC2 [43] or MyoA [14] does not

result in a complete block in host cell invasion. Even knocking

down GAP45, while leading to the detachment of the IMC from

the plasma membrane (PM) and the release of the motor complex

in the cytosol, does not abolish host cell entry [31]. In contrast, as

mentioned above, a knock-down for MIC8 does not affect gliding

motility but completely blocks host cell invasion due to an inability

to form a junction [41]. These partial phenotypes were typically

explained by the leakiness of the Tet-inducible system, but were

also a hint that the motor might not be essential for host cell

invasion.

The current adaptation of a conditional recombination system

based on dimerizable Cre has allowed the construction of a series

of tachyzoite mutants completely lacking individual components of

the motor complex, including MyoA, GAP45, MLC1, and Act1

[32,70]. All of these mutants are affected in invasion efficiency but

retain some invasive capacity (Table 1). Strikingly, tachyzoites

devoid of MyoA, MLC1, or Act1, which is a single copy gene in

Toxoplasma, can invade host cells through a junction [32],

demonstrating that at least junction formation is independent of

connection to the motor. Moreover, GAP45KO tachyzoites, in

which the IMC detaches from the parasite membrane and MyoA

and MLC1 become cytosolic, remain motile and also invade [32].

These genetic data suggest that tachyzoites can move and enter

host cells without a functional motor. However, whether this

motor-independent entry pathway is the normal pathway used by

the WT, or an alternative pathway discernable only when the

motor is not functional, remains to be seen.

How could tachyzoites with a deficient actin-myosin motor

invade host cells? Until recently, actin polymerization and actin-

myosin contraction were thought to underlie force generation

during movement. However, this view is currently being

challenged by new models, in which hydrodynamic forces

generate changes in cell shape during motility [90]. Indeed, there

is mounting evidence that osmotic pressure and hydrodynamic

fluids are critical for motility of amoeboid cells, while the actin-

myosin system is critical for the formation and release of

attachment sites and associated traction forces [91]. A recent

Table 1. Cont.

Gene zoite System Phenotype Ref.

GAP45 T. gondii tachyzoites diCre/loxP N KO tachyzoites grow up to 14 days in culture. The IMC looses contact to the PM
and MyoA and MLC1 become cytosolic

[32]

N KO tachyzoites can glide. Egress is impaired. Internalization is through a
N RON4-stained junction and is reduced to 6% that of WT

MLC1 T. gondii tachyzoites diCre/loxP N KO tachyzoites can be grown up to 14 days in culture. MyoA is mislocalized [32]

N Gliding and egress are impaired. Invasion is reduced to 28% that of WT.
Internalization is through a RON4-stained junction

doi:10.1371/journal.ppat.1004273.t001
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report demonstrates the poroelastic nature of the cytosol [92],

where force can be generated by differences in hydrodynamic

pressure that can be higher in one part of a cell than another,

leading to tension. This pressure can be generated by actin-myosin

activity or by the localized activation of osmogenic ion transporters

in the plasma membrane [90]. In agreement with such a model,

Na+/H+ antiporters have been implicated in invasion and egress of

host cells by Toxoplasma tachyzoites [93–95], and monovalent ion

concentrations have been involved in gliding motility and host cell

invasion efficiencies in Toxoplasma [96,97]. Based on this, a

gelsolation model for gliding motility and zoite internalization, in

which the acto-myosin system of the parasite is required as a clutch

for force transmission but not for the generation of the force itself,

has recently been proposed [32].

Another possibility that cannot be excluded is that the force for

parasite internalization might originate from the host cell.

Theileria sporozoites and merozoites, which lack an IMC and

subpellicular microtubules and are not motile, invade host cells in

any orientation, without a junction, and by a mechanism of

circumferential zippering of parasite and host cell membranes

[89]. Others, like Cryptosporidium sporozoites, are motile but rest

on the host cell surface and induce the formation of host cell

membrane folds that progressively encapsulate the ‘‘epicellular

parasite’’ inside the PV [98]. Interestingly, these membrane

protrusions recruit a host cell Na+/glucose cotransporter and

aquaporin 1, which generate localized water influx and are

required for parasite invasion [99].

If zoite internalization is powered by the host cell or by

hydrodynamic forces, then the junction would no longer be

connected to the parasite motor. In this case, the junction might

serve as a membrane ‘‘seal,’’ possibly regulating protein processing

upon entry into the PV, facilitating membrane dynamics, fluidity

and curvature, and/or ensuring correct formation of the PV

(Figure 1C, hypothesis 3).

Conclusions

New mutagenesis data question the current view that apicom-

plexan zoites invade host cells by a unique pathway involving their

motor and AMA1–RON2 interactions as traction points at the

junction. AMA1 appears not to be involved in junction function

and the RON proteins are the only parasite proteins known to

functionally associate with the junction. Whether the RON

complex transmits force at the junction remains uncertain, though

the evidence of a link between the RON proteins and the host cell

cytoskeleton points to this direction. The conservation of the RON

proteins in apicomplexans and of their essential role in invasion

suggests a conserved molecular kit for junction formation. Still,

there is no definitive evidence for such a conserved apicomplexan

junction core, and at least part of its structure might be stage-

specific. Whether the zoite provides all pieces of the junction, or

whether the host cell also provides receptors, possibly located in

specific microdomains, is also unclear.

Moreover, it now appears that the force required for gliding

motility and host cell entry might, at least in Toxoplasma, be

generated in a motor-independent manner. Whether this holds

true for other apicomplexan genera remains to be seen. In any

event, apicomplexan invasion of host cells appears more complex

than previously thought. Dissecting the process and its possible

versatility will require establishing novel experimental approaches,

including biophysical, and investigating unconventional force-

generation means in zoites, as well as in host cells, that might

facilitate, or even replace, the activity of the parasite motor.
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