

Burbidge, C.I., Sanderson, D.C.W., and Fülöp, R. (2008) *Luminescence* dating of ditch fills from the Headland Archaeology Ltd. excavation of Newry Ring Fort, Northern Ireland. Technical Report. SUERC, Glasgow.

Copyright © 2008 The Authors

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

Content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s)

When referring to this work, full bibliographic details must be given

http://eprints.gla.ac.uk/97489/

Deposited on: 10 October 2014

Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk

Luminescence dating of ditch fills from the Headland Archaeology Ltd. excavation of Newry Ring Fort, Northern Ireland

February 2008

C.I. Burbidge, D.C.W. Sanderson and R, Fülöp

East Kilbride Glasgow G75 0QF Telephone: 01355 223332 Fax: 01355 229898

i

Summary

This study supports a new investigation into the construction, occupation and utilisation history of a Mediaeval ring fort near Newry, southwest Northern Ireland (section 2). Optically stimulated luminescence (OSL) profiling and age determinations have been made for two sequences of sediments accumulated in the ring ditch surrounding the fort, and potential has been assessed for TL dating of a Souterrain-Ware sherd from a pit feature within the site complex (section 3). The archaeological significance of the age determinations has been reviewed in the light of the luminescence results and the samples' depositional contexts, to constrain the deposition/formation dates of the sampled sediments (section 6).

A total of 31 profiling (sections 5.1, 5.2) and 12 age (section 5.5) determinations were made. Profiling measurements were made using simplified equivalent dose determination procedures on polymineral coarse and hydrofluoric etched sand-sized mineral grains (sections 4.2.2). Dose rate determinations were made using thick source beta counting, high-resolution gamma spectrometry, field gamma spectrometry, measured water contents and calculated cosmic dose rates (sections 4.2.1 and 5.3). Equivalent dose determinations were made (sections 4.2.2, 5.4) using the OSL signals from sand sized grains of quartz separated from each sample.

The luminescence behaviour of the Newry Ringfort samples was generally very good. Profiling indicated variable levels of residual luminescence signal through the sections (sections 5.1, 5.2), but OSL on the etched fraction was found to be least affected, and measurements on fully prepared quartz for dating appeared even less so (sections 6.1, 6.2). Dose rates ranged from 2.6 to 3.9 mGy/a, De values from the dating samples ranged from 0.7 to 5.0 Gy. Estimates of sediment accumulation date ranged from 410AD to 1750AD (section 5.5). Uncertainties on the age estimates were commonly around 3%, but young samples with scattered equivalent dose distributions had estimated age uncertainties of up to 11%.

The external dose rate to the sherd was estimated to be $1.33 \text{ mGy/a} \pm 0.12$ (sections 6.3, 7). Precision was limited by uncertainties in average water content during burial rather than heterogeneity in the gamma radiation field: providing the *range* of sediment radioactivity at a site can be assessed, and the average burial water contents of sherds excavated from it can be well constrained, then it is likely that sherds from around a site could be dated with sufficient precision to establish a broad chronology for Souterrain-Ware.

The earliest sediments in the ditch of the ringfort indicated that its construction predates the end of the 6th Century AD (sections 6.4, 7). These and other OSL age estimates indicated continued occupation until the mid 11th Century, or phases of occupation in the 7th, 9th and 11th Centuries. Results from the base of a colluvial soil sealing these layers indicate that the site was set to cultivation at or around the time of the Norman invasion of Ireland (1169AD), rather than in the post Mediaeval period. Abandonment of the ringfort must have occurred at the time of the invasion or in the century before it. Samples from throughout the colluvial soil also indicated that it continued to accumulate until at least the 18th Century, and probably into the 20th Century.

Contents

Summary	Summaryii									
Contents	Contents									
1. Intro	oduction	. 1								
2. Bac	kground	. 1								
2.1.	2.1. Context									
2.2.	Aims	. 3								
2.3.	Luminescence dating of sediments	. 3								
3. Sam	pling	.4								
4. Met	hods	11								
4.1.	Sample preparation	11								
4.1.	Luminescence profiling samples	11								
4.1.2	2. Luminescence dating samples	11								
4.1.	3. Dosimetry only samples	12								
4.2.	Measurements and determinations	12								
4.2.	1. Dose rate measurements and determinations	12								
4.2.2	2. Field luminescence measurements	14								
4.2.	3. Laboratory luminescence measurements	14								
5. Rest	ılts	16								
5.1.	Field Profiling	16								
5.2.	Laboratory Profiling	16								
5.3.	Dose rates	19								
5.4.	Single aliquot equivalent dose determinations	22								
5.5.	Age estimates	24								
6. Disc	cussion	25								
6.1.	Profiling	25								
6.2.	Equivalent dose	25								
6.3.	Dose rate	26								
6.4.	Ages	28								
7. Con	clusions	31								
Referenc	es	32								
Appendix	A: Sample Forms	34								
Appendix	B. Sample preparation and measurement	49								
Appendix	C. Dosimetry	51								
C.1. Thic	k source beta counting	51								
C.2. High	n resolution gamma spectrometry	56								
C.3. Field Gamma Spectrometry										
C.4. Cosmic dose rate										
C.5. Wat	er content	76								
Appendix	D. Equivalent dose determinations	77								
Appendix	E: Luminescence Profiling	90								

1. Introduction

This report is concerned with optically stimulated luminescence (OSL) investigations of sediment samples recovered from sequences of ditch fills, and dosimetric investigation of a pit feature, from a ring fort by Sheepbridge Junction on the route of improvements to the A1 north of Newry, Northern Ireland (54.216 N, 6.334 W; Figure 3.1). In the present report this will henceforth be termed "Newry Ringfort".

2. Background

2.1. Context

Ringforts distributed across the majority of Ireland are circular or sub-circular ditched enclosures. They thought to be "agricultural farmsteads built in a defensive form to offer protection against raiders and animal predators" (Legg and Taylor, 2006). Their construction is primarily associated with the Early Mediaeval period (450-1100 AD), prior to the Norman invasion of Ireland in 1169AD.

Reduced evidence of human activity in the Late Iron Age has been linked to a worsening of climate between around 300 BC and 250 AD. The subsequent increase in agricultural activity may have been a function of technological improvements (tools, farming practises, crop varieties, etc) as much as amelioration in climate, but increased food production appears to have led to population expansion, and hence increased competition for resources. Extant radiocarbon dates indicate that ringfort construction peaked in the 7th Century AD (Figure 2.1).

Legg and Taylor (2006) found that ringforts are generally encountered on moderately fertile, well-drained soils on gently sloping land 80-150 m above sea level. In most of these respects Newry Ringfort appears typical: Although it is situated at lower altitude (~45 m a.s.l.), it lies on a granite knoll relatively high in a rolling landscape (see cover photo). Well-drained soils have developed from the weathered granite of the knoll, but substantial colluvial movement has left only thin soils on the top and produced deeper accumulations low on the sides of the knoll. Most in situ archaeological features within the site complex are therefore pits and niches.

The ditch enclosing the ringfort site complex is approximately 2 m deep x 4 m wide, although on steeper slopes little of the outer ditch bank is evident such that it functions as a steepening of the natural slope. The base of the ditch cuts into the weathered upper part of the granite bedrock. The ditch fills comprise sequences of colluvium, and palaeosols. These are thought to represent two phases of Mediaeval activity on the site: each phase destabilised the soil in the complex and led to its redeposition in the ditch (slope wash/ditch bank collapse), then a palaeosol formed in a subsequent period of stability. These sediments are sealed by a thicker layer of colluvial soil containing stone lines that lead to the bedrock wall forming the upper bank of the ditch. This is thought to be the consequence of Post-Mediaeval ploughing, possibly in the early 19th Century AD.

Figure 2.1. Distribution of recorded ringforts in Ireland and frequency of construction per century based on 14C dating (from Legg and Taylor, 2006: based on Stout, 1997).

2.2. Aims

The principal aims of this study are to support an investigation into the construction, occupation and utilisation history of a Mediaeval ring fort in southwest Northern Ireland. The present study specifically aims to establish a sediment based OSL chronology for the accumulation of sediments in the ring ditch surrounding the fort, and to assess the potential for TL dating of a Souterrain-Ware sherd from a pit feature in terms of radiation dosimetry.

2.3. Luminescence dating of sediments

Optically stimulated luminescence originates as a consequence of energy deposited within sedimentary minerals in response to naturally occurring ionising radiation in the sample and its environment. By stimulating the minerals in the laboratory using lasers or other suitable light sources, part of this stored energy is released, resulting in luminescence which can be measured to quantify the radiation history of the sample. Luminescence signals can be erased either by heat or exposure to daylight, and for sedimentary materials exposure to light during transport phases acts as the zeroing mechanism. Enclosure of the sediment after final deposition protects it from light and allows the accumulation of luminescence signals that can be used for age estimation. The luminescence age is determined by combining luminescence determinations of the radiation dose equivalent to the signals recovered from the samples (the equivalent dose), with measurements of the radiation dosimetry of the sample and its environment (the dose rate). The natural dose rate comprises alpha, beta and gamma radiation produced by the decay of naturally occurring radionuclides (⁴⁰K, and the U and Th decay series), and cosmic radiation. The luminescence age is the quotient of equivalent dose over dose rate.

With sediment dating it is important to recognise that the luminescence age might represent an accumulated signal originating from many cycles of erosion, transport, bleaching and deposition. Only in the situation where undisturbed sediments are available and associated with effective zeroing at time of deposition can sediment dates be interpreted in terms of simple events. Photostimulation, or optical stimulation, targets readily reset luminescence signals, and regenerative procedures for determining the stored dose within single aliquots or mineral grains (Murray and Wintle, 2000) provided a means of assessing the homogeneity of doses within sediments. This approach can provide important information for diagnosing mixed sedimentary systems, and hence assists the interpretation of luminescence age determinations (Olley et al., 1998; 1999). It is also important to recognise that the dose rate values used for age estimation are based on contemporary measurements of the sample and its environment. These must be spatially representative, and expected variations in dose rate to the sample with time must be accounted for. Water absorbs radiation, so average water content during burial is estimated using the sample's water retention properties and by modelling it's hydrological history. Gross precipitation or leaching of radionuclides can be detected using gamma spectrometry and may require modelling based on the expected age of any movement.

It is probable that for the samples in the present study, the coarse hard mineral fraction, used for luminescence measurements, contains mineral grains weathered

from bedrock in the late Pleistocene. It is likely that these were then reworked during soil formation by bioturbation and cultivation, and then redeposited through colluvial movement. Detailed examination of colluvially redeposited quartz grains weathered from granite bedrock has indicated that substantial residual signals may be retained (Heimsath et al., 2002). OSL studies applied to colluvial sediments have also met with mixed success (e.g. Prescott, 1997; Rees Jones and Tite, 1997). However, a number of fill sediments have been shown to be amenable to luminescence dating (e.g. Lang and Wagner, 1996; Rhodes et al., 2003), and OSL dating of sand-sized quartz grains from ditch fills has recently been applied successfully to the Bronze Age to Mediaeval site of Garretstown, Co. Meath (Rathbone, 2007).

The present report outlines the samples collected, the measurements undertaken, and the conclusions that can be drawn from the OSL results.

3. Sampling

Sampling was undertaken on the 26th-27th June 2007, by C. Burbidge and R. Fülöp (Burbidge et al., 2007). Fair copies of luminescence sampling forms are attached in Appendix A. Samples were taken from two cleaned sections through the fill of a ring ditch, on opposite sides of the enclosure.

Each section was sampled for luminescence profiling by excavating ~ 10 g loose sediment from behind the exposed material on the face of the section into light protected bags. These samples were taken from close to layer boundaries, and at ~ 10 cm intervals through thicker layers. The profiling samples were measured in field accommodation using a SUERC portable OSL reader, to assess the potential of the sediments for luminescence dating and to help select sampling locations (Burbidge et al., 2007).

Full luminescence dating samples were taken using stainless steel tubes (~200 g sediment), and additional sediment from the sampling location was collected in plastic pots (~200 g sediment) for laboratory gamma spectrometry measurements. The hole left by the sampling tube was then enlarged, and a field gamma spectrometry measurement recorded in situ.

Separate dosimetry samples were also taken, in plastic pots (~ 200 g sediment), from the fill and cover sediments of a relatively deep and narrow pit: a field gamma spectrometry measurement was made at the base of the pit.

16 profiling samples and 6 full dating samples were taken from Section 1 (Figure 3.2), 15 profiling samples and 6 full dating samples were taken from Section 2 (Figure 3.3), and two dosimetry samples were taken from Pit 1 (Figure 3.4).

Sampling details, including the labels assigned to each tube and bulk sample in the field, and the laboratory (SUTL) numbers assigned to each upon arrival at the SUERC luminescence dating laboratory, are summarised in Table 3.1 and Table 3.2.

Figure 3.1. Map showing location of Newry Ringfort on the route of improvements to the A1 between Beech Hill and Cloghogue (adapted from RoadsNI, www).

Figure 3.2. Newry Ring Fort Section 1 (South side of site, section faces East). Crosses indicate the locations from which samples were taken for luminescence profiling. Concentric circles represent locations from which full luminescence dating samples were taken, with associated field gamma spectrometry measurements. Layer numbers are related to site contexts in Table 3.1and Table 3.2.

Figure 3.3. Newry Ring Fort Section 2 (West side of site, section faces South). Crosses indicate the locations from which samples were taken for luminescence profiling. Circles represent locations from which full luminescence dating samples were taken, with larger circles indicating the locations of associated field gamma spectrometry measurements. Layer numbers are related to site contexts in Table 3.1and Table 3.2.

Figure 3.4. Newry Ring Fort Pit 1 (NW quarter of site complex within ring ditch). Illustrating pit location, shape, fill and cover sediments, and arrangement of gamma spectrometry measurement.

Sample Number			Depth		•	Context
SUERĊ	Field	#	(cm)	Field	Site	Description
SUTL 2156 a	NEW S1	1	5	S1 Layer 1	20001	Modern topsoil Reddish grev-brown sandy few stones
b		2	11	1	20001	
С		3	19	2	20629	
d		4	39	2	20629	Light Red-Brown, many stones/clasts of all sizes to 20cm. Unclear
e		5	56	2	20629	colluvial stone lines coming from top of up-slope bank (bedrock).
f		6	79	2	20629	Colluvial soil, early C19?
g		7	93	2	20629	
h		8	99	3	20628	Red-brown soil lens, conforms to slope. V. silty fines, clasts < 5 cm.
						Red brown soil similar to layer 3 but more loamy, less silty (cohesive).
I		9	105	4	20628+7	Conforms to slope. Colluvial accumulate associated with Late
						Mediaerval phase of site reuse?
j		10	112	5	20626	Rubble layer with It red-brown soil. Similar to layer 2
						Dark red-brown soil in lee (downslope) of large stone. Silty, some clay
k		11	124	6	20626	but still plenty of small clasts and crystals from granite. Stabilisation
						following early occupation?
I		12	134	7	20625	Red-brown soil, texture as layer 2, but partially conforms to slope. Fill
m		13	145	7	20625	associated with 1 st phase of Mediaeval occupation?
n		11	154	8	20625	Red-brown soil, fewer clasts than layer 7. Initial fill following
		14	134	0	20025	construction?
0		15	164	9	N/A	Weathered Bed Rock – Granite
р		16	105	3	20629	Ash/Org Lens. Dark grey-brown, silty
SUTL 2164 a	NEW S2	1	8	S2 Layer 1	20001	Modern topsoil. Reddish grey-brown, sandy, few stones
b		2	17	2	20001	Rootzone, substrate as layer 3
С		3	31	3	20029	
d		4	48	3	20029	Light Red-Brown, many stones/clasts of all sizes to 20cm. Unclear
е		5	67	3	20029	colluvial stone lines coming from top of up-slope bank (bedrock).
f		6	80	3	20029	Colluvial soil, early C19?
g		7	98	3	20029	
h		8	107	4	20556	Dark red-brown, silty, some clay, few stones. Conforms to slope.
I		9	116	4	20556	Palaeosol - associated with Late Mediaeval phase of site reuse?
j		10	126	5	20555	Red brown soils similar to 2 Conforms to slope. Colluvial accumulate
k		11	143	5/6	20554/5	associated with Late Mediaeval phase of site reuse?
I		12	155	6	20554	
						Dark red-brown soil in stone scatter/layer of small rubble. Silty, some
m		13	161	7	20553/4	clay but still plenty of small clasts and crystals from granite.
						Stabilisation following early occupation?
n		14	171	8	20553	Red-brown soil, texture as layer2, but conforms to slope. Fill
		1-1	.,,,	0	20000	associated with 1 st phase of Mediaeval occupation?
0		15	180	9	N/A	Weathered Bed Rock – Granite

Table 3.1. Profiling sample locations, descriptions, and SUERC laboratory numbers

Table 3.2. Dating sample locations, descriptions, and SUERC laboratory numbers
--

Sam	Sample No. Type Sed. Lattitude Depth		Context	E	Expected							
SUTL	NEW_		(g)	N	W	(cm)	No.	Sediment	Constraints	>	ations	nips <
2156	S1 P1-16	Zlbs	~10 ea	54.216	-6.334	-	-	Whole section: topsoil to bedrock	Identify patterns in luminescence behaviour through the stratigraphy and aid selection of luminescence sampling locations.			
2157	S1#1	Tube + γ pot	117 146	54.216	-6.334	24	20629	Light Red-Brown, many stones/clasts of all sizes to 20cm. Unclear colluvial stone lines	Constrain top of archaeological stratigraphy: end of C19? colluvial phase, associated with intensive agricultural activity		S2#1	S1#2
2158	S1#2	Tube + γ pot	139 128	54.216	-6.334	84	20020	coming from top of up-slope bank (bedrock).	Base of colluvial/mixed layer.Constrain beginning of C19? colluvial phase, associated with intensive agricultural activity	S1#1	S2#2	S1#3
2159	S1#3	Tube + γ pot	118 168	54.216	-6.334	103	20628+7	Red-brown soil, conforms to slope. Loamy silt, clasts < 5 cm. Colluvial.	Constrain Late Mediaeval phase of site reuse: sealed by revetment used to widen natural causeway across ditch (c. 10 m away)	S1#2	S2#4	S1#4 S1#6
2160	S1#4	Tube + γ pot	123 170	54.216	-6.334	123	20626	Dark red-brown soil in lee (downslope) of large stone. Silty, some clay, many small clasts.	Palaeosol representing stabilisation following early Mediaeval phase: constrain initial period of Mediaeval site occupation.	S1#3	S2#5 S1#6	S1#5
2161	S1#5	Tube + γ pot	175 203	54.216	-6.334	148	20625	Red-brown soil, texture as 20629 but fewer clasts, partially conforms to slope.	Initial fill following ditch construction: constrain ditch construction and initial period of Mediaeval site occupation.	S1#4 S1#6	S2#6	
2162	S1#6	Tube + γ pot	150 164	54.216	-6.334	101	20626	As S1#4 but taken away from large stones on surface of section.	Palaeosol representing stabilisation following early Mediaeval phase: constrain initial period of Mediaeval site occupation.	S1#3	S2#5 S1#4	S1#5
2163a	Pit1#1a	γ pot	164	54.216	-6.334	-	-	Pink-purple granular plus silt/clay – appears either burnt or highly weathered.	Assess the potential for TL dating to improve constraint of the date of manufacture of a Souterraine Ware potsherd: presently "Mediaeval".			
2163b	Pit1#1b	γ pot	129	54.216	-6.334	-	-	Light red-brown silty sand (similar to ditch sediments)	i.e. ~500 to ~1500 AD			
2164	S2 P1-15	Zlbs	~10 ea	54.216	-6.334	-	-	Whole section: topsoil to bedrock	Identify patterns in luminescence behaviour through the stratigraphy and aid selection of luminescence sampling locations.			
2165	S2#1	Tube + γ pot	129 182	54.216	-6.334	33	20029	Light Red-Brown, many stones/clasts of all sizes to 20cm. Unclear colluvial stone lines	Constrain top of archaeological stratigraphy: end of C19? colluvial phase, associated with intensive agricultural activity		S1#1	S2#2
2166	S2#2	Tube + γ pot	130 212	54.216	-6.334	91		coming from top of up-slope bank (bedrock).	Base of colluvial/mixed layer.Constrain beginning of C19? colluvial phase, associated with intensive agricultural activity	S2#1	S1#2	S2#3
2167	S2#3	Tube + γ pot	126 161	54.216	-6.334	111	20556	Dark red-brown, silty, some clay, few stones. Conforms to slope.	Constrain Late Mediaeval phase of site reuse: sealed by revetment used to widen natural causeway across ditch (other side of site)	S2#2		S2#4
2168	S2#4	Tube + γ pot	156 218	54.216	-6.334	131	20555	Red brown soil similar to 20029: Light Red- Brown, many clasts of all sizes to 20cm.	Colluvial accumulate associated with Late Mediaeval phase of site reuse:Constrain phase of site reuse and accumulation rate	S2#3	S1#3	S2#5
2169	S2#5	Tube + γ pot	134 245	54.216	-6.334	157	20553/4	Dark red-brown soil in stone scatter/rubble layer. Silty, some clay, many small clasts.	Palaeosol representing stabilisation following early Mediaeval phase: constrain initial period of Mediaeval site occupation.	S2#4	S1#4 S1#6	S2#6
2170	S2#6	Tube + γ pot	166 195	54.216	-6.334	165	20553	Red-brown soil, similar to 20029, but conforms to slope.	Initial fill following ditch construction: constrain ditch construction and initial period of Mediaeval site occupation.	S2#5	S1#5	

4. Methods

4.1. Sample preparation

All sample handling and preparation was conducted under safelight conditions in the SUERC luminescence dating laboratories except where indicated.

4.1.1. Luminescence profiling samples

Field profiling measurements were made on subsamples of unprepared sediment, in a darkened room. In the laboratory the luminescence profiling samples were first wet sieved to isolate the 90-250 μ m grain size fraction, which was treated with 1 M HCl for 10 minutes to dissolve carbonates. This material was subsampled (Polymineral coarse grains, "PMC"), and the rest was treated with 40% HF for 40 mins to dissolve less resistant minerals and leave a quartz-enriched sample, followed by 10 min HCL treatment to dissolve fluorides (Hydrofluoric-etched coarse grains, "HFC"). Each fraction was dried at 50°C, and dispensed onto the central part of 1 cm diameter, 0.25 mm thick stainless steel disks, using silicone oil for adhesion. Two such aliquots were made from each separated fraction (2 x PMC + 2 x HFC per sample).

4.1.2. Luminescence dating samples

Each sample was first subject to water content determination in the sampling tube. The tubes were unpacked and weighed with gauze taped over one end ("field"). They were then soaked in deionised water and reweighed ("saturated"), then allowed to drain at room temperature and reweighed ("drained upper limit"), and finally dried at 50°C and reweighed ("dry"). Sample material was then extracted from the tubes: potentially light exposed material from the ends was first removed, then the "core" was excavated for further measurements.

Around 100 g of the core material was weighed into HDPE pots for high-resolution gamma spectrometry (HRGS) measurement. The pots were sealed with epoxy resin and left for at least 4 weeks prior to measurement to allow equilibriation of ²²²Rn daughters. After HRGS measurement the pots were opened and the sediment drysieved at 1 mm. 20 g of the less than 1 mm fraction was sub-sampled for thick source beta counting (TSBC) measurement. Following this, all the less than 1 mm material was recombined for processing to obtain a sand-sized quartz separate for equivalent dose determination.

Approximately 50 g of less than 1 mm material from the core of each sample tube was processed for luminescence measurements. With the object of separating sand-sized quartz grains from the bulk sediment, luminescence sub-samples were wet sieved to obtain 150-250 µm grains, which were treated with 1 M HCl for 10 minutes to dissolve carbonates: no strong reactions were observed. The treated material was centrifuged in heteropolytungstate solution (LST Fastfloat) at densities of 2.62 and 2.74 g/cm³. The 2.62 - 2.74 g/cm³ fraction was treated with 40% Hydrofluoric acid (HF) for 40 minutes, to dissolve less chemically resistant minerals with a similar density to quartz, and to etch the outer part of the quartz grains, which would have absorbed external alpha radiation during burial. The HF etched material was then

treated with 1 M HCl for 10 minutes to dissolve any precipitated fluorides, and resieved at 150 μ m with ultrasonic agitation to wash off any residual mineral dust. This etched quartz material was dried at 50°C, and dispensed in ~4 mg aliquots onto the central part of 1 cm diameter, 0.25 mm thick stainless steel disks, using silicone oil for adhesion. 16 disks were made per sample.

4.1.3. Dosimetry only samples

These samples were collected in HDPE pots for high-resolution gamma spectrometry (HRGS) measurement. The sediment was dried in the pots to determine field water content. 100 g subsamples were sealed in the pots with epoxy resin and left for at least 4 weeks prior to measurement to allow equilibriation of ²²²Rn daughters. After HRGS measurement the pots were opened and the sediment dry-sieved at 1 mm. 20 g of the less than 1 mm fraction was sub-sampled for thick source beta counting (TSBC) measurement.

4.2. Measurements and determinations

4.2.1. Dose rate measurements and determinations

Dose rates were measured in the laboratory using High Resolution Gamma Spectrometry (HRGS) and Thick Source Beta Counting (TSBC). In-situ gamma spectra were measured using a Field Gamma Spectrometer (FGS) by C. Burbidge and R, Fülöp at time of sampling.

FGS measurements were made using a Health Physics Instruments Rainbow MCA with a 2"x 2" NaI probe. Prior to fieldwork, measurements were made using this system on the doped concrete reference pads at SUERC in order to provide crossreference to dose-rate conversion factors established by Sanderson (1986), based on comparisons with TL dosimetry in doped blocks then at the Oxford and Risø luminescence laboratories. The spectra were calibrated to the 1457 keV peak from 40 K, then dose rates were determined from integral counts >450 keV, >1350 keV, and the energy integral (sum of counts times energy) across all the recorded spectrum. Using this approach yielded dose rates from the pads that were within errors of expected values (Appendix C.2). Field spectra were each measured for 10 mins in holes cut around the luminescence sampling positions using an overtube, and calibrated to the 1461 keV peak from ⁴⁰K before calculation of dose rates. The FGS measurement in the base of Pit 1 (Figure 3.4) was made similarly, but was estimated to have only 3pi (out of 4) solid angle of rock and sediment around it, the remainder being open to the sky and hence not contributing to the measurement. The measured gamma dose rate was therefore multiplied by 4/3 to estimate the dose rate to the probe if completely surrounded by the same materials.

HRGS measurements were performed using a 50% relative efficiency "n" type hyperpure Ge detector (EG&G Ortec Gamma-X) operated in a low background lead shield with a copper liner. Gamma ray spectra were recorded over the 30 keV to 3 MeV range from each sample, interleaved with background measurements and measurements from Shap Granite in the same geometries. Samples of c. 100g were counted for either 25 or 50 ks. The spectra were analysed to determine count rates

from the major line emissions from 40 K (1457 keV), and from selected nuclides in the U decay series (234 Th, 226 Ra + 235 U, 214 Pb, 214 Bi and 210 Pb) and the Th decay series (228 Ac, 212 Pb, 208 Tl) and their statistical counting uncertainties. Net rates and activity concentrations for each of these nuclides were determined relative to Shap Granite by weighted combination of the individual lines for each nuclide. The internal consistency of nuclide specific estimates for U and Th decay series nuclides was assessed relative to measurement precision, and weighted combinations used to estimate mean activity concentrations (in Bq kg⁻¹) and elemental concentrations (% K and ppm U, Th) for the parent activity. These data were used to determine infinite matrix dose rates for alpha, beta and gamma radiation.

Beta dose rates were also measured directly using the SUERC TSBC system (Sanderson, 1988). Sample count rates were determined with six replicate 600 s counts for each sample, bracketed by background measurements and sensitivity determinations using the SUERC Shap Granite secondary reference material. Infinite-matrix dose rates were calculated by scaling the net count rates of samples and reference material to the working beta dose rate of the Shap Granite (6.25 ± 0.03 mGy a⁻¹). The estimated errors combine counting statistics, observed variance and the uncertainty on the reference value.

"Field", "saturated", and "drained upper limit" (DUL; Ratiff *et al.*, 1983) values of water content (section 4.1) were calculated as fractions of dry sediment mass after subtracting the mass of the tube and gauze. The dose rate estimates were used in combination with the measured water contents, to determine the overall effective dose rates for age estimation. Since the sediments from Pit 1 (Figure 3.4) were not in situ when sampled they could be used for measurement of field water content but not saturated and DUL water contents: the assumed water contents for these samples were based on those for other samples with similar field water contents.

The cosmic dose rate is conventionally calculated rather than measured, without adjustment for sediment water content. The latitude, altitude and (sediment) depth dependencies of cosmic radiation, relevant to luminescence dating, are described by Prescott and Stephan (1982) and Prescott and Hutton (1988). In the present study, the latitude of each sample was approximated to the nearest degree, and altitude was approximated as 0.05 km for all. Surface cosmic dose rate was estimated using Prescott and Stephan (1982), Eqn. 1, with latitude dependent parameters read from Fig. 2. A representative value for the average burial depth of each sample since the luminescence signal was last zeroed, was estimated from depth at the time of sampling, geomorphological context, and approximate luminescence age. Depth was converted to mass-depth assuming sediment bulk density to be 1.6 g/cm³, and a fit to the dose rate vs. depth data of Prescott and Hutton (1988) was used to calculate the cosmic dose rate at that depth. Uncertainties were calculated as: 5% plus the difference between cosmic dose rate at the depth of sampling, and that at the estimated average burial depth. Cosmic dose rate for the samples from Pit 1 were based on the depth of the potsherd with which the samples were associated (see sampling form in Appendix A).

4.2.2. Field luminescence measurements

Field profiling measurements were made using a SUERC portable OSL reader, equipped with blue LEDs emitting around 470 nm and a U340 detection filter pack to detect in the region 270-380 nm, while cutting out stimulating light. Samples were presented as loose bulk sediment in a 1.5" plastic petri dish, and the natural OSL signals were measured during optical stimulation with the blue diodes.

4.2.3. Laboratory luminescence measurements

All laboratory measurements were conducted using a Risø DA-15 automatic reader, equipped with a 90 Sr/ 90 Y β -source for irradiation, blue LEDs emitting around 470 nm and an infrared laser diode emitting around 830 nm for optical stimulation, and a U340 detection filter pack to detect in the region 270-380 nm, while cutting out stimulating light (Bøtter-Jensen *et al.*, 2000).

The discs of quartz grains from the tube samples were subjected to a single aliquot regeneration (SAR) sequence (Murray and Wintle, 2000). According to this procedure, the OSL signal level from an individual disc is calibrated to provide an absorbed dose estimate using an interpolated dose-response curve, constructed by regenerating OSL signals by irradiation in the laboratory. This estimate is termed the equivalent dose (De), since it is the laboratory dose producing an equivalent signal to that observed from the natural sample. Sensitivity changes which may occur as a result of readout, irradiation and preheating (to remove unstable radiation-induced signals) are monitored using small test doses after each regenerative dose. Each measurement is standardised to the test dose response determined immediately after its readout, thus compensating for observed changes in sensitivity during the laboratory measurement sequence.

In a SAR sequence then, each disc is subject to a number of measurement cycles: Natural&Test (cycle 1), Regenerative&Test (cycle 2), Regenerative&Test (cycle 3), etc., where all that is varied is the regenerative dose. For the purposes of interpolation, the regenerative doses are chosen to encompass the likely value of the equivalent (natural) dose. A repeat dose point is included to check the ability of the SAR procedure to correct for laboratory-induced sensitivity changes, a zero dose point is included late in the sequence to check for recuperative signals, and a repeat point with infrared stimulation prior to the OSL measurement is included to check for non-quartz signal ("Recycling", "Zero", "IRRecycling"; Table 4.1). Quartz responds to blue light but generally not to infrared light, whereas other common minerals such as feldspars and zircon respond to both. Additionally, results may vary with the severity of the preheating employed: this is tested for by applying a range of preheats to different groups within the set of discs.

In the present study 16 discs per sample were measured using 4 discs each at 4 different preheats (Table 4.1). Regenerative doses of 0 to 10 Gy were applied to all samples (plus repeats etc.: cycles 1 to 8, Table 4.1).

	Me	easurement Cycle:	1	2	3	4	5	6	7	8
Aliquots	Operation	Details	Natural	Lir	near-s	space	d dos	es	Recycling	IR Recycling
1-16	Regenerative Dose	"X" Gy ⁹⁰ Sr/ ⁹⁰ Y	no	4	0	1	7	10	4	4
1-4	Preheat	200°C for 30s	yes	yes	yes	yes	yes	yes	yes	yes
4-8	Preheat	220°C for 30s	yes	yes	yes	yes	yes	yes	yes	yes
9-12	Preheat	240°C for 30s	yes	yes	yes	yes	yes	yes	yes	yes
13-16	Preheat	260°C for 30s	yes	yes	yes	yes	yes	yes	yes	yes
1-16	Measurement	IRSL 120s at 50°C	no	no	no	no	no	no	no	yes
1-16	Measurement	OSL 60s at 125°C	yes	yes	yes	yes	yes	yes	yes	yes
1-16	Test Dose	"X" Gy ⁹⁰ Sr/ ⁹⁰ Y	2	2	2	2	2	2	2	2
1-16	Test Preheat	160°C for 30s	yes	yes	yes	yes	yes	yes	yes	yes
1-16	Test Measurement	OSL 60s at 125°C	yes	yes	yes	yes	yes	yes	yes	yes

 Table 4.1. Quartz Single Aliquot Regenerative Sequence

The laboratory profiling disks were measured using variants of the procedure described above (Table 4.2). The HFC fraction was measured using cycles 1 and 2 of the SAR protocol (Table 4.1) but with the same preheats for all aliquots, i.e. the natural cycle plus a single regenerative cycle. The PMC fraction was measured using IRSL and TL as well as OSL, but without test dose monitors. IRSL was measured first: this accesses signal from feldspars (and other minerals), but not generally from quartz. OSL was measured second: this accesses optically bleachable signals from quartz and feldspar (etc.). TL was measured last: this also accesses signals that are less optically sensitive. Comparison of the three signals can aid interpretation of residuality (e.g. Burbidge *et al.*, 2007). In the present study regenerative doses of 10 Gy and test doses of 2 Gy were used in profiling measurements (Table 4.2).

HF	C	PN	1C
Operation	Details	Operation	Details
Natural Sample	-	Natural Sample	-
Preheat	220°C for 30s	Preheat	220°C for 30s
Measurement	OSL 60s at 125°C	Measurement	IRSL 60s at 50°C
Test Dose	2 Gy ⁹⁰ Sr/ ⁹⁰ Y	Measurement	OSL 30s at 125°C
Test Preheat	160°C for 30s	Measurement	TL 500°C @ 5°C/s
Test Measurement	OSL 60s at 125°C	Regenerative Dose	10 Gy ⁹⁰ Sr/ ⁹⁰ Y
Regenerative Dose	10 Gy ⁹⁰ Sr/ ⁹⁰ Y	Preheat	220°C for 30s
Preheat	220°C for 30s	Measurement	IRSL 60s at 50°C
Measurement	OSL 60s at 125°C	Measurement	OSL 30s at 125°C
Test Dose	2 Gy ⁹⁰ Sr/ ⁹⁰ Y	Measurement	TL 500°C @ 5°C/s
Test Preheat	160°C for 30s		
Test Measurement	OSL 60s at 125°C		

5. Results

5.1. Field Profiling

Very high signals, indicative of geological residuals, were recorded from the samples from layer 5 and layer 9 in section 1, and layer 8 in section 2 (Figure 5.1). The remainder of the samples gave signals an order of magnitude lower, indicating that these samples contain potentially archaeologically relevant signals. Other features in the data are: 1/ the decrease in signal with depth through the disturbed uppermost archaeological layer (~20-~100 cm), which may indicate minor residual signals in the upper parts of this layer; 2/ the discontinuity at ~100 cm depth, at the boundary between the disturbed upper archaeological layer (lower signal) and the palaeosol below it (higher signal), and 3/ gradual increase in signal with depth below this.

5.2. Laboratory Profiling

Laboratory luminescence profiling results are shown in, Figure 5.2 and Figure 5.3.

1/ The luminescence sensitivity of the samples varies little through the archaeological stratigraphy or between the sections, indicating that all samples have similar mineralogy. However, the sensitivity of the lowermost samples was consistently lower than the others. These samples were taken directly from weathered bedrock.

2/ The values of equivalent dose estimated using OSL measurements are all less than 10 Gy, and tend to gradually increase with depth. Assuming a dose rate of $\sim 2 \text{ mGy/a}$ indicates that all these sediments contain signals that were reset in the second half of the Holocene and therefore have the potential to yield archaeologically relevant age estimates.

3/ The values of equivalent dose estimated using IRSL measurements are often higher and are more scattered, while those estimated using TL are much higher. Those estimated using IRSL and TL measurements tend to fluctuate more markedly up and down the section: higher values are found in both sections between 20 and 60 cm, 100 and 120 cm, and 140 and 180 cm. These signals appear to have been less well reset during redeposition than the OSL signal, but they indicate that less severe residuals may be present in the OSL signal in these sediments.

4/ Patterns in the field profiling measurements are more similar to the IRSL and TL results from the PMC prepared fraction measured in the laboratory, than to OSL on the HFC fraction.

Figure 5.2. Newry Ringfort Section 1 laboratory profiling results. a. Luminescence Sensitivity

Figure 5.3. Newry Ringfort Section 2 laboratory profiling results.

5.3. Dose rates

HGRS results are shown in Table 5.1, both as activity concentrations (i.e. disintegrations per second per kilogram) and as equivalent parent element concentrations (in % and ppm), based in the case of U and Th on combining nuclide specific data assuming decay series equilibrium. K concentrations ranged from 2.3 to 3.9 %, the mean was 2.7 % \pm 0.4. U concentrations ranged from 1.9 to 3.5 ppm, the mean was 2.3 ppm \pm 0.5. Th concentrations ranged from 5.5 to 8.5 ppm, the mean was 6.6 ppm \pm 0.8. For comparison, "typical" values are 1 % K, 1 ppm U, and 3 ppm Th (Adamiec and Aitken, 1998). The concentration ratio Th/U is also listed in Table 5.1, to indicate the relative contribution of Th and U to the samples' dose rates. The "typical" context noted above has a concentration ratio of 3/1 (equivalent to an activity ratio of 1/1). Th/U concentration ratios for the present samples ranged from 1.8 to 3.8, with a mean value of 3.0 ± 0.5 .

Infinite matrix alpha, beta and gamma dose rates from HGRS are listed in Table 5.2, with in-situ gamma dose rates from FGS, infinite matrix beta dose rates from TSBC, and the ratio of beta dose rates from TSBC/HGRS. In-situ gamma dose rate (FGS) to the dated samples ranged from 0.8 to 1.1 mGy/a, with a mean of 0.95 mGy/a \pm 0.1, but that in Pit 1 was 1.74 mGy/a. Gamma dose rate measured on a dry sample in the laboratory (HGRS) ranged from 1.1 to 1.7 mGy/a, the mean was 1.3 mGy/a \pm 0.2. Beta dose rate from HGRS ranged from 2.4 to 3.9 mGy/a, the mean was 2.8 mGy/a \pm 0.4. Beta dose rate from TSBC ranged from 2.7 to 3.5 mGy/a, the mean was 2.9 mGy/a \pm 0.2. Alpha dose rate (HGRS) ranged from 9 to 14 mGy/a, the mean was 11 mGy/a \pm 2. The ratio of beta dose rates from TSBC and HGRS ranged from 0.88 to 1.14, the mean was 1.04 mGy/a \pm 0.07.

Effective dose rates to the HF etched 200 μ m quartz grains used for equivalent dose determination in the present study are listed in Table 5.3, with water content measurements and the assumed values used for calculation of effective dose rate. Etching removes the external alpha contribution to the dose rate (so these are not tabluated), and 14 % of the beta dose rate. Cosmic dose rates are as calculated (section 4.2.1), gamma dose rates are corrected for water content, while beta dose rates are corrected for etching and water content.

Field water content, as a fraction of dry sediment mass, ranged from 0.12 to 0.29, the mean was 0.20 ± 0.05 . Saturated water content ranged from 0.33 to 0.53, the mean was 0.45 ± 0.08 . The drained upper limit (DUL) of water content ranged from 0.16 to 0.50, the mean was 0.39 ± 0.10 . Given the freely draining nature of the sediments and the measured water contents, the average water content during burial was assumed to lie between the measured field and DUL values. Assumed values for average water content during burial were estimated accordingly, and used for age determinations. These ranged from 0.18 to 0.40, the mean was 0.28 ± 0.07 .

The ratio of gamma dose rates from FGS and HGRS for the dated samples, after adjustment for assumed levels of water content, ranged from 0.82 to 1.02 with a mean of 0.94 ± 0.06 . However, FGS results from Pit 1 were higher than the HGRS dose rates: the ratios were 1.75 for SUTL 2163a and 1.28 for SUTL 2163b, indicating that

the base and/or walls of the pit were more radioactive than the fill and cover sediments.

Effective beta dose rate ranged from 1.55 to 2.55 mGy/a, the mean was 1.89 mGy/a \pm 0.26. Effective gamma dose rate ranged from 0.74 to 1.31 mGy/a, the mean was 0.94 mGy/a \pm 0.15. Effective cosmic dose rate ranged from 0.20 to 0.27 mGy/a, the mean was 0.22 mGy/a \pm 0.02. On average, the beta contribution to overall dose rate was 62 %, the gamma contribution was 31 %, and the cosmic contribution was 7 %.

SUTL	Activity	y Conce	entrat	ion			Equivalent Concentration ^{a,b}									
No.	κ (Bq/kg)	U	(Bq/kg)	Th	(Bq/kg)	κ	(%)	U	(ppm)	Th	(ppm)	Th/U			
2157	731 ±	£ 25	23.6	± 2.1	24.1	± 1.7	2.36	± 0.0	8 1.91	± 0.17	5.94	± 0.41	3.11 ± 0.35	;		
2158	709 ±	£ 18	28.0	± 1.3	25.0	± 0.9	2.29	± 0.0	6 2.27	± 0.11	6.16	± 0.21	2.71 ± 0.16	5		
2159	727 ±	£ 25	24.6	± 2.3	25.9	± 1.8	2.35	± 0.0	8 1.99	± 0.19	6.39	± 0.46	3.20 ± 0.38	3		
2160	779 ±	£ 18	29.5	± 1.4	24.7	± 0.8	2.52	± 0.0	6 2.39	± 0.11	6.10	± 0.20	2.56 ± 0.14	ł		
2161	860 ±	£ 26	22.9	± 2.0	22.6	± 1.6	2.78	± 0.0	8 1.86	± 0.16	5.57	± 0.40	3.00 ± 0.34	ł		
2162	770 ±	£ 18	23.1	± 1.2	25.1	± 0.8	2.49	± 0.0	6 1.87	± 0.10	6.19	± 0.20	3.32 ± 0.20)		
2163a	896 ±	£ 26	24.3	± 2.1	22.3	± 1.6	2.90	± 0.0	8 1.97	± 0.17	5.50	± 0.40	2.80 ± 0.32	2		
2163b	1200 ±	£ 23	43.4	± 2.1	26.0	± 0.9	3.88	± 0.0	7 3.51	± 0.17	6.41	± 0.23	1.82 ± 0.11	I		
2165	888 ±	£ 26	25.0	± 2.1	30.2	± 1.7	2.87	± 0.0	8 2.03	± 0.17	7.45	± 0.43	3.68 ± 0.37	'		
2166	816 ±	£ 19	28.3	± 1.4	27.6	± 0.9	2.64	± 0.0	6 2.29	± 0.11	6.81	± 0.22	2.97 ± 0.18	3		
2167	819 ±	£ 26	35.3	± 3.0	27.2	± 2.2	2.65	± 0.0	8 2.86	± 0.25	6.71	± 0.54	2.35 ± 0.28	3		
2168	909 ±	£ 19	24.6	± 1.3	30.4	± 0.9	2.94	± 0.0	6 1.99	± 0.10	7.50	± 0.22	3.76 ± 0.23	3		
2169	807 ±	£ 27	35.8	± 3.0	34.6	± 2.1	2.61	± 0.0	9 2.90	± 0.25	8.52	± 0.52	2.94 ± 0.31	l		
2170	893 ±	£ 20	28.0	± 1.4	29.7	± 0.9	2.89	± 0.0	6 2.27	± 0.11	7.32	± 0.22	3.22 ± 0.19)		
Shap	1370 ±	± 10	148.2	± 7.4	115.6	± 1.1	4.43	± 0.0	3 12.00	± 0.06	28.50	± 0.26	2.38 ± 0.02	2		

Table 5.1.	Activity and	equivalent	concentrations	of K, U a	and Th, deter	mined by HRGS
				,		•/

a. Conversion factors based on OECD (1994): 40K: 309.3 Bq/kg/%K, 238U: 12.35 Bq/kg/ppmU, 232Th: 4.057 Bq/kg/ppmTh.

b. Shap granite reference, working values based on HRGS relative to CANMET and NBL standards by Sanderson (1986).

Table 5.2. Insitu gamma dose rate measured using FGS, and infinite matrix dose rates determined by HRGS and TSBC in the laboratory.

SUTL	FGS, In-Situ ^a	HRGS, Dry ^b			TSBC, Dry ^c	TSBC/HRGS
No.	Gamma (mGy/a)	Alpha (mGy/a)	Beta (mGy/a)	Gamma (mGy/a)	Beta (mGy/a)	Beta Ratio
2157	0.79 ± 0.02	9.70 ± 0.56	2.41 ± 0.07	1.09 ± 0.03	2.76 ± 0.06	1.14 ± 0.04
2158	0.82 ± 0.02	10.86 ± 0.34	2.41 ± 0.05	1.13 ± 0.02	2.75 ± 0.06	1.14 ± 0.04
2159	0.89 ± 0.03	10.26 ± 0.62	2.42 ± 0.07	1.12 ± 0.04	2.68 ± 0.06	1.11 ± 0.04
2160	0.86 ± 0.02	11.14 ± 0.34	2.62 ± 0.05	1.20 ± 0.02	2.89 ± 0.06	1.11 ± 0.03
2161	0.96 ± 0.03	9.28 ± 0.54	2.74 ± 0.07	1.17 ± 0.03	2.89 ± 0.06	1.05 ± 0.04
2162	0.89 ± 0.03	9.77 ± 0.31	2.52 ± 0.05	1.13 ± 0.02	2.73 ± 0.06	1.08 ± 0.03
2163a	1.74 ± 0.08	9.54 ± 0.56	2.85 ± 0.07	1.21 ± 0.03	2.79 ± 0.06	0.98 ± 0.03
2163b	1.74 ± 0.08	14.49 ± 0.50	3.92 ± 0.07	1.67 ± 0.03	3.46 ± 0.07	0.88 ± 0.02
2165	1.02 ± 0.04	11.14 ± 0.56	2.89 ± 0.08	1.31 ± 0.04	3.11 ± 0.07	1.07 ± 0.04
2166	0.99 ± 0.03	11.41 ± 0.36	2.72 ± 0.05	1.25 ± 0.02	2.69 ± 0.07	0.99 ± 0.03
2167	1.00 ± 0.04	12.89 ± 0.79	2.81 ± 0.08	1.31 ± 0.04	2.81 ± 0.06	1.00 ± 0.04
2168	1.04 ± 0.04	11.08 ± 0.34	2.95 ± 0.05	1.32 ± 0.02	3.00 ± 0.07	1.02 ± 0.03
2169	1.07 ± 0.03	14.36 ± 0.78	2.83 ± 0.08	1.40 ± 0.04	2.98 ± 0.07	1.05 ± 0.04
2170	1.07 ± 0.03	11.72 ± 0.35	2.94 ± 0.06	1.33 ± 0.02	2.88 ± 0.06	0.98 ± 0.03

a. Values in italics measured in 3pi geometry: measured values multiplied by 4/3±0.1/3 to give 4pi dose rate

b. Based on Dose Rate conversion factors from Aitken (1983).

c. Relative to Shap granite reference (Sanderson, 1986).

Table 5.3. Water contents and effective dose rates

SUTL	Water	Conter	nt (frn.	of dry mass)	Gamma, Assur	ned WC	Effective Dose Rate (mGy/a)						
No.	Field	Sat.	DUL	Assumed ^a	FGS (mGy/a) HGRS (mGy/a)		Beta ^b	Gamma ^c	Cosmic ^d				
2157	0.13	0.51	0.42	0.28 ± 0.10	0.68 ± 0.06	0.83 ± 0.09	1.72 ± 0.04	0.74 ± 0.06	0.27 ± 0.03				
2158	0.21	0.48	0.44	0.32 ± 0.08	0.74 ± 0.09	0.83 ± 0.07	1.65 ± 0.03	0.79 ± 0.06	0.23 ± 0.04				
2159	0.28	0.53	0.49	0.38 ± 0.08	0.79 ± 0.06	0.78 ± 0.07	1.55 ± 0.01	0.79 ± 0.04	0.22 ± 0.03				
2160	0.21	0.48	0.44	0.33 ± 0.08	0.85 ± 0.08	0.87 ± 0.08	1.75 ± 0.01	0.86 ± 0.05	0.21 ± 0.03				
2161	0.18	0.33	0.30	0.24 ± 0.04	0.90 ± 0.04	0.92 ± 0.05	1.95 ± 0.04	0.91 ± 0.03	0.20 ± 0.03				
2162	0.12	0.36	0.32	0.22 ± 0.07	0.80 ± 0.05	0.90 ± 0.06	1.85 ± 0.01	0.84 ± 0.05	0.22 ± 0.03				
2163a	0.21	-	-	0.32 ± 0.10	1.55 ± 0.15	0.89 ± 0.10	1.81 ± 0.11	1.08 ± 0.27	0.23 ± 0.01				
2163b	0.23	-	-	0.34 ± 0.10	1.54 ± 0.15	1.20 ± 0.13	2.29 ± 0.25	1.35 ± 0.16	0.23 ± 0.01				
2165	0.12	0.46	0.38	0.25 ± 0.09	0.89 ± 0.08	1.01 ± 0.10	2.05 ± 0.02	0.94 ± 0.06	0.26 ± 0.04				
2166	0.21	0.50	0.43	0.32 ± 0.08	0.88 ± 0.07	0.91 ± 0.08	1.74 ± 0.09	0.89 ± 0.05	0.22 ± 0.04				
2167	0.23	0.50	0.45	0.34 ± 0.08	0.89 ± 0.07	0.95 ± 0.08	1.77 ± 0.08	0.91 ± 0.05	0.22 ± 0.03				
2168	0.17	0.35	0.39	0.28 ± 0.08	0.92 ± 0.07	1.00 ± 0.08	1.98 ± 0.08	0.96 ± 0.05	0.21 ± 0.03				
2169	0.29	0.51	0.50	0.40 ± 0.07	0.96 ± 0.07	0.96 ± 0.08	1.74 ± 0.03	0.96 ± 0.05	0.20 ± 0.03				
2170	0.20	0.33	0.16	0.18 ± 0.01	1.10 ± 0.04	1.11 ± 0.02	2.19 ± 0.11	1.11 ± 0.02	0.20 ± 0.03				
	• • •		/ -						a				

a. Assumed water content = (Field + DUL)/2 ± |Assumed - Field|/2^0.5, values in italics predicted from other samples with similar field values b. Calculated using the weighted mean of the effective beta dose rates measured using HRGS and TSBC: effective beta dose rate

= 0.9*infinite beta dose rate/(1+1.25*water content). 0.9 is the average beta attenuation in a 200 micron silicate grain (Mejdahl, 1979).

c. Calculated using the weighted mean of the gamma dose rates corrected for assumed water content measured using HRGS and FGS: Effective gamma dose rate = gamma dose rate/(1+1.14*WCassumed-WCas-measured). WCas-measured = Field for FGS, = 0 for HGRS For the energies found in a typical sedimentary matrix, water absorbs approximately 1.25 times more beta, and 1.14 times more gamma radiation per unit mass than do silicates (Aitken, 1985).

d. Calculated from latitude, altitude, and estimated average depth during burial, using the data of Prescott and Stephan (1982) and Prescott and Hutton (1988).

21

5.4. Single aliquot equivalent dose determinations

Sample averaged values relating to the aliquots and measurements used for equivalent dose determination are listed in Table 5.4: aliquot by aliquot breakdowns can be found in Appendix D.

The average mass of 150-250 μ m grains on each disk was 4.5 mg, equivalent to c. 400 grains. The average sensitivity of the OSL signal from these samples to radiation ranged from 98 to 610 cps/mg/Gy, the mean was 420 cps/mg/Gy ± 146. With repeated SAR measurement cycles, this sensitivity changed to between 1.4 and 1.8 times the starting values, the mean being 1.6 ± 0.1 times. With respect to the internal checks on SAR performance: average recycling ratio for each sample ranged between 0.97 and 1.04, with a mean of 1.02 ± 0.02 , and the effect of IRSL exposure on this ratio was to produce a range of 0.96 to 1.06, with a mean of 1.02 ± 0.03 . Average zero dose response as a fraction of the recycling dose response ranged from -0.002 to 0.021, the mean was 0.011 ± 0.007 . This indicates residual signals due to accumulated charge transfer during the SAR run equivalent to 0.04 ± 0.03 Gy. This is an insignificant fraction of the equivalent doses determined in the present study.

For equivalent dose determination, data from single aliquot regenerative dose measurements were analysed using the Risø Analyst programme, which fitted individual dose response curves and estimated equivalent dose values for each of the 16 disks per sample. A saturating exponential curve was fitted to all the measured points except the "IRRecycling" point (cycle 8, Table 4.1). No consistent patterns of variation in De with preheat were apparent (Appendix D). Results from all 16 disks were used in the estimation of central De values.

Arithmetic mean De values are listed for each sample in Table 5.4, with the "external" uncertainty on the mean value (standard deviation divided by the square root of the number of disks), the standard deviation of the dataset, and "internal uncertainty" on the mean value (errors propagated through the calculation of the mean). The mean De values range from 0.7 to 5.0 Gy, the average is $3.0 \text{ Gy} \pm 1.3$.

However, examination of the distributions of results from individual aliquots (Appendix D) indicated that some of the mean values were affected by scatter in the data. The luminescence sensitivity of the Newry samples was relatively high, so uncertainties on De values for individual aliquots were relatively low: errors propagated from integral counts and interpolation were commonly less than 2% of the De values (Appendix D). Scatter in samples' De distributions could not in general be explained by measured uncertainties (indicating that it was "genuine"), so the "H15 Robust Mean" (RSC, 2001) was used to estimate a central De value for each sample. The H15 Robust Mean estimate is calculated iteratively by down weighting data outwith 1.5 standard deviations, but weighting data equally within this range. This yields a central estimate that is less sensitive to outliers than the arithmetic mean, and is still associated with a standard error estimate (unlike e.g. the Median).

Table 5.4. Equivalent dose determination: samples and results

SUTL	Reader		Ali. Mass	Sensitivity	Sensitivity	Recycling	Post IRSL	Zero Dose	Mean De ⁱ	a,b,c		R	Robust Mean De ^{b,d}					Notes ^e
No.	Risø	Ν	(mg) ^a	(cps/mg/Gy) ^a	Change (frn.) ^a	Ratio ^a	Ratio ^a	Ratio ^a	(Gy) σ/N ^{1/2}	σ	ре	Туре	Ν	(Gy)	se	σ	/σ	
2157	1	16	3.0 ± 0.8	98 ± 99	1.65 ± 0.11	1.04 ± 0.01	1.03 ± 0.01	0.007 ± 0.001	0.73 ± 0.04	0.14	0.00	H15 mear	n 16	0.71	± 0.03	0.13	0.25	>
2158	1	16	4.5 ± 0.2	350 ± 30	1.65 ± 0.13	1.02 ± 0.01	1.01 ± 0.01	0.007 ± 0.001	2.21 ± 0.04	0.17	0.01	H15 mear	n 16	2.20	± 0.04	0.17	0.25	=
2159	1	16	2.2 ± 0.1	331 ± 41	1.42 ± 0.08	1.02 ± 0.01	1.03 ± 0.01	0.003 ± 0.002	2.51 ± 0.06	0.22	0.02	H15 mear	n 16	2.51	± 0.06	0.23	0.25	=
2160	2	16	5.8 ± 0.4	441 ± 30	1.80 ± 0.13	1.02 ± 0.01	0.99 ± 0.01	0.021 ± 0.002	3.09 ± 0.26	1.06	0.01	H15 mear	n 16	2.95	± 0.19	0.75	0.25	=
2161	2	16	6.5 ± 0.2	610 ± 92	1.67 ± 0.07	1.03 ± 0.01	1.00 ± 0.01	0.014 ± 0.002	3.65 ± 0.07	0.28	0.01	H15 mear	n 16	3.68	± 0.04	0.17	0.25	=
2162	2	16	3.7 ± 0.1	350 ± 44	1.61 ± 0.07	1.04 ± 0.01	1.02 ± 0.01	0.017 ± 0.003	3.34 ± 0.12	0.49	0.02	H15 mear	n 16	3.30	± 0.12	0.46	0.25	>
2165	1	16	not m	neasured	1.72 ± 0.13	0.97 ± 0.03	0.96 ± 0.05	-0.002 ± 0.018	1.04 ± 0.17	0.70	0.12	H15 mear	n 16	0.91	± 0.10	0.39	0.25	>
2166	1	16	4.0 ± 0.2	399 ± 38	1.54 ± 0.09	1.03 ± 0.01	1.03 ± 0.01	0.005 ± 0.001	2.42 ± 0.03	0.14	0.01	H15 mear	n 16	2.44	± 0.03	0.11	0.25	=
2167	1	16	5.1 ± 0.2	417 ± 34	1.46 ± 0.08	1.01 ± 0.00	1.01 ± 0.00	0.009 ± 0.001	3.28 ± 0.07	0.27	0.01	H15 mear	n 16	3.27	± 0.07	0.26	0.25	=
2168	2	16	5.2 ± 0.2	466 ± 53	1.66 ± 0.07	1.02 ± 0.01	1.06 ± 0.01	0.019 ± 0.002	4.55 ± 0.10	0.39	0.02	H15 mear	n 16	4.54	± 0.10	0.39	0.25	=
2169	2	16	4.0 ± 0.2	597 ± 42	1.55 ± 0.08	1.01 ± 0.01	1.04 ± 0.01	0.014 ± 0.001	4.75 ± 0.18	0.74	0.02	H15 mear	n 16	4.65	± 0.13	0.51	0.25	>
2170	2	16	4.9 ± 0.3	561 ± 50	1.73 ± 0.12	1.02 ± 0.01	1.06 ± 0.01	0.015 ± 0.002	4.97 ± 0.09	0.34	0.02	H15 mear	n 16	4.96	± 0.09	0.35	0.25	=
a. Valu	es = arithme	etic r	means. Errors	= σ/N ^{1/2} , σ = stan	dard deviation, N =	number of aliquot	s b. Error	rs incorporate additio	nal 2% source ca	libration	uncertai	nty						

c. pe = propagated error. Propagated through the calculation of the mean from measurement uncertainties for each aliquot

d. Robust Mean: H15 mean (and σ) calculated iteratively by reducing the weight of data outwith 1.5 σ (RSC, 2001)

e. =/</>
->: Weighted Central De appears to be representative/an underestimate/an overestimate

5.5. Age estimates

Listed in Table 5.5 are the sums of the effective beta, gamma and cosmic dose rates and the weighted central equivalent dose estimates. Age values were calculated as equivalent dose divided by dose rate, and converted to calendar dates. The precision to which all values are quoted is based on the rounding of associated uncertainties to 1 significant figure.

14 sets of dose rates, and 12 equivalent doses and hence 12 OSL ages were determined. Dose rate ranges from 2.6 to 3.9 mGy/a, the average is 3.0 mGy/a \pm 0.4. De values range from 0.7 to 5.0 Gy, the average is 3.0 Gy \pm 1.3. Age estimates for these samples range from 0.26 to 1.6 ka, with an average of 1.0 ka \pm 0.4. Uncertainties on the age estimates are quoted at 1se. The age uncertainties range from 0.01 to 0.07 ka, the average is 0.04 ka \pm 0.02. These values equate to 2 to 11 % uncertainty.

		Total	Equivalent			Calendar		
Sample Number		Dose Rate	Dose	Age	%	Date ^b	Notes	С
SUERC	Field	(mGy/a)	(Gy)	(ka) ^a	error	AD/BC	De DF	२
SUTL 2157	NEW S1#1	2.73 ± 0.08	0.71 ± 0.03	0.26 ± 0.01	5	1750 AD ± 10	>	
SUTL 2158	NEW S1#2	2.67 ± 0.08	2.20 ± 0.04	0.83 ± 0.03	3	1180 AD ± 30	=	
SUTL 2159	NEW S1#3	2.56 ± 0.06	2.51 ± 0.06	0.98 ± 0.03	3	1030 AD ± 30	= =	
SUTL 2160	NEW S1#4	2.82 ± 0.06	2.95 ± 0.19	1.04 ± 0.07	7	960 AD ± 70	= =	
SUTL 2161	NEW S1#5	3.06 ± 0.06	3.68 ± 0.04	1.20 ± 0.03	2	800 AD ± 30	= =	
SUTL 2162	NEW S1#6	2.91 ± 0.06	3.30 ± 0.12	1.13 ± 0.05	4	870 AD ± 50	>	
SUTL 2163a	NEW Pit1#1	a 3.12 ± 0.29	not measured					
SUTL 2163b	NEW Pit1#1	b 3.87 ± 0.30	not measured				=	
SUTL 2165	NEW S2#1	3.24 ± 0.08	0.91 ± 0.10	0.28 ± 0.03	11	1730 AD ± 30	>	
SUTL 2166	NEW S2#2	2.85 ± 0.11	2.44 ± 0.03	0.85 ± 0.03	4	1150 AD ± 30	= =	
SUTL 2167	NEW S2#3	2.90 ± 0.10	3.27 ± 0.07	1.13 ± 0.04	4	880 AD ± 40	= =	
SUTL 2168	NEW S2#4	3.15 ± 0.10	4.54 ± 0.10	1.44 ± 0.05	4	570 AD ± 50	=	
SUTL 2169	NEW S2#5	2.91 ± 0.07	4.65 ± 0.13	1.60 ± 0.06	4	410 AD ± 60	> =	
SUTL 2170	NEW S2#6	3.50 ± 0.12	4.96 ± 0.09	1.42 ± 0.05	4	590 AD ± 50	=	

Table 5.5. Dose rates, equivalent doses, ages and calendar dates

a. Ages in ka before 2007 AD b. Errors rounded to 1 significant figure, values rounded accordingly c. =/</>

6. Discussion

6.1. Profiling

Profiling measurements are basic assessments of sensitivity and absorbed dose (De), with greater spatial resolution than practical or necessary for full dating measurements (Burbidge *et al.*, 2007).

Lack of variation in luminescence sensitivity between the sections or through the stratigraphy at Newry Ringfort, except for the lowermost samples from weathered bedrock, indicates that all archaeological samples have similar hard mineralogy. However, since the archaeological sediments are expected to have been derived from the local bedrock, lower sensitivity in the samples from the bases of the sections indicates that reworking has enhanced luminescence sensitivity.

Field profiling (OSL signal intensity from raw sediment) indicated three main phases in the accumulation of the Newry Ringfort sequences: geological age material at the base, older archaeological material below 100 cm in each section, followed by a discontinuity and younger material above.

Laboratory profiling (approximate equivalent dose determination using OSL, IRSL and TL on prepared fractions) indicated gradual accumulation through the sequences rather than distinct phases, but with scatter to high values of equivalent dose in the lower and mid sections, and a pulse of older sediment in the colluvial accumulation of the upper sections. However, this variability was most evident in IRSL and TL on the polymineral fraction, and less evident in OSL measurements both on polyminerals and etched (quartz enhanced) material. TL signals are much less sensitive to resetting through daylight exposure than the optical signals, and IRSL signals can require prolonged exposure to reset them, whereas OSL signals are particularly sensitive to the UV component of daylight. OSL equivalent dose estimates in the samples from the modern turf line ranged from 0.06 to 0.56 Gy. For IRSL this was 1.1 to 2.3 Gy and for TL it was 49 to 73 Gy. The progressively higher residual signals in IRSL and TL compared to OSL in the Newry Ringfort samples indicates that in many parts of the sequence the mineral grains were only exposed to light relatively briefly during colluvial transport and redeposition. Further, although the OSL signals appear to have been largely reset prior to redeposition, the IRSL and TL results indicate greater potential for residual signals in layers 2 (upper), 4, 5, 7 and 9 of section 1, and layers 2, 3 (upper), 4 (upper), 5, 7, 8 and 9 of section 2.

6.2. Equivalent dose

The sand sized grains of quartz extracted from the Newry Ringfort samples generally performed well in terms of equivalent dose determination. Internal checks on the performance of the SAR protocol indicated reproducible behaviour through the sequences of laboratory measurements, no significant infrared stimulable signal components, and no significant signal recuperation effects. Scatter in the equivalent doses determined from each set of 16 aliquots was commonly symmetrical and less than 3%, indicating that the OSL signals in the grains from these samples is likely to have been reset around the same time. Some scatter to high values was identified in

the distributions from four samples (SUTL 2157, 2162, 2165, 2169), indicating that not all the quartz grains in these samples had their OSL signals reset at the same time. These samples were from the top and bottom of the sections – sediments for which profiling had indicated the presence of residual luminescence signals. In these cases the equivalent dose relating to the event of interest (redeposition in the ditch) may have been overestimated: the magnitude of any effect on the age estimates is discussed in section 6.4. Higher than average scatter, albeit symmetrical, was also observed from sample SUTL 2160.

6.3. Dose rate

Three methods were used for dose rate determination in the present study: field gamma spectrometry, high resolution gamma spectrometry, and thick source beta counting. These measure dose rate from different sizes/geometries of sample in different conditions. Comparison between the results therefore provides indications of any effects on dose rate arising from sediment inhomogeneity and/or disequilibrium in the U and Th series. HRGS also facilitates limited examination of radioactive equilibrium within each measurement.

The ratio of thorium to uranium in the Newry Ringfort samples was similar to that expected (i.e. around 3), indicating that very severe movement of radionuclides during the burial period of the samples was unlikely. Examination of HGRS results from individual radioisotopes in the ²³⁸U series indicates that while ²²⁶Ra is generally close to equilibrium with the post ²²²Rn isotopes, ²¹⁰Pb and ²³⁴Th are sometimes significantly different from the remainder of the series (Table 6.1). Variation in ²³⁴Th activity concentrations relative to the rest of the decay series is considered indicative of past Uranium movement, in which case Radium is also likely to have been mobile. Variation in ²¹⁰Pb activity concentrations relative to the rest of the decades. However, no consistent pattern was evident in this set of samples, and ²¹⁰Pb and ²³⁴Th are the least securely determined isotopes in the U series (low energy, low intensity gamma emissions). Therefore, no modelling of the effects of this variability on dose rates was conducted, but the "=" signs in the notes on dosimetry in Table 5.5 were omitted for these samples to indicate that the dose rate determinations are less secure in terms of disequilibrium than for the others.

With respect to the effects of sediment inhomogeneity, the sediments associated with the dating samples from Newry Ringfort yielded consistent dose rate estimates from the three types of measurement made in different geometries: gamma dose rates from FGS (in situ, ~ 200 kg field of view) and HRGS (sealed subsample from tube, unsieved, ~ 100 g), and beta dose rates from HRGS and TSBC (unsealed subsample from tube, <1 mm, 20 g). One may therefore be confident that the overall dose rate estimates for the dated samples are spatially representative.

The situation is more complex for the location of the potsherd recovered from Pit 1 however. FGS in the base of the pit yielded a gamma dose rate of 1.55 mGy/a, while HGRS yielded 0.89 mGy/a for the pit fill (SUTL 2163a) and 1.20 mGy/a for the pit cover sediment (Table 5.3). The high value from FGS is thought to reflect greater radioactivity in the (granite) base of the pit, or its walls, than in the fill or cover

sediments. The sherd was recovered from within the pit fill sediment, but close to the boundary between pit fill and pit cover, around 20 cm from the pit's walls and base (see sampling form in Appendix A). The gamma dose rate at the boundary between two sedimentary layers of different radioactivity is the average of the two activities, while 5 cm into one of the layers the split is approximately 60:40 in favour of that layer, and only around 5 % of the gamma dose rate from radionuclides in natural sediments will be deposited beyond 20 cm from the source (Aitken, 1985, Appendix H). The gamma dose rate to the potsherd is therefore likely to be 1.10 mGy/a \pm 0.12. If the sherd were in fact 5 cm into the cover sediment instead of the pit fill, the dose rate calculated in this way would be 1.04 mGy/a, so in this case geometric uncertainties are less than those propagated from the measured values (Table 5.3). Uncertainties in the measured values are largely a function of the uncertainty in water content for these samples. This analysis indicates that provided the beta dose rate from the sherd itself can be accurately determined (by e.g. TSBC), then the external dose rate including cosmic radiation will be 1.33 mGy/a \pm 0.12, and that measured gamma inhomogeneity in its surroundings is unlikely to limit the precision of a luminescence age determination. However, uncertainty in estimating the average burial water content has limited the precision of this estimate to $\pm 10\%$, and unless the average burial water content of the potsherd itself can be better constrained (for internal dose rate estimation), the uncertainty on any luminescence age estimate for the sherd is also likely to be around $\pm 10\%$.

Table 6.1. Activity	concentrations for	the isotopes in	the ²³⁸ U serie	s measured using	g HRGS

SUTL	Activity Concentration (Bq/kg)					Notes ^a	
No.	²³⁴ Th	²²⁶ Ra	²¹⁴ Pb	²¹⁴ Bi	²¹⁰ Pb		
2157	51.2 ± 4.2	34.8 ± 7.7	22.2 ± 2.1	23.4 ± 2.0	5.7 ± 12.0	²³⁴ Th	
2158	58.4 ± 6.3	45.0 ± 5.9	25.3 ± 1.6	28.5 ± 2.0	18.7 ± 8.4	²³⁴ Th ²²⁶ Ra	
2159	22.3 ± 0.4	33.3 ± 8.0	24.0 ± 2.3	24.4 ± 3.0	40.7 ± 13.6		
2160	31.8 ± 8.0	27.1 ± 5.2	29.1 ± 0.2	30.0 ± 1.2	31.9 ± 8.8		
2161	39.5 ± 6.9	13.8 ± 7.3	22.1 ± 4.1	23.6 ± 1.9	33.9 ± 12.5		
2162	16.7 ± 6.0	26.5 ± 5.3	25.1 ± 0.2	21.0 ± 2.6	5.0 ± 8.2	²¹⁰ Pb	
2163a	17.3 ± 4.9	20.3 ± 7.3	23.7 ± 1.1	25.3 ± 2.9	57.9 ± 13.3	²¹⁰ Pb	
2163b	49.5 ± 3.5	43.9 ± 6.0	42.0 ± 0.2	44.1 ± 2.0	47.5 ± 9.8		
2165	35.2 ± 4.0	28.4 ± 7.4	25.5 ± 0.2	22.6 ± 1.8	34.1 ± 12.2	²³⁴ Th	
2166	34.7 ± 7.2	30.1 ± 5.5	28.0 ± 0.3	28.3 ± 1.7	19.8 ± 8.7		
2167	41.3 ± 4.5	40.7 ± 8.6	35.9 ± 0.1	33.0 ± 2.4	38.3 ± 14.1		
2168	18.7 ± 1.6	28.9 ± 5.5	25.1 ± 0.7	24.0 ± 1.1	23.8 ± 8.7	²³⁴ Th	
2169	35.9 ± 7.1	46.3 ± 8.6	35.2 ± 0.6	36.4 ± 3.9	22.4 ± 13.0		
2170	43.3 ± 4.0	27.8 ± 5.4	27.6 ± 0.2	26.5 ± 0.7	45.6 ± 9.5	²³⁴ Th	
Mean	35.4 ± 5.9	31.9 ± 4.2	27.9 ± 2.6	27.9 ± 2.8	30 ± 6.9		
a Note of volume outwith 2 as of the weighted mean across the full series (table 5.1)							

a. Note of values outwith 2 se of the weighted mean across the full series (table 5.1)

6.4. Ages

OSL age estimates from the tube samples (Table 5.5) are plotted vs. depth from the surface of each section in Figure 6.1. Also plotted are "apparent age" estimates calculated from the HFC profiling data and dose rate values interpolated from those determined for the tube samples. The "apparent age" estimates from profiling agree well with the results from the tube samples and add to the interpretation of the deposits' accumulation:

1/ The full dating results appear rather less affected by scatter (to high values) than the profiling results, but elevated scatter in the profiling tends to correspond with slightly higher or more variable results from the dating samples. Note that the IRSL and TL profiling results indicate more strongly the layers that were exposed to less daylight prior to redeposition (section 6.1): OSL measurements on the quartz fraction appear to approximate the date of redeposition most closely at this site.

2/ When viewed on a millennial scale accumulation of the sequences was gradual (c. 1.25 mm/a in Section 1; c. 1.0 mm/a in Section 2), but there is some evidence for pulses or phases of rapid accumulation on a centennial scale: of the initial fill in Section 2 (layers 8 to 5), and of the lower part of the thick colluvial plough soil in both sections (Section 1 Layer 3, Section 2, Layer 2).

3/ The ditch fills at the base of Section 2, layers 5 to 8, accumulated around $580AD\pm50$. The sample from layer 7 yielded an older result than this but this is thought to represent the redeposition of material with residual luminescence signal. Construction of the ditch is therefore likely to predate the end of the 6th Century AD, placing establishment of the site in the rising limb of the wave of ringfort construction (Figure 2.1).

4/ The palaeosol sealing the initial fills in Section 2 dated to $880AD \pm 40$.

5/ The ditch fills at the base of Section 1 post-date those of Section 2 but appear to have accumulated around the time the upper palaeosol in that section formed. They indicate accumulation from the early 9th Century to the mid 10th Century (800AD±30 – 960AD±70). The second sample from layer 6 yielded a late 9th Century date, but this is thought to represent the redeposition of material with residual luminescence signal.

6/ The upper palaeosol in Section 1 yielded a date of 1030AD±30, constraining the upper phase of accumulation related to site occupation in this section to the mid 10^{th} to mid 11^{th} Centuries AD.

7/ OSL determinations from the colluvial plough soil in the upper part of both sections indicate its accumulation between the second half of the 12th Century and the mid 18th Century. Although profiling indicates a phase of rapid accumulation at the base of this layer (through the redeposition of older material), the dating results from the two sections are identical within errors, are younger than those from the layers below them, and follow the same trend in age vs. depth as those below them. Combined with the profiling results, and assuming that the colluvial accumulate is the

result of tillage, they indicate that the Newry Ringfort site was set to arable cultivation by 1165AD±22. The Norman invasion of Ireland occurred in 1169, so if the site changed usage as a consequence of the imposition of Norman rule it is likely to have happened within a couple of decades. However, the OSL age estimates for this horizon do not preclude transition of the site to agricultural usage shortly before the invasion.

8/ The profiling results and the full dating results from the upper part of the colluvial plough soil indicate that accumulation continued through the following centuries. This indicates that the site remained under cultivation, at least sporadically. Scatter in the equivalent dose distributions from both of the younger samples from the colluvium indicated that these results may overestimate the time since the upper part of the layer accumulated or was last reworked by ploughing. It is considered likely that the scatter in these results has been produced by continued mixing of the soil by ploughing, bioturbation, or simply colluvial heave, into the 20th Century: the profiling samples from the modern turf line yielded apparent ages between 30 and 280 years, but trends in the full dating results from this layer are consistent with zero age at zero depth. As such the modern topsoil may simply represent the most recent component of this colluvial accumulate.
Figure 6.1. Age vs depth for the tube samples from Sections 1 (a) and 2 (b), shown as empty circles with error bars. Also shown as smaller solid circles are "apparent ages" calculated from HFC profiling data by interpolating the dose rates estimated for the tube samples. Depth coordinates have been adjusted slightly from those recorded in order to match the sequences of dating and profiling samples, and those for samples across the section face from the main line of sampling have been adjusted to their stratigraphic level (see Figure 3.2 and Figure 3.3). Horizontal lines indicate the boundaries between substrate/layered ditch fill and layered ditch fill/unstructured colluvium.

7. Conclusions

The present study supports a new investigation into the construction, occupation and utilisation history of a Mediaeval ring fort in southwest Northern Ireland. The results describe the history of sedimentary accumulation in the ditch encircling the fort, they provide a terminus ante quem for the establishment of the ringfort, date its early Mediaeval occupation, constrain its abandonment, and indicate the nature of site usage afterwards. This information has been integrated with relevant external evidence to aid the interpretation of the sediment luminescence chronostratigraphy.

Dosimetric constraints on the potential for luminescence dating of a Souterrain-Ware sherd recovered from a pit within the site complex have also been assessed, and the external dose rate to the sherd has been estimated. The external dose rate to the sherd was estimated to be $1.33 \text{ mGy/a} \pm 0.12$. Inhomogeneity of the gamma radiation field around this sherd was found to be less important for luminescence age determination than constraining the average water content of the sediments and/or the sherd during its burial. Depending on the range of water contents supported by the sherd, this would limit the precision of an age estimate to around $\pm 10\%$. This would be sufficient to broadly assess the place of the present sherd in the site chronology. These results imply that providing the *range* of sediment radioactivity at a site can be assessed, and the average burial water contents of sherds excavated from it can be well constrained, then it is likely that sherds from around a site could be dated with sufficient precision to establish a broad chronology for Souterrain-Ware. However, for high precision determinations, intact, sealed samples of sediment and sherd combined with in situ dosimetry would be required.

The earliest sediments in the ditch of the ringfort date to $580AD\pm50$. Construction of the ditch is therefore likely to predate the end of the 6th Century AD. These and other OSL age estimates from series of ditch fill layers indicate continued occupation until the mid 11th Century, but might be interpreted as phases of occupation in the 7th, 9th and 11th Centuries. These occupation related deposits were sealed by a colluvial soil, thought to have been produced by ploughing of the site from the early 19th century. The OSL results from the base of this soil (average = 1165AD±22) indicate that the initiation of ploughing actually occurred at or around the time of the Norman invasion of Ireland (1169AD), i.e. around a century after the last occupation related deposits accumulated (1030AD±30), rather than in the post Mediaeval period. The ringfort itself must therefore have been abandoned at the time of the invasion or in the century before it. Samples from throughout the colluvial soil also indicated that it continued to accumulate until at least the 18th Century, and probably into the 20th Century. This implies cultivation, at least sporadically, through the last 800 years.

References

- Adamiec, G., Aitken, M.J. 1998. Dose-rate conversion factors: update. Ancient TL 16(2): 37-49.
- Aitken, M.J. 1983. Dose rate data in SI units. PACT 9: 69-76.
- Aitken, M.J. 1985. Thermoluminescence dating. London, Academic Press.
- Bøtter-Jensen, L., Bulur, E., Duller, G.A.T., Murray, A.S. 2000. Advances in luminescence instrument systems. Radiation Measurements 32(5-6): 523-528.
- Burbidge, C.I., Duller, G.A.T., Roberts, H.M. 2006. De determination for young samples using the standardised OSL response of coarse grain quartz. Radiation Measurements 41(3): 278-288.
- Burbidge, C.I., Fülöp, R., Sanderson, D.C.W. 2007. Data structure report: Luminescence sampling and measurements at the Headland Archaeology Ltd. excavation of Newry Ring Fort, 26-27th June 2007. Glasgow, SUERC, University of Glasgow: 21.
- Burbidge, C.I., Sanderson, D.C.W., Housley, R.A., Allsworth Jones, P. 2007. Survey of Palaeolithic sites by luminescence profiling, a case study from Eastern Europe. Quaternary Geochronology 2: 296-302.
- Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M. 1999. Optical dating of single and multiple grains of quartz from jinmium rock shelter, northern Australia, part 1, Experimental design and statistical models. Archaeometry 41: 339-364.
- Heimsath, A.M., Chappell, J., Spooner, N.A., Questiaux, D.G. 2002. Creeping soil. Geology 30(2): 111-114.
- Lang, A., Wagner, G.A. 1996. Infrared stimulated luminescence of archaeosediments. Archaeometry 38(1): 129-141.
- Legg, R.J., Taylor, D. 2006. Modelling environmental influences on the locations of Irish early medieval ringforts. Geoarchaeology 21(3): 201-220.
- Mejdahl, V. 1979. Thermoluminescence dating: Beta-dose attenuation in quartz grains. Archaeometry 21(1): 61-72.
- Murray, A.S., Wintle, A.G. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57-73.
- Olley, J., Caitcheon, G., Murray, A. 1998. The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz: Implications for dating young sediments. Quaternary Science Reviews 17(11): 1033-1040.
- Olley, J.M., Caitcheon, G.G., Roberts, R.G. 1999. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence. Radiation Measurements 30(2): 207-217.
- Prescott, J.R., Hutton, J.T. 1988. Cosmic-Ray and Gamma-Ray Dosimetry For Tl and Electron-Spin- Resonance. Nuclear Tracks and Radiation Measurements 14(1-2): 223-227.
- Prescott, J.R., Robertson, G.B. 1997. Sediment dating by luminescence: A review. Radiation Measurements 27(5-6): 893-922.
- Prescott, J.R., Stephan, L.G. 1982. The contribution of cosmic radiation to the environmental dose for thermoluminescent dating. Latitude, altitude and depth dependencies. PACT 6: 17-25.
- Rathbone, S. 2007. Seeing the light at Garretstown, Co. Meath. Seanda, The NRA Archaeology Magazine 2: 55-56.

- Ratliff, L.F., Ritchie, J.T., Cassel, D.K. 1983. Field-Measured Limits of Soil-Water Availability as Related to Laboratory-Measured Properties. Soil Science Society of America Journal 47(4): 770-775.
- Rees-Jones, J., Tite, M.S. 1997. Optical dating results for British archaeological sediments. Archaeometry 39: 177-187.
- Rhodes, E.J., Bronk Ramsey, C., Outram, Z., Batt, C.M., Willis, L., Dockrill, S.J., Bond, J. 2003. Bayesian methods applied to the interpretation of multiple OSL dates: high precision sediment ages from Old Scatness Broch excavations, Shetland Isles. Quaternary Science Reviews 22: 1231-1244.
- RoadsNI www.<u>http://roadimprovements.roadsni.gov.uk/beech_hill_to_cloghogue.pdf</u>. Roads Service, Dept. For Regional Development, Northern Ireland. RoadsNI Home Page > Road Improvements - Introduction > Schemes > A1 Beech Hill to Cloghogue, downloaded Feb08.
- RSC 2001. Robust statistics: a method of coping with outliers. amc technical brief No. 6. Analytical Methods Committee, Royal Society of Chemistry.
- Sanderson, D.C.W. 1986. Luminescence Laboratory Internal Report, SURRC.
- Sanderson, D.C.W. 1988. Thick Source Beta-Counting (TSBC) a Rapid Method for Measuring Beta-Dose-Rates. Nuclear Tracks and Radiation Measurements 14(1-2): 203-207.
- Spencer, J.Q., Sanderson, D.C.W., Deckers, K., Sommerville, A.A. 2003. Assessing mixed dose distributions in young sediments identified using small aliquots and a simple two-step SAR Procedure: the F-statistic as a diagnostic tool. Radiation Measurements 37: 425-431.

Stout, M. 1997. The Irish Ringfort. Dublin, Four Courts Press.

Appendix A: Sample Forms

Site C	Code: 1	NEW		Date		Context No)	Sample	No
Site N	lame:			260607		Section 1		Field: S	1 P1-16
Newr	y Ring	g Fort				Profiling		Lab: SU	J TL2156
Descr	ription	of sa	mpling	g location :		Sketch of s	urroundi	ng area	
Profil	e down	n secti	on thre	ough ring dite	ch				
No.	DfS	LfP	Laye	r Descriptio	on				Site
			2	1					Context
1	5	4	1	Modern top	soil. Red	dish grey-browr	n, sandy, fev	w stones	20001
2	11	4	1						20001
3	19	4	2	Light Red-E	Brown, m	any stones/clast	s of all size	s to	20629
4	39	5	2	20cm. Uncl	ear collu	vial stone lines c	coming from	n top of	20629
5	56	4	2	up-slope bai	nk (bedro	ock). Colluvial s	oil, early C	19?	20629
6	/9	5 10	2	_					20629
/	93	5	2	Red-brown	soil lens	conforms to slo	ne V silty	fines	20029
0	"	5	5	clasts < 5 cr	n. Palaeo e reuse?	sol - associated	with Late N	Aediaeval	20028
9	105	4	4	Red brown silty (cohesi associated v	Red brown soil similar to layer 3 but more loamy, less silty (cohesive). Conforms to slope. Colluvial accumulate associated with Late Mediaerval phase of site reuse?				
10	112	-2	5	Rubble laye	r with lt	red-brown soil.	Similar to la	ayer 2	20626
11	124	0	6	Dark red-br Silty, some crystals from occupation?	own soil clay but s n granite	in lee (downslog still plenty of sn . Stabilisation fo	pe) of large nall clasts an ollowing ear	stone. nd tly	20626
12	134	-2	7	Red-brown	soil, text	ure as layer 2, b	ut partially	conforms	20625
13	145	-1	7	to slope. Fil occupation?	l associat	ted with 1 st phas	e of Media	eval	20625
14	154	0	8	Red-brown following co	soil, fewo onstructio	er clasts than lay	ver 7. Initial	fill	20625
15	164	6	9	Weathered I	Bed Rock	c – Granite			N/A
16	105	37	3	Ash/Org Le	ns. Dark	grey-brown, silt	ty		20629
7.1.1.	1 (Di	$\mathbf{iS} = \mathbf{d}$	epth fi	rom surface,	, LfP =	left from plu	mb line)		
						Photo No:			
Gamı	ma		Re	ading		Assoc. Sam	ple	Ref No	
Dosin	netry								
Detai	ls:		•			•			
N/A									
Descr	ription	of Sa	mple:						
Zip lo	ock bag	$g \sim 10g$	g + Pet	ri dish for po	ortable (OSL ~10g. Se	ediment ex	cavated	from behind
expos	ed fac	e of se	ection u	using a stainl	ess stee	l tube, and de	posited in	n a pre-la	belled zip
lock b	oag wh	ile pro	otected	from light in	nside a l	arger black b	ag.		
Natu	re of D	ating	Probl	em:					
Identi bound	fy patt laries,	erns in preser	n lumin nce of g	nescence beh geological-ag	aviour 1 ge mater	through the strial etc.	ratigraph	y: discon	tinuities,
Aid se	electio	n of lu	imines	cence sampli	ing loca	tions.			
Com	oleted	By		Checke	d By		Date		
CIB &	k RF			M. Blac	k		270607		

Site Code: NEW	D	ate	Context:		Sample No				
Site Name:	27	70607	Section 1, la	ayer 2	Field: S1#1				
Newry Ring Fort			Site No. 200	529	Lab: SUTL2157				
Description of samp	oling locati	tion :	Sketch of surrounding area						
Top of colluvial/mix	ed layer.		See fig.1						
Top of archaeologica	al stratigrap	phy							
Light Red-Brown, m	s/clasts of all								
sizes to 20cm. Uncle	al stone lines								
coming from top of u	up-slope ba	ank							
(bedrock).	1001)	1							
Sealed by layer 1 (20	1001): mod	tern topsoil							
(turi line & rootzone). Redaisn	n grey-							
brown, sandy, lew st	Ones	um goil long							
conforms to slope V). Neu-DION	s clasts < 5							
contornis to stope. v	. Sincy mics	S, Clasis < J							
Mediaerval phase of	site reuse?)							
Wiedlach var pliase of	site reuse:								
Depth from surface ((cm): 24								
Left of plumb line (c	m): 12								
Top of layer (cm): 1	0 0								
Bottom of layer (cm)): 70								
Clasts: 11 cm from n	earest, 10	cm diameter							
			Photo No:						
Gamma	Reading		Assoc. Sam	nle	Ref No				
Dosimetry	Spec1								
Details:	Speer								
Hole depth 29 cm int	to 60 cm th	nick baulk top	of hole 20 c	n from g	cound surface				
4pi		nek ouunk, top	Hole depth 29 cm into 60 cm thick baulk, top of hole 20 cm from ground surface.						
		C	ound surface.						
>450keV: 22374cts/	600s			C	ound Surface.				
>450keV: 22374cts/	600s			C	ound surface.				
>450keV: 22374cts/	600s			C	ound surface.				
>450keV: 22374cts/ Description of Sam	600s ple:								
>450keV: 22374cts/ Description of Sam Stainless Steel Tube	600s ple: (~200g sec	diment) + Lab	' Gamma Pot		ediment)				
>450keV: 22374cts/ Description of Sam Stainless Steel Tube	600s ple: (~200g sec	diment) + Lab	' Gamma Pot	c (~200g s	ediment)				
>450keV: 22374cts/ Description of Sam Stainless Steel Tube	600s ple: (~200g sec	diment) + Lab	' Gamma Pot	c (~200g s	ediment)				
>450keV: 22374cts/ Description of Sam Stainless Steel Tube Nature of Dating Pr	600s ple: (~200g sec roblem:	diment) + Lab	' Gamma Pot	a (~200g s	sediment)				
>450keV: 22374cts/ Description of Sam Stainless Steel Tube Nature of Dating Pr Constrain end of C19	600s ple: (~200g sec roblem: 9? colluvia	diment) + Lab	' Gamma Pot	ensive ag	ricultural activity				
 >450keV: 22374cts/ Description of Sam Stainless Steel Tube Nature of Dating Pr Constrain end of C19 Should post-date S1# 	600s ple: (~200g sec roblem: 9? colluvia #2 and equa	diment) + Lab Il phase, assoc al S1#1	' Gamma Pot	ensive ag	ricultural activity				
>450keV: 22374cts/ Description of Sam Stainless Steel Tube Nature of Dating Pr Constrain end of C19 Should post-date S1#	600s ple: (~200g sec roblem: 9? colluvia #2 and equa	diment) + Lab I phase, assoc al S1#1	' Gamma Pot	ensive ag	ricultural activity				
 >450keV: 22374cts/ Description of Sam Stainless Steel Tube Nature of Dating Pr Constrain end of C19 Should post-date S14 	600s ple: (~200g sec roblem: 9? colluvia #2 and equa	diment) + Lab Il phase, assoc al S1#1	' Gamma Pot	ensive ag	ricultural activity				
>450keV: 22374cts/ Description of Sam Stainless Steel Tube Nature of Dating Pr Constrain end of C19 Should post-date S17 Completed By CIB & RE	600s ple: (~200g sec roblem: 9? colluvia #2 and equa C	diment) + Lab Il phase, assoc al S1#1 Checked By	' Gamma Pot	ensive ag	ricultural activity				

		Date	Context:	_	Sample No	
Site Name:		270607	Section 1, la	ayer 2	Field: S1#2	
Newry Ring Fort			Site No. 20	629	Lab: SUTL2158	
Description of samp	oling loc	ation :	Sketch of surrounding area			
Base of colluvial/mix	xed layer	r.	See fig.1			
Light Red-Brown, m	any ston	nes/clasts of all				
sizes to 20cm. Unclear colluvial stone lines						
coming from top of u	ip-slope	bank				
(bedrock).	2001)	• . ••				
Sealed by layer 1 (20))001): m	odern topsoll				
(turf line & rootzone). Keaa	ish grey-				
Drown, sanuy, new su	Ones					
Seals layer 5 (20026)): Keu-u / gilty fi	fOWII SOII ICHS,				
com Palaeosol - asso	. Siny in ciated w	ith I ate				
Mediaerval phase of	site reus					
Wedner var plase of	5110 1042					
Depth from surface (cm): 84					
Left of plumb line (c	m): ?					
Top of layer (cm): 7.	3					
Bottom of layer (cm)): 12					
Clasts: 12 cm from n	learest, 7	' cm diameter				
			Dhoto No.			
Gamma	Readii	ng	Assoc. Sam	nle	Ref No	
Gamma Dosimetry	Readin Spec2	ng	Assoc. Sam	ple	Ref No	
Gamma Dosimetry Details:	Readin Spec2	ng	Assoc. Sam	ple	Ref No	
Gamma Dosimetry Details: Hole depth 30 cm int	Readin Spec2	ng	Assoc. Sam	ple	Ref No	
Gamma Dosimetry Details: Hole depth 30 cm int 4pi. Granite rock clo	Readin Spec2 to 60 cm se to sid	ng thick baulk. e of hole	Assoc. Sam	ple	Ref No	
Gamma Dosimetry Details: Hole depth 30 cm int 4pi. Granite rock clo >450keV: 23645cts/0	Readin Spec2 to 60 cm se to sid 500s	ng thick baulk. e of hole	Assoc. Sam	ple	Ref No	
Gamma Dosimetry Details: Hole depth 30 cm int 4pi. Granite rock clo >450keV: 23645cts/0	Readin Spec2 to 60 cm se to sid 500s	ng thick baulk. e of hole	Assoc. Sam	ple	Ref No	
Gamma Dosimetry Details: Hole depth 30 cm int 4pi. Granite rock clo >450keV: 23645cts/0	Readin Spec2 to 60 cm se to sid 600s	ng thick baulk. e of hole	Assoc. Sam	ple	Ref No	
Gamma Dosimetry Details: Hole depth 30 cm int 4pi. Granite rock clo >450keV: 23645cts/0 Description of Sam	Readin Spec2 to 60 cm se to sid 600s ple:	ng thick baulk. e of hole	Assoc. Sam	ple	Ref No	
Gamma Dosimetry Details: Hole depth 30 cm int 4pi. Granite rock clo >450keV: 23645cts/d Description of Sam Stainless Steel Tube	Readin Spec2 to 60 cm se to sid 600s ple: (~200g s	ng thick baulk. e of hole sediment) + Lab	Assoc. Sam	ple	Ref No	
GammaDosimetryDetails:Hole depth 30 cm interaction4pi. Granite rock clo>450keV: 23645cts/delementDescription of SameStainless Steel Tube	Readin Spec2 to 60 cm se to sid 600s ple: (~200g s	ng thick baulk. e of hole sediment) + Lab	Assoc. Sam	ple	Ref No	
Gamma Dosimetry Details: Hole depth 30 cm int 4pi. Granite rock clo >450keV: 23645cts/0 Description of Sam Stainless Steel Tube	Readin Spec2 to 60 cm se to sid 600s ple: (~200g s	ng 1 thick baulk. e of hole sediment) + Lab	Assoc. Sam	ple	Ref No	
Gamma Dosimetry Details: Hole depth 30 cm int 4pi. Granite rock clo >450keV: 23645cts/d Description of Sam Stainless Steel Tube	Readin Spec2 to 60 cm se to sid 600s ple: (~200g s	ng thick baulk. e of hole sediment) + Lab	Assoc. Sam	ple t (~200g s	Ref No Sediment)	
Gamma Dosimetry Details: Hole depth 30 cm int 4pi. Granite rock clo >450keV: 23645cts/d Description of Sam Stainless Steel Tube Nature of Dating Pr Constrain beginning	Readin Spec2 to 60 cm se to sid 600s ple: (~200g state) roblem: of C19?	ng thick baulk. e of hole sediment) + Lab colluvial phase	Assoc. Sam o' Gamma Pot	ple t (~200g s	Ref No Sediment)	
Gamma Dosimetry Details: Hole depth 30 cm int 4pi. Granite rock clo >450keV: 23645cts/d Description of Sam Stainless Steel Tube Nature of Dating Pr Constrain beginning activity Should pre_date \$1#	Readin Spec2 to 60 cm se to sid 600s ple: (~200g s roblem: of C19?	ng thick baulk. e of hole sediment) + Lab colluvial phase	Assoc. Sam Assoc. Sam o' Gamma Pot , associated w	ple	Ref No Sediment)	
Gamma Dosimetry Details: Hole depth 30 cm int 4pi. Granite rock clo >450keV: 23645cts/d Description of Sam Stainless Steel Tube Nature of Dating Pr Constrain beginning activity Should pre-date S1#	Readin Spec2 to 60 cm se to sid 600s ple: (~200g stress of C19? 1, post-d	ng thick baulk. e of hole sediment) + Lab colluvial phase late S1#3 and eq	o' Gamma Por , associated v jual S2#2	ple t (~200g s	Ref No sediment)	
Gamma Dosimetry Details: Hole depth 30 cm interaction of semication of semications of semicati	Readin Spec2 to 60 cm se to sid 600s ple: (~200g stress roblem: of C19? 1, post-d	ng a thick baulk. e of hole sediment) + Lab colluvial phase late S1#3 and eq	o' Gamma Por , associated v jual S2#2	ple	Ref No Sediment)	
Gamma Dosimetry Details: Hole depth 30 cm int 4pi. Granite rock clo >450keV: 23645cts/d Description of Sam Stainless Steel Tube Nature of Dating Pr Constrain beginning activity Should pre-date S1# Completed By	Readin Spec2 to 60 cm se to sid 600s ple: (~200g stress of C19? 1, post-d	ng thick baulk. e of hole sediment) + Lab colluvial phase late S1#3 and eq Checked By	o' Gamma Por , associated v jual S2#2	ple t (~200g s vith intens	Ref No	

SITE CODE: NEW	Date	Context:		Sample No
Site Name:	270607	Section 1, la	yer 4	Field: S1#3
Newry Ring Fort		Site No. 206	28+7	Lab: SUTL2159
Description of sampli	ing location :	Sketch of su	rroundi	ng area
Red brown soil similar	r to layer 3 but more	See fig.1		
loamy, less silty (cohe	sive). Conforms to			
slope.	slope.			
Colluvial accumulate	underlying			
palaeolandsurface?				
Sealed by layer 3 (206	28): Red-brown soil			
lens, conforms to slope	e. V. silty fines,			
clasts < 5 cm. Palaeoso	ol - associated with			
Late Mediaerval phase	e of site reuse?			
Seals layer 5 (20626):	Rubble layer with lt			
red-brown soil. Simila	r to layer 2			
Depth from surface (cr	m) [.] 103			
Left of plumb line (cm	n): 11			
Top of layer (cm): 8	,			
Bottom of layer (cm):	20			
Clasts: 12 cm from nea	arest, 20 cm diameter			
		Dhata Nat		
Camma	Reading	Assoc Sami	ale	Ref No
Dosimetry	Snec3	rissoe. Sum	510	
Details:	Spees			
Hole denth 28 am into				
	60 cm thick baulk			
4pi. Granite rock in sic	60 cm thick baulk. de of hole.			
4pi. Granite rock in sic >450keV: 25307cts/60	60 cm thick baulk. de of hole. 00s			
4pi. Granite rock in sic >450keV: 25307cts/60	60 cm thick baulk. de of hole. 00s			
4pi. Granite rock in sic >450keV: 25307cts/60	60 cm thick baulk. de of hole. 00s			
4pi. Granite rock in sic >450keV: 25307cts/60	60 cm thick baulk. de of hole. 00s e:		(
4pi. Granite rock in sic >450keV: 25307cts/60 Description of Sampl Stainless Steel Tube (~	60 cm thick baulk. de of hole. 00s e: ~200g sediment) + Lab	o' Gamma Pot	(~200g s	ediment)
4pi. Granite rock in sic >450keV: 25307cts/60 Description of Sampl Stainless Steel Tube (~	60 cm thick baulk. de of hole. 00s e: ~200g sediment) + Lab	o' Gamma Pot	(~200g s	ediment)
4pi. Granite rock in sid >450keV: 25307cts/60 Description of Sampl Stainless Steel Tube (~ Nature of Dating Pro	60 cm thick baulk. de of hole. 00s e: -200g sediment) + Lab blem:	o' Gamma Pot	(~200g s	ediment)
Api. Granite rock in sid 4pi. Granite rock in sid >450keV: 25307cts/60 Description of Sampl Stainless Steel Tube (~ Nature of Dating Pro Colluvial accumulate a	60 cm thick baulk. de of hole. 00s e: ~200g sediment) + Lab blem: associated with Late M	o' Gamma Pot Iediaeval phas	(~200g s	reuse: revetment
Api. Granite rock in sid 4pi. Granite rock in sid >450keV: 25307cts/60 Description of Sampl Stainless Steel Tube (~ Nature of Dating Pro Colluvial accumulate a used to widen natural of	60 cm thick baulk. de of hole. 00s e: -200g sediment) + Lab blem: associated with Late M causeway across ditch	o' Gamma Pot Iediaeval phas was built on t	(~200g s e of site op of this	reuse: revetment s layer (c. 10 m
Api. Granite rock in sid 4pi. Granite rock in sid >450keV: 25307cts/60 Description of Sampl Stainless Steel Tube (~ Nature of Dating Pro Colluvial accumulate a used to widen natural o away): Constrain Late	60 cm thick baulk. de of hole. 00s e: ~200g sediment) + Lab blem: associated with Late M causeway across ditch Mediaeval phase of si	o' Gamma Pot lediaeval phas was built on t te reuse	(~200g s e of site op of this	reuse: revetment s layer (c. 10 m
 Api. Granite rock in side >450keV: 25307cts/60 Description of Sample Stainless Steel Tube (~ Nature of Dating Protocolluvial accumulate a used to widen natural of away): Constrain Late Should pre-date S1#2, 	60 cm thick baulk. de of hole. 00s e: ~200g sediment) + Lab blem: associated with Late M causeway across ditch Mediaeval phase of si post-date S1#4 and S1	o' Gamma Pot lediaeval phas was built on t te reuse l#6, and equal	(~200g s e of site op of this S2#4	reuse: revetment s layer (c. 10 m
Api. Granite rock in sid 4pi. Granite rock in sid >450keV: 25307cts/60 Description of Sampl Stainless Steel Tube (~ Nature of Dating Pro Colluvial accumulate a used to widen natural o away): Constrain Late Should pre-date S1#2,	60 cm thick baulk. de of hole. 00s e: -200g sediment) + Lab blem: associated with Late M causeway across ditch Mediaeval phase of si post-date S1#4 and S1 Checked By	o' Gamma Pot Iediaeval phas was built on t te reuse I#6, and equal	(~200g s e of site t op of this S2#4 Date	reuse: revetment s layer (c. 10 m

Site Name: 270607 Section 1, layer 6 Site No. 20626 Field: S1#4 Lab: SUTL2160 Description of sampling location : Sketch of surrounding area Set fig. 1 Jark red-brown soil in lee (downslope) of large stone. Silty, some clay but still plenty of small clasts and crystals from granite. See fig. 1 Sealed by layer 5 (20626): Rubble layer with lt red-brown soil. Similar to layer 2 See fig. 1 Scals layer 7 (20625): Red-brown soil, texture as layer 2, but partially conforms to slope. Fill associated with 1 st phase of Mediaeval occupation? See fig. 1 Depth from surface (cm): 123 Left of plumb line (cm): 5 Top of layer (cm): 3 Top of layer (cm): 3 Bottom of layer (cm): 5 Clasts: 6 cm from nearest, 23 cm diameter Photo No: Details: Mole depth 20 cm into 60 cm thick baulk. See fig. 1 Jopi. Granite rock in all sides of hole & limited depth of hole. >450keV: 21575cts/600s: 4pi = 22128cts/600s Description of Sample: Stainless Steel Tube (~200g sediment) + Lab' Gamma Pot (~200g sediment) + Clast (~200g granite) Nature of Dating Problem: Paleacosol representing ground stabilisation following early Mediaeval occupation phase: i.e. following excavation of ditch and initial colluvial infill phase. Completed By Checked By Date Completed By Checked By Date Cli & & KF M Bla	Site Code: NEW	Date	Context:		Sample No
Newry Ring Fort Site No. 20626 Lab: SUTL2160 Description of sampling location : Sketch of surrounding area Dark red-brown soil in lee (downslope) of large stone. Silty, some clay but still plenty of small clasts and crystals from granite. See fig.1 Sealed by layer 5 (20626): Rubble layer with lt red-brown soil. Similar to layer 2 See fig.1 Seals layer 7 (20625): Red-brown soil, texture as layer 2, but partially conforms to slope. Fill associated with 1 st phase of Mediaeval occupation? See fig.1 Depth from surface (cm): 123 Left of plumb line (cm): 5 Top of layer (cm): 3 Bottom of layer (cm): 5 Clasts: 6 cm from nearest, 23 cm diameter Photo No: Gamma Reading Assoc. Sample Ref No Dosimetry Spec4 Hole depth 20 cm into 60 cm thick baulk. 3.9pi. Granite rock in all sides of hole & limited depth of hole. >450keV: 21575ets/600s: 4pi = 22128ets/600s Description of Sample: Stainless Steel Tube (~200g sediment) + Lab' Gamma Pot (~200g sediment) + Clast (~200g granite) Nature of Dating Problem: Pataeosol representing ground stabilisation following early Mediaeval occupation phase: i.e. following excavation of ditch and initial colluvial infill phase. Constrain initial period of Mediaval site occupation. Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5 Completed By Checked By Date	Site Name:	270607	Section 1, la	nyer 6	Field: S1#4
Sketch of surrounding area Dark red-brown soil in lec (downslope) of large stone. Silty, some clay but still plenty of small clasts and crystals from granite. Sce fig.1 Sealed by layer 5 (20626): Rubble layer with lt red-brown soil. Similar to layer 2 Seales layer 7 (20625): Red-brown soil, texture as layer 2, but partially conforms to slope. Fill associated with 1 st phase of Mediaeval occupation? Sce fig.1 Depth from surface (cm): 123 Left of plumb line (cm): 5 Top of layer (cm): 3 Bottom of layer (cm): 5 Clasts: 6 cm from nearest, 23 cm diameter Photo No: Gamma Dosimetry Reading Assoc. Sample Ref No Dosimetry Spec4 Image: Specific S	Newry Ring Fort		Site No. 206	526	Lab: SUTL2160
Dark red-brown soil in lee (downslope) of large stone. Silty, some clay but still plenty of small clasts and crystals from granite. See fig.1 Sealed by layer 5 (20626): Rubble layer with lt red-brown soil. Similar to layer 2 Seals layer 7 (20625): Red-brown soil, texture as layer 2, but partially conforms to slope. Fill associated with 1 st phase of Mediaeval occupation? See fig.1 Depth from surface (cm): 123 Left of plumb line (cm): 5 Top of layer (cm): 5 Bottom of layer (cm): 5 Clasts: 6 cm from nearest, 23 cm diameter Photo No: Gamma Reading Assoc. Sample Ref No Dosimetry Spec4 Details: Hole depth 20 cm into 60 cm thick baulk. 3.9pi. Granite rock in all sides of hole & limited depth of hole. >450keV: 21575cts/600s: 4pi = 22128cts/600s Sections + Cast - Cast	Description of samp	ling location :	Sketch of su	ırroundi	ing area
large stone. Silty, some clay but still plenty of small clasts and crystals from granite. Sealed by layer 5 (20626): Rubble layer with It red-brown soil. Similar to layer 2 Seals layer 7 (20625): Red-brown soil, texture as layer 2, but partially conforms to slope. Fill associated with 1 st phase of Mediaeval occupation? Depth from surface (cm): 123 Left of plumb line (cm): 5 Top of layer (cm): 3 Bottom of layer (cm): 3 Bottom of layer (cm): 5 Clasts: 6 cm from nearest, 23 cm diameter Photo No: Photo No: Gamma Desimetry Spec4 Details: Hole depth 20 cm into 60 cm thick baulk. 3.9pi. Granite rock in all sides of hole & limited depth of hole. >450keV: 21575cts/600s: 4pi = 22128cts/600s Description of Sample: Stainless Steel Tube (~200g sediment) + Lab' Gamma Pot (~200g sediment) + Clast (~200g granite) Plaeosol representing ground stabilisation following early Mediaeval occupation phase: i.e. following cxcavation of ditch and initial colluvial infill phase. Constrain initial period of Mediaval site occupation. Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5 Completed By Checked By Date ClB & RF	Dark red-brown soil	in lee (downslope)	of See fig.1		
of small clasts and crystals from granite. Sealed by layer 5 (20626): Rubble layer with It red-brown soil, texture as layer 2, but partially conforms to slope. Fill associated with 1 st phase of Mediaeval occupation? Depth from surface (cm): 123 Left of plumb line (cm): 5 Top of layer (cm): 3 Bottom of layer (cm): 5 Clasts: 6 cm from nearest, 23 cm diameter Photo No: Gamma Reading Assoc. Sample Ref No Dosimetry <i>Spec4</i> Details: Hole depth 20 cm into 60 cm thick baulk. 3.9pi. Granite rock in all sides of hole & limited depth of hole. >450keV: 21575cts/600s: 4pi = 22128cts/600s Description of Sample: Stainless Steel Tube (~200g sediment) + Lab' Gamma Pot (~200g sediment) + Clast (~200g granite) Nature of Dating Problem: Palaeosol representing ground stabilisation following early Mediaeval occupation phase: i.e. following excavation of Mediaval site occupation. Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5 Completed By Checked By Date CIB & RF MBlack (Headland) 270607	large stone. Silty, son	nty			
Sealed by layer 5 (20626): Rubble layer with It red-brown soil. Similar to layer 2 Seals layer 7 (20625): Red-brown soil, texture as layer 2, but partially conforms to slope. Fill associated with 1 st phase of Mediaeval occupation? Depth from surface (cm): 123 Left of plumb line (cm): 5 Top of layer (cm): 3 Bottom of layer (cm): 5 Clasts: 6 cm from nearest, 23 cm diameter Photo No: Gamma Reading Assoc. Sample Ref No Dosimetry Spec4 Details:	of small clasts and cr				
Sealed by layer 5 (20626): Rubble layer with It red-brown soil. Similar to layer 2 Seals layer 7 (20625): Red-brown soil, texture as layer 2, but partially conforms to slope. Fill associated with 1 st phase of Mediaeval occupation? Depth from surface (cm): 123 Left of plumb line (cm): 5 Top of layer (cm): 3 Bottom of layer (cm): 5 Clasts: 6 cm from nearest, 23 cm diameter Photo No: Gamma Reading Assoc. Sample Ref No Dosimetry Details: Hole depth 20 cm into 60 cm thick baulk. 3.9pi. Granite rock in all sides of hole & limited depth of hole. >450keV: 21575cts/600s: 4pi = 22128cts/600s Description of Sample: Stainless Steel Tube (~200g sediment) + Lab' Gamma Pot (~200g sediment) + Clast (~200g granite) Nature of Dating Problem: Palaeosol representing ground stabilisation following early Mediaeval occupation phase: i.e. following excavation of ditch and initial colluvial infill phase. Constrain initial period of Mediaval site occupation. Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5 Completed By ClB & RF M Black (Headland) 270607					
with It red-brown soil. Similar to layer 2 Seals layer 7 (20625): Red-brown soil, texture as layer 2, but partially conforms to slope. Fill associated with 1 st phase of Mediaeval occupation? Depth from surface (cm): 123 Left of plumb line (cm): 5 Top of layer (cm): 3 Bottom of layer (cm): 5 Clasts: 6 cm from nearest, 23 cm diameter	Sealed by layer 5 (20	626): Rubble layer			
Seals layer 7 (20625): Red-brown soil, texture as layer 2, but partially conforms to slope. Fill associated with 1 st phase of Mediaeval occupation? Depth from surface (cm): 123 Left of plumb line (cm): 5 Top of layer (cm): 3 Bottom of layer (cm): 5 Clasts: 6 cm from nearest, 23 cm diameter Photo No: Gamma Reading Assoc. Sample Ref No Dosimetry Spec4 Details: Hole depth 20 cm into 60 cm thick baulk. 3.9pi. Granite rock in all sides of hole & limited depth of hole. >450keV: 21575cts/600s: 4pi = 22128cts/600s Description of Sample: Stainless Steel Tube (~200g sediment) + Lab' Gamma Pot (~200g sediment) + Clast (~200g granite) Nature of Dating Problem: Palaeosol representing ground stabilisation following early Mediaeval occupation phase: i.e. following excavation of ditch and initial colluvial infill phase. Constrain initial period of Mediaval site occupation. Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5 Completed By Checked By Date CIB & RF M Black (Headland) 270607	with lt red-brown soi	1. Similar to layer 2			
Photo No: Gamma Reading Assoc. Sample Ref No Dosimetry Spec4 Poilor Ref No Details: Spec4 Poilor Ref No Hole depth 20 cm into 60 cm thick baulk. 3.9pi. Granite rock in all sides of hole & limited depth of hole. Secret and the second	Seals layer 7 (20625) texture as layer 2, bu slope. Fill associated Mediaeval occupatio Depth from surface (Left of plumb line (c Top of layer (cm): 3 Bottom of layer (cm) Clasts: 6 cm from ne	s to er			
Photo No:GammaReadingAssoc. SampleRef NoDosimetrySpec4Image: Special state st					
GammaReadingAssoc. SampleRef NoDosimetrySpec4Image: Constraint of the second					
Dosimetry Spec4 Details: Hole depth 20 cm into 60 cm thick baulk. 3.9pi. Granite rock in all sides of hole & limited depth of hole. >450keV: 21575cts/600s: 4pi = 22128cts/600s Description of Sample: Stainless Steel Tube (~200g sediment) + Lab' Gamma Pot (~200g sediment) + Clast (~200g granite) Nature of Dating Problem: Palaeosol representing ground stabilisation following early Mediaeval occupation phase: i.e. following excavation of ditch and initial colluvial infill phase. Constrain initial period of Mediaval site occupation. Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5 Completed By Checked By CIB & RF M Black (Headland)	Camma	Deading	Photo No:	nlo	DofNo
Details: Hole depth 20 cm into 60 cm thick baulk. 3.9pi. Granite rock in all sides of hole & limited depth of hole. >450keV: 21575cts/600s: 4pi = 22128cts/600s Description of Sample: Stainless Steel Tube (~200g sediment) + Lab' Gamma Pot (~200g sediment) + Clast (~200g granite) Nature of Dating Problem: Palaeosol representing ground stabilisation following early Mediaeval occupation phase: i.e. following excavation of ditch and initial colluvial infill phase. Constrain initial period of Mediaval site occupation. Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5 Completed By Checked By Date	Gamma	Reading	Photo No: Assoc. Sam	ple	Ref No
3.9pi. Granite rock in all sides of hole & limited depth of hole. >450keV: 21575cts/600s: 4pi = 22128cts/600s Description of Sample: Stainless Steel Tube (~200g sediment) + Lab' Gamma Pot (~200g sediment) + Clast (~200g granite) Nature of Dating Problem: Palaeosol representing ground stabilisation following early Mediaeval occupation phase: i.e. following excavation of ditch and initial colluvial infill phase. Constrain initial period of Mediaval site occupation. Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5 Cempleted By Checked By Date CIB & RF M Black (Headland)	Gamma Dosimetry Doteils:	Reading Spec4	Photo No: Assoc. Sam	ple	Ref No
>	Gamma Dosimetry Details:	Reading Spec4	Photo No: Assoc. Sam	ple	Ref No
Description of Sample: Stainless Steel Tube (~200g sediment) + Lab' Gamma Pot (~200g sediment) + Clast (~200g granite) Nature of Dating Problem: Palaeosol representing ground stabilisation following early Mediaeval occupation phase: i.e. following excavation of ditch and initial colluvial infill phase. Constrain initial period of Mediaval site occupation. Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5 Completed By Checked By CIB & RF M Black (Headland)	Gamma Dosimetry Details: Hole depth 20 cm into 3 9pi Grapite rock in	Reading Spec4 to 60 cm thick baull	Assoc. Sam	ple	Ref No
Description of Sample: Stainless Steel Tube (~200g sediment) + Lab' Gamma Pot (~200g sediment) + Clast (~200g granite) Nature of Dating Problem: Palaeosol representing ground stabilisation following early Mediaeval occupation phase: i.e. following excavation of ditch and initial colluvial infill phase. Constrain initial period of Mediaval site occupation. Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5 Completed By CIB & RF M Black (Headland)	Gamma Dosimetry Details: Hole depth 20 cm int 3.9pi. Granite rock in >450keV: 21575cts//	ReadingSpec4to 60 cm thick baullto all sides of hole & $500s: 4ni = 22128ct$	Photo No: Assoc. Sam	ple	Ref No
Description of Sample:Stainless Steel Tube (~200g sediment) + Lab' Gamma Pot (~200g sediment) + Clast (~200g granite)Nature of Dating Problem:Palaeosol representing ground stabilisation following early Mediaeval occupation phase: i.e. following excavation of ditch and initial colluvial infill phase. Constrain initial period of Mediaval site occupation. Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5Completed ByChecked ByDateCIB & RFM Black (Headland)270607	Gamma Dosimetry Details: Hole depth 20 cm int 3.9pi. Granite rock in >450keV: 21575cts/e	Reading <i>Spec4</i> to 60 cm thick baull all sides of hole & 500s: 4pi = 22128ct	Assoc. Sam Assoc. Sam c. c. c limited depth of h cs/600s	ple	Ref No
Stainless Steel Tube (~200g sediment) + Lab' Gamma Pot (~200g sediment) + Clast (~200g granite) Nature of Dating Problem: Palaeosol representing ground stabilisation following early Mediaeval occupation phase: i.e. following excavation of ditch and initial colluvial infill phase. Constrain initial period of Mediaval site occupation. Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5 Completed By Checked By CIB & RF M Black (Headland)	Gamma Dosimetry Details: Hole depth 20 cm int 3.9pi. Granite rock in >450keV: 21575cts/0	Reading Spec4 to 60 cm thick baull all sides of hole & 500s: 4pi = 22128ct	Assoc. Sam Assoc. Sam a limited depth of h as/600s	ple	Ref No
Standed (200g brainled) * East Standed For (200g brainled) * East (200g brainled) * Ea	Gamma Dosimetry Details: Hole depth 20 cm int 3.9pi. Granite rock in >450keV: 21575cts/0 Description of Samu	Reading Spec4 to 60 cm thick baull all sides of hole & 500s: 4pi = 22128ct	Assoc. Sam Assoc. Sam a c. c limited depth of h cs/600s	ple nole.	Ref No
Nature of Dating Problem: Nature of Dating Problem: Palaeosol representing ground stabilisation following early Mediaeval occupation phase: i.e. following excavation of ditch and initial colluvial infill phase. Constrain initial period of Mediaval site occupation. Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5 Completed By Checked By Date CIB & RF M Black (Headland) 270607	Gamma Dosimetry Details: Hole depth 20 cm int 3.9pi. Granite rock in >450keV: 21575cts/0 Description of Sam	ReadingSpec4to 60 cm thick baullto all sides of hole & $600s: 4pi = 22128ct$ to ble:(~200g sediment) +	Photo No: Assoc. Sam 	ple	Ref No
Nature of Dating Problem:Palaeosol representing ground stabilisation following early Mediaeval occupation phase:i.e. following excavation of ditch and initial colluvial infill phase.Constrain initial period of Mediaval site occupation.Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5Completed ByChecked ByDateCIB & RFM Black (Headland)270607	Gamma Dosimetry Details: Hole depth 20 cm int 3.9pi. Granite rock in >450keV: 21575cts/0 Description of Sam Stainless Steel Tube (~200g granite)	Reading Spec4 to 60 cm thick baull all sides of hole & 500s: 4pi = 22128ct ole: (~200g sediment) +	Photo No: Assoc. Sam Assoc. Sam A	ple	Ref No sediment) + Clast
Palaeosol representing ground stabilisation following early Mediaeval occupation phase:i.e. following excavation of ditch and initial colluvial infill phase.Constrain initial period of Mediaval site occupation.Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5Completed ByChecked ByDateCIB & RFM Black (Headland)270607	Gamma Dosimetry Details: Hole depth 20 cm int 3.9pi. Granite rock in >450keV: 21575cts/0 Description of Sam Stainless Steel Tube (~200g granite)	Reading Spec4 to 60 cm thick baull all sides of hole & 500s: 4pi = 22128ct ole: (~200g sediment) +	Photo No: Assoc. Sam Assoc. Sam A	ple	Ref No sediment) + Clast
i.e. following excavation of ditch and initial colluvial infill phase. Constrain initial period of Mediaval site occupation. Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5 Completed By Checked By Date CIB & RF M Black (Headland) 270607	Gamma Dosimetry Details: Hole depth 20 cm int 3.9pi. Granite rock in >450keV: 21575cts/d Description of Sam Stainless Steel Tube (~200g granite) Nature of Dating Pr	Reading Spec4 to 60 cm thick baull all sides of hole & 500s: 4pi = 22128ct ole: (~200g sediment) +	Photo No: Assoc. Sam Assoc. Sam a c. c limited depth of h cs/600s - Lab' Gamma Pot	ple	Ref No sediment) + Clast
Constrain initial period of Mediaval site occupation.Should pre-date S1#3, post-date S1#5, and equal S1#6 and S2#5Completed ByChecked ByCIB & RFM Black (Headland)270607	Gamma Dosimetry Details: Hole depth 20 cm int 3.9pi. Granite rock in >450keV: 21575cts/0 Description of Sam Stainless Steel Tube (~200g granite) Nature of Dating Pr Palaeosol representir	ReadingSpec4to 60 cm thick baullto 60 cm thick baullto all sides of hole &500s: $4pi = 22128ct$ ble: (~200g sediment) + roblem: ag ground stabilisat	Photo No: Assoc. Sam Assoc. Sam 	ple nole.	Ref No sediment) + Clast val occupation phase:
Should pre-date \$1#3, post-date \$1#5, and equal \$1#6 and \$2#5Completed ByChecked ByCIB & RFM Black (Headland)270607	Gamma Dosimetry Details: Hole depth 20 cm int 3.9pi. Granite rock in >450keV: 21575cts/d Description of Sam Stainless Steel Tube (~200g granite) Nature of Dating Pu Palaeosol representir i.e. following excava	ReadingSpec4to 60 cm thick baullto 60 cm thick baullto all sides of hole &500s: 4pi = 22128ctole:(~200g sediment) +roblem:to g ground stabilisatition of ditch and in	 Photo No: Assoc. Sam Assoc. Sam a. c. c.	ple nole. $(\sim 200g s)$	Ref No sediment) + Clast val occupation phase:
Completed ByChecked ByDateCIB & RFM Black (Headland)270607	Gamma Dosimetry Details: Hole depth 20 cm int 3.9pi. Granite rock in >450keV: 21575cts/0 Description of Sam Stainless Steel Tube (~200g granite) Nature of Dating Pr Palaeosol representir i.e. following excava Constrain initial peri	ReadingSpec4to 60 cm thick baullto 60 cm thick baullto all sides of hole &500s: $4pi = 22128ct$ ble: (~200g sediment) +roblem:to of ditch and inod of Mediaval site	Photo No: Assoc. Sam Assoc. Sam 	ple nole.	Ref No sediment) + Clast val occupation phase:
Completed ByChecked ByDateCIB & RFM Black (Headland)270607	Gamma Dosimetry Details: Hole depth 20 cm inf 3.9pi. Granite rock in >450keV: 21575cts/d Description of Sam Stainless Steel Tube (~200g granite) Nature of Dating Pu Palaeosol representir i.e. following excava Constrain initial peri Should pre-date S1#.	Reading Spec4 to 60 cm thick baull to all sides of hole & 500s: 4pi = 22128ct ole: (~200g sediment) + roblem: ng ground stabilisat: tion of ditch and in od of Mediaval site 3, post-date S1#5, a	Photo No: Assoc. Sam Assoc. Sam 	ple nole. $(\sim 200g s)$ $(\sim 200g s)$ $(\sim 200g s)$ $(\sim 200g s)$ $(\sim 200g s)$	Ref No sediment) + Clast val occupation phase:
CIB & RF M Black (Headland) 270607	Gamma Dosimetry Details: Hole depth 20 cm int 3.9pi. Granite rock in >450keV: 21575cts/d Description of Sam Stainless Steel Tube (~200g granite) Nature of Dating Pr Palaeosol representir i.e. following excava Constrain initial peri Should pre-date S1#3	ReadingSpec4to 60 cm thick baullto 60 cm thick baullto all sides of hole &500s: $4pi = 22128ctole:(~200g sediment) +roblem:to of ditch and inod of Mediaval site3, post-date S1#5, a$	 Photo No: Assoc. Sam Assoc. Sam c. imited depth of his/600s Lab' Gamma Pot ion following early itial colluvial infil occupation. nd equal S1#6 and 	ple nole. (~200g s (Mediae l phase. I S2#5	Ref No sediment) + Clast val occupation phase:
	Gamma Dosimetry Details: Hole depth 20 cm inf 3.9pi. Granite rock in >450keV: 21575cts/d Description of Sam Stainless Steel Tube (~200g granite) Nature of Dating Pr Palaeosol representir i.e. following excava Constrain initial peri Should pre-date S1#3	Reading Spec4 to 60 cm thick baull to all sides of hole & 500s: 4pi = 22128ct ole: (~200g sediment) + roblem: ng ground stabilisat: tion of ditch and in od of Mediaval site 3, post-date S1#5, a Checked I	Photo No: Assoc. Sam Assoc. Sam 	ple nole. (~200g s (~200g s)))))))))))))))))))))))))))))))))))	Ref No sediment) + Clast val occupation phase:

Site Code: NEW	Da	ite	Context:		Sample No	
Site Name:	270	0607	Section 1, la	ayer 8	Field: S1#5	
Newry Ring Fort			Site No. 200	525	Lab: SUTL2161	
Description of sampling location :			Sketch of surrounding area			
Red-brown soil, fewer clasts than layer 7.			See fig.1			
Sealed by layer 7 (20)625): Red-t	brown soil,				
texture as layer2, but	partially co	onforms to				
slope. Fill associated	with 1 st pha	ase of				
Mediaeval occupatio	n?					
Seals layer 9: Weath	ered bedroc	k (granite)				
Depth from surface (cm): 148					
Left of plumb line (c	m): 4					
Top of layer (cm): 9	_					
Bottom of layer (cm)	: 8					
Clasts: 11 cm from n	earest, 15 ci	m diameter				
Bedrock 10 cm Gran	ite.					
			Photo No:			
Gamma	Reading		Assoc. Sam	ple	Ref No	
Dosimetry	Spec5			•		
Dosimetry Details:	Spec5			•		
Dosimetry Details: Hole depth 30 cm int	<i>Spec5</i>	ck baulk.				
Dosimetry Details: Hole depth 30 cm int 4pi. Bedrock 10 cm.	<i>Spec5</i> to 60 cm thic	ck baulk.				
Dosimetry Details: Hole depth 30 cm int 4pi. Bedrock 10 cm. >450keV: 27776cts/6	<i>Spec5</i> to 60 cm thic	ck baulk.				
Dosimetry Details: Hole depth 30 cm int 4pi. Bedrock 10 cm. >450keV: 27776cts/6	<i>Spec5</i> to 60 cm thic 500s	ck baulk.		·		
Dosimetry Details: Hole depth 30 cm int 4pi. Bedrock 10 cm. >450keV: 27776cts/6	<i>Spec5</i> to 60 cm thic	ck baulk.				
Dosimetry Details: Hole depth 30 cm int 4pi. Bedrock 10 cm. >450keV: 27776cts/6 Description of Sam	<i>Spec5</i> to 60 cm thio 500s ple:	ck baulk.				
Dosimetry Details: Hole depth 30 cm int 4pi. Bedrock 10 cm. >450keV: 27776cts/6 Description of Sam Stainless Steel Tube	<i>Spec5</i> 50 60 cm thio 500s ple: (~200g sedi	ck baulk. iment) + Lab	' Gamma Pot	t (~200g s	sediment) + Clast	
Dosimetry Details: Hole depth 30 cm int 4pi. Bedrock 10 cm. >450keV: 27776cts/6 Description of Sam Stainless Steel Tube (~200g granite)	<i>Spec5</i> to 60 cm thic 500s ple: (~200g sedi	ck baulk. iment) + Lab	' Gamma Pot	t (~200g s	sediment) + Clast	
Dosimetry Details: Hole depth 30 cm int 4pi. Bedrock 10 cm. >450keV: 27776cts/6 Description of Sam Stainless Steel Tube (~200g granite)	<i>Spec5</i> 50 60 cm thio 500s ple: (~200g sedi	ck baulk. iment) + Lab	' Gamma Pot	t (~200g s	sediment) + Clast	
Dosimetry Details: Hole depth 30 cm int 4pi. Bedrock 10 cm. >450keV: 27776cts/6 Description of Sam Stainless Steel Tube (~200g granite) Nature of Dating Pr	<i>Spec5</i> 50 60 cm thio 500s ple: (~200g sedi	ck baulk. iment) + Lab	' Gamma Pot	t (~200g s	sediment) + Clast	
Dosimetry Details: Hole depth 30 cm int 4pi. Bedrock 10 cm. >450keV: 27776cts/6 Description of Sam Stainless Steel Tube (~200g granite) Nature of Dating Pr Initial fill following of	<i>Spec5</i> 50 60 cm thio 500s ple: (~200g sedi roblem: ditch constru	ck baulk. iment) + Lab uction: assoc	' Gamma Pot	t (~200g s	sediment) + Clast aeval occupation	
Dosimetry Details: Hole depth 30 cm int 4pi. Bedrock 10 cm. >450keV: 27776cts/6 Description of Sam Stainless Steel Tube (~200g granite) Nature of Dating Pr Initial fill following of phase?	Spec5 to 60 cm thic 500s ple: (~200g sedi roblem: ditch constru	ck baulk. iment) + Lab uction: assoc	o' Gamma Pot	t (~200g s	sediment) + Clast	
Dosimetry Details: Hole depth 30 cm int 4pi. Bedrock 10 cm. >450keV: 27776cts/6 Description of Sam Stainless Steel Tube (~200g granite) Nature of Dating Pr Initial fill following of phase? Constrain ditch const	Spec5 50 60 cm thic 500s ple: (~200g sedi coblem: ditch constru- truction and	ck baulk. iment) + Lab uction: assoc	' Gamma Pot	t (~200g s urly Media al site occ	sediment) + Clast aeval occupation cupation.	
Dosimetry Details: Hole depth 30 cm int 4pi. Bedrock 10 cm. >450keV: 27776cts/6 Description of Sam Stainless Steel Tube (~200g granite) Nature of Dating Pr Initial fill following of phase? Constrain ditch const Should pre-date S1#4	Spec5 to 60 cm thic 500s ple: (~200g sedi coblem: ditch constru- truction and 4 and S1#6,	ck baulk. iment) + Lab uction: assoc l initial perio and equal S2	o' Gamma Pot viated with Ea d of Mediaev 2#6	t (~200g s trly Media al site occ	sediment) + Clast aeval occupation cupation.	
DosimetryDetails:Hole depth 30 cm int4pi. Bedrock 10 cm.>450keV: 27776cts/6Description of SampStainless Steel Tube(~200g granite)Nature of Dating PrInitial fill following ofphase?Constrain ditch constShould pre-date S1#4	<i>Spec5</i> to 60 cm thic 500s ple: (~200g sedi oblem: ditch constru- truction and 4 and S1#6,	ck baulk. iment) + Lab uction: assoc l initial perio and equal S2	' Gamma Pot eiated with Ea d of Mediaev 2#6	t (~200g s urly Media al site occ	sediment) + Clast aeval occupation cupation.	
Dosimetry Details: Hole depth 30 cm int 4pi. Bedrock 10 cm. >450keV: 27776cts/6 Description of Sam Stainless Steel Tube (~200g granite) Nature of Dating Pr Initial fill following of phase? Constrain ditch const Should pre-date S1#4	Spec5 to 60 cm thic 500s ple: (~200g sedi coblem: ditch constru- truction and 4 and S1#6,	ck baulk. iment) + Lab uction: assoc l initial perio and equal S2	o' Gamma Pot eiated with Ea d of Mediaev 2#6	t (~200g s arly Media al site occ	sediment) + Clast aeval occupation cupation.	
Dosimetry Details: Hole depth 30 cm int 4pi. Bedrock 10 cm. >450keV: 27776cts/6 Description of Sam Stainless Steel Tube (~200g granite) Nature of Dating Pr Initial fill following of phase? Constrain ditch const Should pre-date S1#4 Completed By CIB & RE	Spec5 50 60 cm thic 500s ple: (~200g sedi roblem: ditch constru- truction and 4 and S1#6, Ch	ck baulk. iment) + Lab uction: assoc l initial perio and equal S2 necked By	' Gamma Pot eiated with Ea d of Mediaev 2#6	t (~200g s urly Media al site oco Date 270607	sediment) + Clast aeval occupation cupation.	

Site Code: NEW		Date	Context:		Sample No	
Site Name:		270607	Section 1, la	ayer 6	Field: S1#6	
Newry Ring Fort			Site No. 200	626	Lab: SUTL2162	
Description of sam	oling loo	cation :	Sketch of surrounding area			
Dark red-brown soil	Dark red-brown soil away from large				<u> </u>	
stones on surface of section. Silty, some						
clay but still plenty of small clasts and						
crystals from granite	-					
Sealed by layer 4 (20627&8): Red brown soil similar to layer 3 but more loamy, less silty (cohesive). Conforms to slope. Colluvial accumulate underlying palaeolandsurface? Seals layer 7 (20625): Red-brown soil, texture as layer2, but partially conforms to slope. Fill associated with 1 st phase of Mediaeval occupation? Depth from surface (cm): 101 Left of plumb line (cm): -63 (i.e. to right) Top of layer (cm):						
Clasts: no large ones	within	30 cm				
C			Photo No:	1	D CN	
Gamma	Readi	ng	Assoc. Sam	ple	Kei No	
Dosimetry	Speco					
Details:	ta (0 am	thisly havely				
Ani		I UNICK DAUIK.				
$^{-4p1}$ >450keV · 26181 cts	/600s					
(implies ~ 3.3 pi or le	ess grani	te (!) around spe	ec4)			
(p	8	()				
Description of Sam	ple:					
Stainless Steel Tube	(~200g	sediment) + Lab	o' Gamma Pot	t (~200g s	sediment)	
Nature of Dating P	roblem:					
Palaeosol representin	ng grour	nd stabilisation f	ollowing early	y Mediae	val occupation phase:	
i.e. following excava	tion of	ditch and initial	colluvial infil	l phase.	1 1 1	
Constrain initial peri	od of M	lediaval site occu	upation.	-		
Should pre-date S1#	3, post-o	late S1#5, and e	qual S1#4 and	1 S2#5		
	i		i			
Completed By		Checked By	1 1	Date		
CIB & RF		M Black (Head	lland)	270607		

Site Code: NEW	Date	Context:	Sample No	
Site Name:	270607	Pit 1	Field: Pit1#1	
Newry Ring Fort		Site No. ?	Lab: SUTL2163	
Description of samp	ling location :	Sketch of surrounding area		
Previously excavated	l pit in granite bedrock	and see fig.3	3	
within site complex (inside ditch), in which			
a Souteraine-ware sh	erd was found.			
Gamma pot samples sediment (SUTL2163 sediment (SUTL2163 using them to help re environment of the sl	were taken of the fill Ba) and the cover Bb), with a view to construct the radiation herd.		56cm	
A field gamma spect was made in the mide of the pit appeared si sediment described b Fill sediment: pink-p silt/clay – appears eit weathered. Sherd wa	rometry measurement dle of the pit. The base milar to the fill elow. urple granular plus ther burnt or highly s in upper fill.	Nal c	sherd 42cm 24cm Residual fill	
(similar to ditch sedin	t red-brown silty sand ments)	Glainte		
× ·	,	Photo No:		
Gamma	Reading	Assoc. Sam	ple Ref No	
Dosimetry	Spec7			
Details:				
See diagram				
~3pi. >450keV: 37524 cts/	600s: 4pi ~ 50032 cts/6	00s		
Description of Sam	ole:			
2 x Lab' Gamma Pot	(~200g sediment each)			
Nature of Dating Pr	oblem:			
A Souterraine-ware s	sherd was found in the n	niddle of this	relatively deep and narrow pit,	
and is being sent for	typological analysis. Se	diment sampl	es and a gamma spectrometry	
measurement were ta	ken to help assess the sl	herd's radiation	on environment in case it is	
decided to use this as	a test case for the utilit	y of TL dating	g Souterraine Ware. This	
pottery is generally n Mediaeval period: i.e	on-diagnostic except in e. ~500 to ~1500 AD. The	that it is asso L dating migh	ciated with the whole of the the therefore be used to	
constrain usage phase	es of Souterraine ware v	vithin this per	iod.	
Completed By	Checked By		Date	
CIB & RF	M Black (Head	lland)	270607	

Site (Code: 1	NEW		Date	Context No	Sample	No		
Site Name: 260607 Section 2 Field						Field: S	52 P1-15		
Newr	v Rino	• Fort		200007	Lah: SI	TL2164			
Dosor	<u>y ining</u>		maling	eastion .	Skatah of surroundi	ng araa	JIL/210.		
Desci	1	UI S ai			Sketch of surround	llg al ca			
Profile down section through ring ditch									
No	DfS	RfP	Laver	Description Site					
110.	015	1111	Duyer	Context					
	8	5	1	Modern topsoil Reddich grey brown sandy few stores 20001					
2	17	6	2	Rootzone substrate	as laver 3	w stones	20001		
3	31	7	3	Light Red-Brown, m	any stones/clasts of all size	es to	20029		
4	48	9	3	20cm. Unclear collu	vial stone lines coming from	n top of	20029		
5	67	10	3	up-slope bank (bedro	ock). Colluvial soil, early C	219?	20029		
6	80	10	3				20029		
7	98	9	3				20029		
8	107	6	4	Dark red-brown, silt	y, some clay, few stones. C	onforms	20556		
9	116	6	4	to slope. Palaeosol - phase of site reuse?	associated with Late Media	aerval	20556		
10	126	6	5	Red brown soils sim	ilar to 2. Conforms to slope	e.	20555		
11	143	6	5/6	Colluvial accumulate	e associated with Late Med	iaerval	20554/5		
12	155	6	6	phase of site reuse?			20554		
13	161	4	7	Dark red-brown soil	in stone scatter/layer of sm	all	Interface		
				rubble. Silty, some c	lay but still plenty of small	clasts	20554-3		
				and crystals from gra	anite. Stabilisation followin	ig early			
14	171	3	8	Ded brown soil text	ure as lover? but conforms	to slope	20553		
14	1/1	3	0	Fill associated with 1	1 st phase of Mediaeval occu	ipation?	20333		
15	180	-5	9	Weathered Bed Rock	k – Granite	•	N/A		
7.1.1.	2 (Df	fS = dc	epth fro	m surface, RfP =	right from plumb lin	e)			
			•	,	0	,			
					Photo No:				
Gamı	na		Rea	ding	Assoc. Sample	Ref No			
Dosin	netry								
Detai	ls:								
N/A									
Descr	iption	of Sa	mple:						
Zip lo	ck bag	g ~ 10g	g + Petri	dish for portable (OSL ~10g. Sediment ex	xcavated	from behind		
expos	ed face	e of se	ction us	ing a stainless stee	l tube, and deposited in	n a pre-la	belled zip		
lock b	ag wh	ile pro	tected fi	om light inside a l	larger black bag.	-	-		
	U	1		e	6 6				
Natu	re of D	ating	Probler	n:					
Identi	fy patt	erns in	n lumine	scence behaviour	through the stratigraph	y: discon	tinuities,		
bound	laries.	preser	nce of ge	ological-age mater	rial etc.	-	<u>,</u>		
Aid se	election	n of lu	minesce	nce sampling loca	tions.				
~				-1	t_				

Completed By	Checked By	Date
CIB & RF	M. Black	270607

		Date	Context:		Sample No
Site Name:		270607	Section 2, la	ayer 3	Field: S2#1
Newry Ring Fort			Site No. 200)29	Lab: SUTL2165
Description of same	oling loc	ation :	Sketch of su	ırroundi	ng area
Top of colluvial/mix	ed layer.		See fig 2.		0
Top of archaeologica	al stratig	raphy	C		
Light Red-Brown, m	nes/clasts of all				
sizes to 20cm. Unclear colluvial stone lines					
coming from top of u	up-slope	bank			
(bedrock).					
Sealed by layer 2 (20	0001): m	odern			
rootzone in substrate	similar	to layer 3.			
Reddish grey-brown	, sandy, i	few stones			
Seals layer 4 (20556)): Dark r	ed-brown,			
silty, some clay, few	stones.	Conforms to			
slope. Palaeosol - ass	sociated	with Late			
Mediaerval phase of	site reus	se?			
Douth from surface ((ama), 22				
Depth from surface ((200): 5				
Top of layor (om): 0	(cm). 5				
Bottom of layer (cm))· 64				
Clasts: 11 cm from n	earest 1	0 cm diameter			
	ieurest, i				
			Photo No:		
Gamma	Readin	ng	Assoc. Sam	ple	Ref No
Dosimetry	Snoc12	1			
- Jointon J	Speci	2			
Details:	Speciz	2			
Details: Hole depth 30 cm int	to 60 cm	thick baulk, top	o of hole 20 c	n from gi	ound surface.
Details: Hole depth 30 cm int 4pi.	to 60 cm	thick baulk, top	o of hole 20 c	n from g	ound surface.
Details: Hole depth 30 cm int 4pi. >450keV: 28532 cts/	to 60 cm	thick baulk, top	o of hole 20 cr	m from g	ound surface.
Details: Hole depth 30 cm int 4pi. >450keV: 28532 cts/	to 60 cm	thick baulk, top	o of hole 20 c	m from g	ound surface.
Details: Hole depth 30 cm int 4pi. >450keV: 28532 cts/	to 60 cm /600s	thick baulk, top	o of hole 20 cr	n from g	ound surface.
Details: Hole depth 30 cm int 4pi. >450keV: 28532 cts/ Description of Sam	to 60 cm /600s ple:	thick baulk, top	o of hole 20 cr	m from gr	round surface.
Details: Hole depth 30 cm int 4pi. >450keV: 28532 cts/ Description of Sam Stainless Steel Tube	to 60 cm /600s ple: (~200g s	thick baulk, top sediment) + Lab	o of hole 20 cr	m from gr	ound surface.
Details: Hole depth 30 cm int 4pi. >450keV: 28532 cts/ Description of Sam Stainless Steel Tube	to 60 cm (600s ple: (~200g s	thick baulk, top sediment) + Lab	o of hole 20 cr	m from gr	round surface.
Details: Hole depth 30 cm int 4pi. >450keV: 28532 cts/ Description of Sam Stainless Steel Tube	to 60 cm /600s ple: (~200g s	thick baulk, top sediment) + Lab	o of hole 20 cr	m from gr	round surface.
Details: Hole depth 30 cm int 4pi. >450keV: 28532 cts/ Description of Sam Stainless Steel Tube Nature of Dating Pr	to 60 cm /600s ple: (~200g s	thick baulk, top sediment) + Lab	o of hole 20 cr o' Gamma Pot	m from gr	round surface.
Details: Hole depth 30 cm int 4pi. >450keV: 28532 cts/ Description of Sam Stainless Steel Tube Nature of Dating Pr Constrain end of C19 Should post-date S24	to 60 cm (600s ple: (~200g s roblem: ?? colluv #2 and ed	thick baulk, top sediment) + Lab	o of hole 20 cm ' Gamma Pot	m from gr	round surface.
Details: Hole depth 30 cm int 4pi. >450keV: 28532 cts/ Description of Sam Stainless Steel Tube Nature of Dating Pr Constrain end of C19 Should post-date S2#	to 60 cm /600s ple: (~200g s r oblem: ?? colluv #2 and ec	thick baulk, top sediment) + Lab vial phase, assoc qual S1#1	o of hole 20 cm o' Gamma Pot iated with int	m from gr	round surface.
Details: Hole depth 30 cm int 4pi. >450keV: 28532 cts/ Description of Sam Stainless Steel Tube Nature of Dating Pr Constrain end of C19 Should post-date S2#	to 60 cm /600s ple: (~200g s r oblem: 9? colluy #2 and ed	sediment) + Lab vial phase, assoc qual S1#1	o of hole 20 cm ' Gamma Pot	m from gr	round surface.
Details: Hole depth 30 cm int 4pi. >450keV: 28532 cts/ Description of Sam Stainless Steel Tube Nature of Dating Pr Constrain end of C19 Should post-date S2# Completed By	to 60 cm /600s ple: (~200g s roblem: ?? colluv #2 and ec	thick baulk, top sediment) + Lab vial phase, assoc qual S1#1 Checked By	o of hole 20 cm o' Gamma Pot iated with int	m from gr (~200g s ensive ag Date	round surface.

Site Code: NEW		Date	Context:		Sample No
Site Name:		270607	Section 2. 1	aver 3	Field: S2#2
Newry Ring Fort			Site No. 20	029	Lab: SUTL2166
Description of same	nling loc	ation •	Sketch of s	urroundi	ng area
Base of colluvial/mi	xed lave	r	See fig 2	unui	
Light Red-Brown m	nany stor	nes/clasts of all	See ing 2		
sizes to 20cm Unclear colluvial stone lines					
coming from top of up-slope bank					
(bedrock)	ap stope	ouni			
Sealed by layer 2 (2)	0001) [.] m	odern			
rootzone in substrate	e similar	to laver 3.			
Reddish grey-brown	, sandy,	few stones			
Seals layer 4 (20556): Dark i	ed-brown,			
silty, some clay, few	stones.	Conforms to			
slope. Palaeosol - as	sociated	with Late			
Mediaerval phase of	site reus	se?			
Depth from surface	(cm): 91				
Right of plumb line	(cm): 2				
Top of layer (cm): 6	6				
Bottom of layer (cm): 10				
Small clasts around	sample				
			Photo No:		
Gamma	Readi	ng	Assoc. Sam	ple	Ref No
Dosimetry	Spec1	1		<u>r</u> -	
Details:	~poor	-			
Hole depth 30 cm in	to 60 cm	thick baulk			
4pi Granite rock in	end of he	ole			
>450keV: 27907 cts	/600s				
Description of Sam	ple:				
Stainless Steel Tube	(~200g	sediment) + Lab	o' Gamma Pot	t (~200g s	sediment)
	-	•		2	
Nature of Dating P	roblem:				
Constrain beginning	of C19?	colluvial phase	, associated w	with intens	sive agricultural
activity					
Should pre-date S2#	1, post-d	late S2#3, and e	qual S1#2.		
	i	~		-	
Completed By		Checked By	1 1	Date	
		M Black (Head	land)	270607	

Site Code: NEW]	Date	Context:		Sample No
Site Name:	,	270607	Section 2, la	ayer 4	Field: S2#3
Newry Ring Fort			Site No. 205	556	Lab: SUTL2167
Description of samp	oling loca	ation :	Sketch of su	irroundi	ng area
Dark red-brown, silty	, some c	lay, few	See fig 2		
stones. Conforms to s	slope.				
Palaeosol - associated	d with La	ate Mediaeval			
phase of site reuse?					
Sealed by laver 3 (20	1020) · I i	obt Red			
Brown many stones/	clasts of	all sizes to			
20cm Unclear colluv	vial stone	lines coming			
from top of up-slope	bank (be	drock)			
nom top of up stope	ounn (ou	aro en).			
Seals layer 5 (20626)): Red bro	own soil			
similar to layer 2. Con	onforms to	o slope.			
Colluvial accumulate	associat	ed with Late			
Mediaerval phase of s	site reuse	e?			
Depth from surface (cm): 111				
Right of plumb line (cm): -5				
1 op of layer (cm): 6	. (
Clasts: 0 cm from nor	i O arast 6 a	mlang			
		in long			
			Photo No:		
Gamma	Readin	g	Assoc. Sam	ple	Ref No
Dosimetry	Spec10				
Details:					
Hole depth 26 cm into	to 60 cm	thick baulk.			
4p1.					
>450 keV: 283/9 cts/0	600s				
Description of Same	nlo				
Stainless Steel Tube (/~200σ e	ediment) + Lah	' Gamma Pot	· (~2000 s	sediment)
	2008 5			2008 3	
Nature of Dating Pr	oblem:				
Palaeosol associated	with (sta	bilisation follow	wing?) Late N	/lediaeval	phase of site reuse:
revetment used to wid	den natur	ral causeway ac	ross ditch wa	s built on	top of this layer
(other side of site): C	(other side of site): Constrain Late Mediaev			e reuse.	- •
Should pre-date S2#2	2, post-da	ate S2#4.			
	i		i		
Completed By		Checked Bv		Date	
· · · ·		01001104 25		Dutt	

Site Code: NEW]	Date	Context:		Sample No				
Site Name:	2	270607	Section 2, la	ayer 5	Field: S2#4				
Newry Ring Fort			Site No. 205	555	Lab: SUTL2168				
Description of samp	oling loca	ntion :	Sketch of su	urroundi	ng area				
Red brown soil simil Red-Brown, many st to 20cm. Conforms to accumulate underlyin Sealed by layer 4 (20 silty, some clay, few slope. Palaeosol - ass Mediaeval phase of s Seals layer 6 (20554) Depth from surface (Right of plumb line (Top of layer (cm): 19 Bottom of layer (cm) Clasts: 4 cm from ne	ar to laye ones/class o slope. C ng palaeo)556): Da stones. C sociated v site reuses): similar (cm): 131 (cm): 5 9): 11 earest, 5 cm	er 2: Light ts of all sizes Colluvial landsurface? ark red-brown, Conforms to with Late ? to layer 5. m diameter	See fig 2	<u>irrounur</u>					
0			Photo No:	1	D CN				
Gamma	Reading	g	Assoc. Sam	ple	Ref No				
Dosimetry	Spec9								
Details:									
4pi. Nearest gamma = >450keV: 29100 cts/	spec hole 600s	thick baulk. as are 11 & 13 c	m away, edg	e to edge.					
Description of Sam	ple:								
Stainless Steel Tube	Stainless Steel Tube (~200g sediment) + Lab' Gamma Pot (~200g sediment)								
Nature of Dating Pr	roblem:								
Colluvial accumulate Constrain Late Media Should pre-date S2#3	e associate aeval pha 3, post-da	ed with Late M ase of site reuse ate S2#5 and eq	ediaeval phas and accumul ual S1#3	se of site ation rate	reuse: during this period				
Completed By									
Complete Dy		Checked By		Date					

Site Code: NEW		Date	Context:		Sample No
Site Name:		270607	Section 2. la	aver 7	Field: S2#5
Newry Ring Fort			Site No. Int	erface	Lab: SUTL2169
iterity iting i ore			20553-2055	4	
Description of samp	oling loo	cation :	Sketch of s	ırroundi	ng area
Dark red-brown soil	in stone	e scatter/layer	See fig 2		
of small rubble. Silty	, some	clay but still	_		
plenty of small clasts	and cry	ystals from			
granite. Stabilisation	followi	ng early			
occupation?					
Sealed by layer 6 (20)554): R	led brown soil			
similar to layer 2: Li	ght Red	-Brown, many			
stones/clasts of all si	zes to 2	0cm. Conforms			
to slope. Colluvial ac	cumula	te underlying			
palaeolandsurface?					
Seals layer 8 (20553)): Red-b	prown soil,			
texture as layer 2, bu	t contor	rms to slope.			
Fill associated with	^m phase	e of Mediaeval			
occupation?		7			
Depth from surface (cm): 15	1			
Right of plumb line ((cm): 0				
Pottom of layer (cm). 1	v· 1				
Lover packed with a	i. I lasta no	no abovo and			
below	asts, 110	above and			
0010 W			Photo No:		
Gamma	Readi	ng	Assoc. Sam	ple	Ref No
Dosimetry	Spec8	8	Clast S2#5		
Details:					
Due to proximity of	S2#6, a	single gamma sp	pectrometry h	ole was o	pened between the
two – taking in the e	dges of	both sample hole	es.		1
Hole depth 30 cm int	to 60 cm	n thick baulk.			
4pi. Clasts all around	lupper	part of hole – lay	/er 7.		
>450keV: 30891 cts/	'600s				
Description of Sam	ple:				
Stainless Steel Tube	(~200g	sediment) + Lab	o' Gamma Pot	: (~200g s	sediment) + Clast
(~200g granite)					
Nature of Dating Pr	oblem:				
Palaeosol representir	ig grour	nd stabilisation f	ollowing early	y Mediae	val occupation phase:
i.e. following excava	tion of	ditch and initial	colluvial infil	l phase.	
Constrain initial peri	od of M	lediaval site occu	upation.		
Should pre-date S2#4	1, post-o	date S2#6, and e	qual S1#4 and	l S1#6	
Completed By		Checked By	1 1)	Date	
		I M Black (Head	land)	270607	

Site Code: NEW	Date	Context:	Sample No				
Site Name:	270607	Section 2, layer 8	Field: S2#6				
Newry Ring Fort		Site No. 20553	Lab: SUIL2170				
Description of sampli	ng location :	Sketch of surround	ling area				
Red-brown soil, textur	e as layer2, but	See fig 2					
conforms to slope. Fill	associated with 1 st						
phase of Mediaeval oc	cupation?						
Sealed by layer 7 (205	53-20554): Dark						
red-brown soil in stone	e scatter/layer of						
small rubble. Silty, sor	ne clay but still						
plenty of small clasts a	ind crystals from						
granite. Stabilisation for	ollowing early						
occupation?							
Seals layer 9: Weather	ed bedrock (granite)						
Depth from surface (cr	n): 165						
Right of plumb line (cr	m): 13						
Top of layer (cm): 3	_						
Bottom of layer (cm):	3						
Clasts: 3 cm from near	est, in rocky						
Palaeosol (layer 7) Padroak 10 am Gran	vito						
Dedrock 70 cm, Oran	nte.	Photo No:					
Gamma	Reading	Assoc. Sample	Ref No				
Dosimetry	Spec8						
Details:							
Due to proximity of S2	2#5, a single gamma s	pectrometry hole was	opened between the				
two – taking in the edg	ges of both sample hol	les.	1				
Hole depth 30 cm into	60 cm thick baulk. C	lasts all around upper	part of hole – layer 7.				
Rock in end of hole, 8	cm from edge of hole	to bedrock.					
4pi. >450keV: 30891 c	2ts/600s						
Description of Sampl							
Stainless Steel Tube (~	-200g sediment) + La	b' Gamma Pot (~200g	sediment)				
Nature of Dating Pro	blem:						
Initial fill following di	tch construction: asso	ciated with Early Med	iaeval occupation				
phase?		1 0. 6 1					
Constrain ditch constru	action and initial period	od of Mediaeval site of	ccupation.				
Should pre-date \$2#5	and equal S1#5						

bilouid pre dute balle, dila e	quai Dille	
Completed By	Checked By	Date
CIB & RF	M Black (Headland)	270607

Appendix B. Sample preparation and measurement

~10

44.9

58.8

68.3

59.6

62

54.2

2164

2165

2166

2167

2168

2169

2170

61107

61107

61107

61107

61107

61107

6.3

5.1

7.7

3.5

3.5

4.6

191207 direct to HCI direct to HCI

	Sample)	Samp	le	Measured	Mater	ial		_			_					_							
	Numbe	r		Associated	Retained u	unprod	cessed		For me	easurem	ent	Gamma	spectro	metry			Beta	a Ctg					Luminescenc	е
SUERC		Field		Sample	Sample	Mass	Sample	Mass	Sam	ple Ma	ass	Sample	Sed.	Sealed	Meas	sured	Sai	mple	Dry Sie	eved (g)	Meas	s.<1mm	Sample	Mass
			Туре	Туре	From	(g)	From	(g)	Fro	m (g	g)	From	(g)	date	date	Det	. Fr	om	<1mm	>1mm	(g)	date	From	(g)
SUTL 215	56 NEW	S1 P1-16	Zlbs			-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	Zlbs	~10
SUTL 215	57 NEW	S1#1	Tube	gamma pot	tube ends	18.2	gamma po	t -	core of	ftube 98	3.8	for meas	. 98.8	05100	7 22100	73	gam.	spec.	56.8	42.7	20	11107	B.Ctg <1mm	56.8
SUTL 215	58 NEW	S1#2	Tube	gamma pot	tube ends	28.5	gamma po	t -	core of	f tube 11	0.2	for meas	. 100.0	05100	7 22100	73	gam.	spec.	59.2	32.8	20	11107	B.Ctg <1mm	59.2
SUTL 215	59 NEW	S1#3	Tube	gamma pot	tube ends	25.7	gamma po	t -	core of	f tube 92	2.4	for meas	. 92.4	05100	7 23100	73	gam.	spec.	50.2	36.2	20	11107	B.Ctg <1mm	50.2
SUTL 216	60 NEW	S1#4	Tube	gamma pot	tube ends	19.6	gamma po	t -	core of	f tube 10	3.6	for meas	. 103.6	05100	7 23100	73	gam.	spec.	57.5	45.4	20	11107	B.Ctg <1mm	57.5
SUTL 216	61 NEW	S1#5	Tube	gamma pot	tube ends	17.0	gamma po	t -	core of	f tube 15	8.1	for meas	. 100.0	05100	7 24100	73	gam.	spec.	52.5	47.1	20	11107	B.Ctg <1mm	52.5
SUTL 216	62 NEW	S1#6	Tube	gamma pot	tube ends	48.3	gamma po	t -	core of	f tube 10	2.1	for meas	. 102.1	05100	7 24100	73	gam.	spec.	47.9	54.0	20	21107	B.Ctg <1mm	47.9
SUTL 216	3e NEW	Pit1#1a	gamm	a pot	-	-	gamma po	t 65.0	gamm	a pot 10	0.0	for meas	. 100	05100	7 25100	73	gam.	spec.	49.5	50.7	20	21107	-	-
SUTL 216	3t NEW	Pit1#1b	gamm	a pot	-	-	gamma po	t 31.1	gamm	a pot 10	0.0	for meas	. 100	05100	7 25100	73	gam.	spec.	49.7	50.3	20	21107	-	-
SUTL 216	64 NEW	S2 P1-15	Zlbs		-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	Zlbs	~10
SUTL 216	65 NEW	S2#1	Tube	gamma pot	tube ends	26.5	gamma po	t -	core of	tube 10	2.4	for meas	. 102.4	05100	7 29100	73	gam.	spec.	44.9	57.2	20	21107	B.Ctg <1mm	44.9
SUTL 216	6 NEW	S2#2	Tube	gamma pot	tube ends	22.7	gamma po	t -	core of	tube 10	7.6	for meas	. 107.6	05100	7 29100	73	gam.	spec.	58.8	41.3	20	21107	B.Ctg <1mm	58.8
SUTL 216	67 NEW	S2#3	Tube	gamma pot	tube ends	37.6	gamma po	t -	core of	tube 88	3.6	for meas	. 88.6	05100	7 30100	73	gam.	spec.	68.3	20	20	21107	B.Ctg <1mm	68.3
SUTL 216	68 NEW	S2#4	Tube	gamma pot	tube ends	28.2	gamma po	t -	core of	tube 12	8.1	for meas	. 100	05100	7 30100	73	gam.	spec.	59.6	40.6	20	21107	B.Ctg <1mm	59.6
SUTL 216	69 NEW	S2#5	Tube	gamma pot	tube ends	37.8	gamma po	t -	core of	tube 96	6.1	for meas	. 96.1	05100	7 31100	73	gam.	spec.	62	34.4	20	21107	B.Ctg <1mm	62
SUTL 217	70 NEW	S2#6	Tube	gamma pot	tube ends	28.3	gamma po	t -	core of	tube 13	8.0	for meas	. 100	05100	7 31100	7 3	gam.	spec.	54.2	45.6	20	21107	B.Ctg <1mm	54.2
Sample	Lumin	escence S	Sample	e Prep														mas	ss (g)	error	(g)	1		
	Lum	nin Wet	Sieved	d (microns)			150-250 r	nicron	1		De	ensity se	paratio	n (g/cn	13)	р	ot	1.	105	0.00)4			
	Subsa	mple		<150	150-250	">250	" 10 min 1I	и нсі			re	etained	for Se	p.	-	<2	.62	2.62	2-2.74	>2.7	74	-		
SUTL	(g) dat	te	(g)	(g)	(g)	date	(g)	reaction	ı	(g)	(g)	-	date	(g) ir	nc pot	(g) i	nc pot	(g) inc	; pot	_		
2156	~1	0 1712	207 dir	ect to HCI d	irect to HCI	-	171207	direct	to HF	-		-	-		-		-		-	-		•		
2157	56.	8 611	07	4.9 d	irect to HCI	19.5	71107 c	lirect to	d sep	n	3	3.165 c	irect to o	d sep	71107	1.	88	direc	t to HF	1.2	2			
2158	59.	2 611	07	8.6 d	irect to HCI	21.9	71107 c	lirect to	d sep	n		3.91 c	irect to o	d sep	71107	1.	86	direc	t to HF	1.1	6			
2159	50.	2 611	07	7.3 d	irect to HCI	21.2	71107 c	lirect to	d sep	n		4.03 c	irect to o	d sep	71107	1.	86	direc	t to HF	1.1	4			
2160	57.	5 611	07	4.6 d	irect to HCI	23.5	71107 c	lirect to	d sep	n		3.1 c	irect to o	d sep	71107	1	.9	direc	t to HF	1.2	5			
2161	52.	5 611	07	6.8 d	irect to HCI	21.6	71107 c	lirect to	d sep	n		2.07 c	irect to o	d sep	71107	1.	99	direc	t to HF	1.3	3			
2162	47.	9 611	07	5.6 d	irect to HCI	19.3	71107 c	lirect to	d sep	n		2.61 c	irect to o	d sep	71107	1.	88	direc	t to HF	1.1	5			
2163a	-	-		-	-	-	-	-	•	-	1	-	-	•	-		-		-	-				
2163b	-	-		-	-	-	-	-		-	1	-	-		-		-		-	-				

-

2.87

2.97

4.49

3.64

3.43

3.18

-

n

n

n

n

n

n

191207 direct to HF

direct to d sep 71107

_

direct to HF

-

1.91

1.96

2.16

2.07

1.88

1.88

-

1.14

1.24

1.21

1.21

1.25

1.32

direct to HCI 21.30 71107 direct to d sep

direct to HCI 28.00 71107 direct to d sep

direct to HCI 27.20 71107 direct to d sep

direct to HCI 25.00 71107 direct to d sep

direct to HCI 20.40 71107 direct to d sep

direct to HCI 23.80 71107 direct to d sep

-

Sample	2.62-2.74 g	/cm3				Disks				Measur	ement		
	40min 40%	HF, HCI &	Resieve										
		Retained	Split for HF	HF <150	HF>150	Set 1		Set 2		Set 1		Set 2	
SUTL	date	(g) inc pot	(g) inc pot	(g) inc pot	(g) inc pot	date	number	date	number	date	file	date	file
2156	171207	PMC	direct to HF	HFC not	weighed	181207	2x16 HFC	181207	2x16 PMC	181207	new1hfc.bin	181207	new1pmc.bin
2157	81107	-	direct to HF	1.13	1.24	81107	16	-	-	91107	newry1.bin	-	-
2158	81107	-	direct to HF	1.13	1.21	81107	16	-	-	91107	newry1.bin	-	-
2159	81107	-	direct to HF	1.13	1.15	81107	16	-	-	91107	newry1.bin	-	-
2160	81107	-	direct to HF	1.18	1.31	81107	16	-	-	91107	newry2.bin	-	-
2161	81107	-	direct to HF	1.14	1.28	81107	16	-	-	91107	newry2.bin	-	-
2162	81107	-	direct to HF	1.13	1.19	81107	16	-	-	91107	newry2.bin	-	-
2163a	-	-	-	-	-	-	-	-	-	-	-	-	-
2163b	-	-	-	-	-	-	-	-	-	-	-	-	-
2164	191207	PMC	direct to HF	HFC not	weighed	201207	2x15 HFC	201207	2x15 PMC	201207	new2hfc.bin	201207	new2pmc.bin
2165	81107	-	direct to HF	1.12	1.12	91107	16	-	-	121107	newry3.bin	-	-
2166	81107	-	direct to HF	1.14	1.2	91107	16	-	-	121107	newry3.bin	-	-
2167	81107	-	direct to HF	1.14	1.22	91107	16	-	-	121107	newry3.bin	-	-
2168	81107	-	direct to HF	1.14	1.23	91107	16	-	-	151107	newry4.bin	-	-
2169	81107	-	direct to HF	1.15	1.2	91107	16	-	-	151107	newry4.bin	-	-
2170	81107	-	direct to HF	1.17	1.22	91107	16	-	-	151107	newry4.bin	-	-

Appendix C. Dosimetry

C.1. Thick source beta counting

Run HV Sample	978 6.60 2157	File	11107	Date 11107 Threshold 0.45 Mass (g) 20	
Standard (cps) Background (cps) Sensitivity (mGy/a/cps)	3.493 .+/- 0.739 .+/- 2.267 .+/-	0.054 0.014 0.051	3.454 .+/- 0.749 .+/- 2.309 .+/-	e 0.014 0.003 0.026	
Sample	counts time	1128 600	1198 117 600 60	74 1137 1166 0 600 600	1194 600
Mean gross rate (cps)	cps 1.944 .+/-	1.880 0.020	1.997 1.99 (SD/rtN) 0.023	57 1.895 1.943 6 (poisson error)	1.990
cps (false if value > 3SD differen Mean gross rate (cps)	nt from mean) 1.944 .+/-	1.880 0.020	1.997 1.98 (SD/rtN) 0.0	57 1.895 1.943 023 (poisson error)	1.990
Net rate (cps) Beta dose rate (Gy/ka)	1.194 .+/- 2.758 .+/-	0.023 0.063	(poisson error)		
Run HV Sample	979 6.60 2158	File	11107	Date 11107 Threshold 0.45 Mass (g) 20	
Standard (cps) Background (cps) Sensitivity (mGy/a/cps)	Observed 3.493 .+/- 0.739 .+/- 2.267 .+/-	0.054 0.014 0.051	Rolling Average 3.454 .+/- 0.749 .+/- 2.309 .+/-	e 0.014 0.003 0.026	
Sample	counts time cps	1186 600 1.977	1158 119 600 60 1.930 1.98	01 1187 1144 0 600 600 35 1.978 1.907	1121 600 1.868
Mean gross rate (cps)	1.941 .+/-	0.019	(SD/rtN) 0.023	(poisson error)	
cps (false if value > 3SD different Mean gross rate (cps)	nt from mean) 1.941 .+/-	1.977 0.019	1.930 1.98 (SD/rtN) 0.0	35 1.978 1.907 023 (poisson error)	1.868
Net rate (cps) Beta dose rate (Gy/ka)	1.191 .+/- 2.751 .+/-	0.023 0.063	(poisson error)		
Run HV Sample	980 6.60 2159	File	11107	Date 11107 Threshold 0.45 Mass (g) 20	
Standard (cps) Background (cps) Sensitivity (mGy/a/cps)	3.493 .+/- 0.739 .+/- 2.267 .+/-	0.054 0.014 0.051	3.454 .+/- 0.749 .+/- 2.309 .+/-	0.014 0.003 0.026	
Sample	counts time	1201 600 2.002	1130 115 600 60 1 883 1 97	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1100 600 1.833
Mean gross rate (cps)	1.911 .+/-	0.023	(SD/rtN) 0.023	(poisson error)	1.000
cps (false if value > 3SD differen Mean gross rate (cps)	nt from mean) 1.911 .+/-	2.002 0.023	1.883 1.92 (SD/rtN) 0.0	20 1.925 1.902 023 (poisson error)	1.833
Net rate (cps) Beta dose rate (Gy/ka)	1.161 .+/- 2.682 .+/-	0.023 0.062	(poisson error)		

Run HV Sample	981 6.60 2160	File	11107	Date 11107 Threshold 0.45 Mass (g) 20	
Standard (cps) Background (cps) Sensitivity (mGy/a/cps)	Observed 3.493 .+/- 0.739 .+/- 2.267 .+/-	0.054 0.014 0.051	Rolling Averac 3.454 .+/- 0.749 .+/- 2.309 .+/-	je 0.014 0.003 0.026	
Sample	counts time cps	1189 600 1.982	1288 12 600 60 2.147 2.0	45 1107 1178 00 600 600 175 1.845 1.963	8 1198 600 3 1.997
Mean gross rate (cps)	2.001 .+/-	0.042	(SD/rtN) 0.02	4 (poisson error)	
cps (false if value > 3SD differen Mean gross rate (cps)	nt from mean) 2.001 .+/-	1.982 0.042	2.147 2.0 (SD/rtN) 0	75 1.845 1.963 .024 (poisson error)	3 1.997
Net rate (cps) Beta dose rate (Gy/ka)	1.252 .+/- 2.891 .+/-	0.024 0.064	(poisson error)	
Run HV Sample	982 6.60 2161	File	11107	Date 11107 Threshold 0.45 Mass (g) 20	
Standard (cps) Background (cps) Sensitivity (mGy/a/cps)	Observed 3.493 .+/- 0.739 .+/- 2.267 .+/-	0.054 0.014 0.051	Rolling Averag 3.454 .+/- 0.749 .+/- 2.309 .+/-	0.014 0.003 0.026	
Sample	counts time cps	1241 600 2.068	1248 12 600 60 2.080 2.0	11 1174 1146 00 600 600 18 1.957 1.910	6 1176 600 0 1.960
Mean gross rate (cps)	1.999 .+/-	0.028	(SD/rtN) 0.02	4 (poisson error)	
cps (false if value > 3SD different Mean gross rate (cps)	nt from mean) 1.999 .+/-	2.068 0.028	2.080 2.0 (SD/rtN) 0	18 1.957 1.910 .024 (poisson error)) 1.960
Net rate (cps) Beta dose rate (Gy/ka)	1.249 .+/- 2.885 .+/-	0.024 0.064	(poisson error)	
Run HV Sample	983 6.60 2162	File	21107	Date 21107 Threshold 0.45 Mass (g) 20	
Standard (cps) Background (cps) Sensitivity (mGy/a/cps)	3.458 .+/- 0.720 .+/- 2.280 .+/-	0.038 0.010 0.040	3.455 .+/- 0.747 .+/- 2.306 .+/-	0.014 0.003 0.026	
Sample	counts time	1163 600 1 938	1160 11 600 60	82 1141 1171 00 600 600 170 1.902 1.952	1131 600 1.885
Mean gross rate (cps)	1.930 .+/-	0.013	(SD/rtN) 0.02	3 (poisson error)	1.000
cps (false if value > 3SD differen Mean gross rate (cps)	nt from mean) 1.930 .+/-	1.938 0.013	1.933 1.9 (SD/rtN) 0	70 1.902 1.952 .023 (poisson error)	2 1.885
Net rate (cps) Beta dose rate (Gy/ka)	1.183 .+/- 2.729 .+/-	0.023 0.062	(poisson error)	

Standard (cps) 3.458 +/- 0.03 3.455 +/- 0.014 Background (cps) 0.720 +/- 0.040 2.306 +/- 0.026 Sample counts 1189 1153 1148 1184 1180 100 Sample counts 1189 1153 1148 1184 1180 600 cps 1.922 1.913 1.973 1.967 1.977 Mean gross rate (cps) 1.955 +/- 0.012 (SD/rtN) 0.023 (poisson error) Net rate (cps) 1.208 +/- 0.024 (poisson error) 1.977 1.977 Net rate (cps) 1.208 +/- 0.024 (poisson error) 1.977 1.977 Net rate (cps) 1.208 +/- 0.024 (poisson error) 1.972 Net rate (cps) 1.208 +/- 0.024 (poisson error) 1.972 Sample 2163b Mass (g) 20 Threshold 0.45 Sample Sample 2107 Threshold 0.45 Sample 0.720 +/- 0.720 +/- 0.030 sensitivity (mGy/a/cps) 2.228 +/- 0.026 600 600 600	Run HV Sample	984 6.60 2163a	File	21107		Date Threshold Mass (g)	21107 0.45 20	
Starting (cps) 3.405 -7.4 0.003 3.405 -7.4 0.003 Sensitivity (mGy/a/cps) 2.280 +/- 0.040 2.306 +/- 0.003 Sample counts 1189 1153 1148 1184 1180 600 600 600 Gene gross rate (cps) 1.955 +/- 0.012 (SD/rtN) 0.023 (poisson error) 1.977 Mean gross rate (cps) 1.955 +/- 0.012 (SD/rtN) 0.023 (poisson error) 1.977 Mean gross rate (cps) 1.208 +/- 0.024 (poisson error) 1.977 Net rate (cps) 1.208 +/- 0.024 (poisson error) 0.014 Background (cps) 0.720 +/- 0.014 Background (cps) 0.720 +/- 0.038 3.455 +/- 0.014 Background (cps) 0.720 +/- 0.010 1.747 +/- 0.003 Sensitivity (mGy/a/cps) 2.280 +/- 0.040 2.306 +/- 0.024 Sample counts 1396	Standard (ana)	Observed	0 0 2 0	Rolling Av	verage	0.014		
Background (cps) 0.120 1.41 1.41 0.003 Sensitivity (mGy/a/cps) 2.280 +/. 0.001 2.306 +/. 0.003 Sample counts 1189 1153 1148 1184 1180 600 cps 1.982 1.921 1.913 1.973 1.967 1.977 Mean gross rate (cps) 1.955 +/. 0.012 (SD/rtN) 0.023 (poisson error) 1.977 Net rate (cps) 1.208 +/. 0.024 (poisson error) 1.973 1.967 Net rate (cps) 1.208 +/. 0.024 (poisson error) 1.972 Net rate (cps) 1.208 +/. 0.024 (poisson error) 1.972 Net rate (cps) 1.208 +/. 0.024 (poisson error) 1.972 Sample 2.163b Threshold 0.45 Mass (g) 20 Threshold 0.45 Sample 0.0727 +/. 0.038 3.455 +/. 0.026 0.033 Sample 0.0747 +/. 0.0040 2.306 +/. 0.026 0.047 +/.	Standard (cps)	3.458 .+/-	0.038	3.455	.+/-	0.014		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sensitivity (mGy/a/cps)	2.280 .+/-	0.040	2.306	.+/- .+/-	0.003		
$ \begin{array}{c} \mbox{tmme} & 600 & 600 & 600 & 600 & 600 & 600 & 600 \\ \mbox{cps} & 1.982 & 1.922 & 1.913 & 1.973 & 1.967 & 1.977 \\ \mbox{Mean gross rate (cps)} & 1.955 . +/- 0.012 & (SD/rtN) & 0.023 & (poisson error) \\ \mbox{Mean gross rate (cps)} & 1.208 . +/- 0.024 & (poisson error) \\ \mbox{Mean gross rate (cps)} & 1.208 . +/- 0.063 \\ \mbox{Run} & 985 & File & 21107 & Date & 21107 \\ \mbox{HV} & 6.60 & Threshold 0.45 \\ \mbox{Sample} & 2163b & Mass (g) 20 \\ \mbox{Observed} & Rolling Average \\ \mbox{Standard (cps)} & 0.720 . +/- 0.010 & 0.747 . +/- & 0.003 \\ \mbox{Sample} & 2.036 . +/- 0.042 & (SD/rtN) & 0.025 & (poisson error) \\ \mbox{Sample} & 2.036 . +/- 0.040 & 2.306 . +/- & 0.026 \\ \mbox{Sample} & 2.036 . +/- 0.040 & 2.306 . +/- & 0.026 \\ \mbox{Sample} & 2.237 & 2.273 & 2.222 & 2.190 & 2.227 & 2.040 \\ \mbox{Mean gross rate (cps)} & 2.280 . +/- 0.042 & (SD/rtN) & 0.027 & (poisson error) \\ \mbox{cps} false if value > 3SD different from mean) 2.327 & 2.273 & 2.222 & 2.190 & 2.227 & FALS \\ \mbox{Mean gross rate (cps)} & 1.501 . +/- 0.024 & (SD/rtN) & 0.027 & (poisson error) \\ \mbox{cps} false if value > 3SD different from mean) 2.327 & 2.273 & 2.222 & 2.190 & 2.227 & FALS \\ \mbox{Mean gross rate (cps)} & 1.501 . +/- 0.024 & (SD/rtN) & 0.027 & (poisson error) \\ \mbox{Net rate (cps)} & 1.501 . +/- 0.024 & (SD/rtN) & 0.027 & (poisson error) \\ \mbox{Net rate (cps)} & 3.458 . +/- 0.038 & 3.455 . +/- & 0.014 \\ \mbox{Background (cps)} & 3.458 . +/- 0.038 & 3.455 . +/- & 0.014 \\ \mbox{Background (cps)} & 2.280 . +/- 0.040 & 2.306 . +/- & 0.026 \\ \mbox{Sample} & 2.165 & Mass (g) 20 \\ \mbox{Observed} & Rolling Average \\ \mbox{Standard (cps)} & 3.458 . +/- 0.038 & 3.455 . +/- & 0.014 \\ \mbox{Background (cps)} & 2.280 . +/- 0.040 & 2.306 . +/- & 0.026 \\ \mbox{Sample} & 2.165 & Mass (g) 20 \\ \mbox{Sensitivity} (mGyla/cps) & 2.280 . +/- 0.040 & (SD/rtN) & 0.024 & (poisson error) \\ \mbox{Sensitivity} (mGyla/cps) & 2.280 . +/- 0.026 & (SD/rtN) & 0.024 & (poisson error) \\ \mbox{Cps} & 2.140 & 2.152 & 2.055 & 2.012 & 2.158 & 2.047 \\ \$	Sample	counts	1189	1153	1148	1184	1180	1183
$\begin{array}{c} \mbox{track} \end{tabular} \end{tabular} \\ \begin{tabular}{l lllllllllllllllllllllllllllllllllll$		time	1 092	1 022	000 1 012	000 1 072	1 067	000 1 072
cps (false if value > 3SD different from mean) 1.982 1.922 1.913 1.973 1.967 Mean gross rate (cps) 1.205 +/- 0.024 (poisson error) (poisson error) 1.973 Net rate (cps) 1.208 +/- 0.024 (poisson error) (poisson error) 1.973 Net rate (cps) 1.208 +/- 0.024 (poisson error) (poisson error) 1.973 Run 985 File 21107 Date 21107 Threshold 0.45 Sample 2163b Mass (g) 20 Observed Mass (g) 20 0.014 Background (cps) 0.720 +/- 0.038 3.455 +/- 0.003 Sample counts 1396 1364 1333 1314 1336 1224 Mean gross rate (cps) 2.213 +/- 0.040 (SD/rtN) 0.025 (poisson error) Cps 2.248 -/- 0.024 (SD/rtN) 0.027 (poisson error) cps (false if value > 3SD different from mean) 2.327 2.273 2.222 2.190 2.227 FALS Mean gross rate (cps) 1.501 +/- 0.024 (poisson	Mean gross rate (cps)	1.955 .+/-	0.012	(SD/rtN)	0.023	(poisson	error)	1.972
Net rate (cps) Beta dose rate (Gy/ka) 1.208 .+/- 0.063 (poisson error) Run 985 File 21107 Date 21107 HV 6.60 Threshold 0.45 Mass (g) 20 Sample 2163b Mass (g) 20 Standard (cps) 3.456 +/- 0.003 3.455 +/- 0.003 Sensitivity (mGy/acps) 2.280 +/- 0.040 2.306 +/- 0.026 Sample counts 1396 1364 1333 1314 1336 1224 Beckground (cps) 0.720 +/- 0.040 2.306 +/- 0.026 2.240 Sample counts 1396 1364 1333 1314 1336 1224 Mean gross rate (cps) 2.213 +/- 0.040 (SD/rtN) 0.025 (poisson error) FALS Mean gross rate (cps) 1.501 +/- 0.024 (SD/rtN) 0.027 (poisson error) Net rate (cps) 1.501 +/- 0.026 Mass (g) 20 Mass (g) 20 Net rate (cps) 3.462 +/- 0.024 (poisson error) Mass (g) 20 Sample 21	cps (false if value > 3SD differe Mean gross rate (cps)	nt from mean) 1.955 .+/-	1.982 0.012	1.922 (SD/rtN)	1.913 0.023	1.973 3 (poisson	1.967 error)	1.972
Net rate (cps) 1.205 X+ 0.024 (poisson entrol) Beta dose rate (Gy/ka) 2.786 +/- 0.063 Run 985 File 21107 Date 21107 HV 6.60 Threshold 0.45 Mass (g) 20 Sample 2163b Mass (g) 20 Standard (cps) 3.458 +/- 0.038 3.455 +/- 0.014 Background (cps) 0.720 +/- 0.040 2.306 +/- 0.026 Sample counts 1396 1364 1333 1314 1336 1224 time 600	Not rate (and)	1 200 1/	0.024	(naisson	orror)			
Run985 HVFile21107Date Threshold 0.45 Mass (g) 20Run985 Sample2163bMass (g) 20ObservedRolling Average Standard (cps)3.458.+/- 0.720.+/0.038Standard (cps)0.720.+/- 0.720.+/0.010 $2.455.+/-$ 0.0040.003Sensitivity (mGy/a/cps)2.280.+/- 0.280.+/-0.0402.306.+/-0.026Samplecounts1396 time1364133313141336 6001224Samplecounts1396 time1364133313141336 6001224Mean gross rate (cps)2.213.+/- 2.213.+/-0.004(SD/rtN)0.027 (poisson error)FALSMean gross rate (cps)2.248.+/- 2.248.+/-0.024(SD/rtN)0.027 (poisson error)FALSMean gross rate (cps)1.501.+/- 2.248.+/-0.024(SD/rtN)0.027 (poisson error)FALSNet rate (cps)1.501.+/- 3.462.+/-0.0741231 (poisson error)FALSRun986 0.720.+/-FILE 0.0142.107 0.747.+/-0.014 0.026Sample2.165 0.720.+/-0.0100.747.+/-0.003 0.026Standard (cps)3.458.+/- 0.0260.040600600 600Goberved Observed ObservedRolling Average Mass (g) 202.280.+/-0.040Run986 0.720.+/-0.0402.306.+/-0.026Sample Date Cos (rate (cps))2.280.+/-0.0402.306.+/- <td>Beta dose rate (Gy/ka)</td> <td>2.786 .+/-</td> <td>0.024</td> <td>(poisson</td> <td>enor)</td> <td></td> <td></td> <td></td>	Beta dose rate (Gy/ka)	2.786 .+/-	0.024	(poisson	enor)			
HV 6.60 Threshold 0.45 Sample 2163b Mass (g) 20 Observed Rolling Average Standard (cps) 3.458 $\cdot / \cdot 0.038$ 3.455 $\cdot / \cdot 0.003$ Background (cps) 0.720 $\cdot / \cdot 0.010$ 0.747 $\cdot / \cdot 0.003$ Sensitivity (mGy/a/cps) 2.280 $\cdot / \cdot 0.040$ 2.306 $\cdot / \cdot 0.026$ Sample counts 1396 1364 1333 1314 1336 1224 Mean gross rate (cps) 2.213 $\cdot / \cdot 0.040$ (SD/rtN) 0.025 (poisson error) 2.044 Mean gross rate (cps) 2.248 $\cdot / \cdot 0.024$ (poisson error) FALS Mean gross rate (cps) 1.501 $\cdot / \cdot 0.024$ (poisson error) FALS Mean gross rate (cps) 1.501 $\cdot / \cdot 0.024$ (poisson error) FALS Net rate (cps) 1.501 $\cdot / \cdot 0.028$ (poisson error) FALS Run 986 File 21107 Date 21107 HV 6.60 Threshold 0.45 Sample 205 Mass (g) 20 <td< td=""><td>Run</td><td>985</td><td>File</td><td>21107</td><td></td><td>Date</td><td>21107</td><td></td></td<>	Run	985	File	21107		Date	21107	
Sample 2163b Mass (g) 20 Observed Rolling Average Standard (cps) 3.458.+/- 0.038 Background (cps) 0.720.+/- 0.010 0.747.+/- 0.003 Sensitivity (mGy/a/cps) 2.280.+/- 0.040 2.306.+/- 0.026 Sample counts 1396 1364 1333 1314 1336 1224 Mean gross rate (cps) 2.213.+/- 0.040 (SD/rtN) 0.025 (poisson error) Counts 1396 Mean gross rate (cps) 2.213.+/- 0.040 (SD/rtN) 0.027 (poisson error) FALS Mean gross rate (cps) 1.501.+/- 0.024 (SD/rtN) 0.027 (poisson error) Net rate (cps) 1.501.+/- 0.028 (poisson error) FALS Run 986 File 21107 Date 21107 HV 6.60 Threshold 0.45 Mass (g) 20 Sample 2165 Mass (g) 20 Mass (g) 20 Observed Rolling Average Satadard (cps) 3.458.+/- 0.038 3.455.+/- 0.014	HV	6.60				Threshold	0.45	
Standard (cps) 3.458 +/- 0.014 Background (cps) 0.720 +/- 0.010 0.747 +/- 0.003 Sensitivity (mGy/a/cps) 2.280 +/- 0.040 2.306 +/- 0.026 Sample counts 1396 1364 1333 1314 1336 1224 Mean gross rate (cps) 2.213 +/- 0.040 2.306 +/- 0.026 Mean gross rate (cps) 2.213 +/- 0.040 (SD/rtN) 0.025 (poisson error) cps (false if value > 3SD different from mean) 2.327 2.273 2.222 2.190 2.227 FALS Mean gross rate (cps) 1.501 +/- 0.024 (SD/rtN) 0.027 (poisson error) Net rate (cps) 1.501 .+/- 0.028 (poisson error) FALS Run 986 File 21107 Date 21107 HV 6.60 Threshold 0.45 Mass (g) 20 Observed Rolling Average Standard (cps) 3.458 .+/- 0.038 3.455 .+/-	Sample	2163b		Delling A		Mass (g)	20	
Standard (cps) 0.730 1.7 0.030 1 0.747 1.7 0.014 Background (cps) 0.720 1.7 0.010 0.747 1.7 0.003 Sensitivity (mGy/a/cps) 2.280 1.7 0.040 2.306 1.7 0.026 Sample counts 1396 1364 1333 1314 1336 1224 Mean gross rate (cps) 2.213 1.7 0.040 (SD/rtN) 0.025 (poisson error) cps (false if value > 3SD different from mean) 2.327 2.273 2.222 2.190 2.227 FALS Mean gross rate (cps) 2.248 1.7 0.024 (SD/rtN) 0.027 (poisson error) FALS Mean gross rate (cps) 1.501 1.7 0.024 (SD/rtN) 0.027 (poisson error) Net rate (cps) 1.501 1.7 0.028 (poisson error) Ead dose rate (Gy/ka) 3.462 1.7 0.074 Run 986 File 21107 Date 21107 HV 6.60 Threshold 0.45 Mass (g) 20 Observed Rolling Average Standard (cps) 3.455 1.7 0.014 Background (cps)	Standard (cps)	3 458 +/-	0.038	3 455	+/-	0 014		
Sensitivity (mGy/a/cps) 2.280 .+/- 0.040 2.306 .+/- 0.026 Sample counts 1396 1364 1333 1314 1336 1224 Mean gross rate (cps) 2.213 .+/- 0.040 (SD/rtN) 0.025 (poisson error) Counts 1.396 1.364 1.333 1.314 1.336 1.224 Mean gross rate (cps) 2.213 .+/- 0.040 (SD/rtN) 0.025 (poisson error) Cops (false if value > 3SD different from mean) 2.327 2.273 2.222 2.190 2.227 FALS Mean gross rate (cps) 1.501 .+/- 0.024 (SD/rtN) 0.027 (poisson error) FALS Net rate (cps) 1.501 .+/- 0.024 (poisson error) Date 21107 Date 21107 Run 986 File 21107 Date 21107 Threshold 0.45 Sample 3.458 .+/- 0.038 3.455 .+/- 0.014 3.455 .+/- 0.026 Sample 3.458 .+/- 0.040 2.306 .+/- 0.026 3.455 .+/- 0.026 3.455 .+/- 0.02	Background (cps)	0.720 .+/-	0.010	0.747	.+/-	0.003		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sensitivity (mGy/a/cps)	2.280 .+/-	0.040	2.306	.+/-	0.026		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sample	counts	1396	1364	1333	1314	1336	1224
cps 2.327 2.273 2.222 2.190 2.227 2.040 Mean gross rate (cps) 2.213 .+/- 0.040 (SD/rtN) 0.025 (poisson error) 2.44 Mean gross rate (cps) 2.248 .+/- 0.024 (SD/rtN) 0.027 (poisson error) FALS Mean gross rate (cps) 1.501 .+/- 0.028 (poisson error) 0.027 (poisson error) Net rate (cps) 1.501 .+/- 0.028 (poisson error) Editedose error) Editedose error) Run 986 File 21107 Date 21107 HV 6.60 Threshold 0.45 Mass (g) 20 Mass (g) 20 Observed Rolling Average 3.455 .+/- 0.014 Background (cps) 0.720 .+/- 0.010 0.747 .+/- 0.003 Sensitivity (mGy/a/cps) 2.280 .+/- 0.040 2.306 .+/- 0.026 Sample 2.094 2.094 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) 2.094 .+/- 0.026 (SD/rtN) 0.024 (poisson error) 2.047 <td></td> <td>time</td> <td>600</td> <td>600</td> <td>600</td> <td>600</td> <td>600</td> <td>600</td>		time	600	600	600	600	600	600
Mean gross rate (cps) $2.213 + -0.040$ (SD/rtN) 0.025 (poisson error) cps (false if value > 3SD different from mean) 2.327 2.273 2.222 2.190 2.227 FALS Mean gross rate (cps) $2.248 + - 0.024$ (SD/rtN) 0.027 (poisson error) FALS Net rate (cps) $1.501 + - 0.028$ (poisson error) (poisson error) Run 986 File 21107 Date 21107 HV 6.60 Threshold 0.45 Mass (g) 20 Observed Mass (g) 20 Observed Mass (g) 20 Standard (cps) $3.458 + - 0.038$ $3.455 + - 0.014$ $3.455 + - 0.014$ Background (cps) $0.720 + - 0.010$ $0.747 + - 0.026$ Sample Sample $0.720 + - 0.040$ $2.306 + - 0.026$ Sample Sample 0.040 $2.306 + - 0.026$ Sample $0.27 + 2.055 + 2.012 + 2.158 + 2.047$ Mean gross rate (cps) $2.094 + - 0.026$ (SD/rtN) 0.024 (poisson error) 0.024 Mean gross rate (cps) $2.094 + - 0.026$ (SD/rtN) 0.024 (poisson error) 0.024 <td< td=""><td></td><td>cps</td><td>2.327</td><td>2.273</td><td>2.222</td><td>2.190</td><td>2.227</td><td>2.040</td></td<>		cps	2.327	2.273	2.222	2.190	2.227	2.040
cps (false if value > 3SD different from mean) 2.327 2.273 2.222 2.190 2.227 FALSMean gross rate (cps) 2.248 $+/ 0.024$ (SD/rtN) 0.027 (poisson error)FALSNet rate (cps) 1.501 $+/ 0.024$ (poisson error)(poisson error)FALSBeta dose rate (Gy/ka) 3.462 $+/ 0.074$ (poisson error)(poisson error)Run986File 21107 Date 21107 HV 6.60 Threshold 0.45 Sample 2165 Mass (g) 20ObservedRolling AverageStandard (cps) 3.458 $+/ 0.014$ Background (cps) 0.720 $+/ 0.010$ 0.747 Sensitivity (mGy/acps) 2.280 $+/ 0.040$ 2.306 Samplecounts 1284 1291 1233 1207 1295 Samplecounts 1284 1291 1233 1207 1295 1228 Mean gross rate (cps) 2.094 $+/ 0.026$ (SD/rtN) 0.024 (poisson error)vers (false if value > 3SD different from mean) 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) 2.094 $+/ 0.026$ (SD/rtN) 0.024 (poisson error)Net rate (cps) 1.347 $+/ 0.026$ $(poisson error)$ Net rate (cps) 1.347 $+/ 0.024$ $(poisson error)$ Beta dose ra	Mean gross rate (cps)	2.213 .+/-	0.040	(SD/rtN)	0.025	(poisson	error)	
Mean gross rate (cps) $2.248 \cdot +/ \cdot 0.024$ (SD/rtN) 0.027 (poisson error) Net rate (cps) $1.501 \cdot +/ \cdot 0.028$ (poisson error) Beta dose rate (Gy/ka) $3.462 \cdot +/ \cdot 0.074$ (poisson error) Run 986 File 21107 Date 21107 HV 6.60 Threshold 0.45 Sample 2165 Mass (g) 20 Observed Rolling Average Standard (cps) $3.458 \cdot +/ \cdot 0.038$ $3.455 \cdot +/ \cdot 0.014$ Background (cps) $0.720 \cdot +/ \cdot 0.010$ $0.747 \cdot +/ \cdot 0.003$ Sensitivity (mGy/a/cps) $2.280 \cdot +/ \cdot 0.040$ $2.306 \cdot +/ \cdot 0.026$ Sample counts 1284 1291 1233 1207 1295 1228 Sample counts 1284 1291 1233 1207 1295 1228 Mean gross rate (cps) $2.094 \cdot +/ \cdot 0.026$ (SD/rtN) 0.024 (poisson error) cps (false if value > 3SD different from mean) 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) $2.094 \cdot +/ \cdot 0.026$	cps (false if value > 3SD differe	nt from mean)	2.327	2.273	2.222	2.190	2.227	FALSE
Net rate (cps) Beta dose rate (Gy/ka) 1.501 .+/- 0.028 3.462 .+/- 0.074 (poisson error) Run HV 986 File 21107 Date 21107 Threshold 0.45 Mass (g) 20 Sample 2165 Mass (g) 20 Observed Rolling Average Standard (cps) $3.458 .+/- 0.038$ $3.455 .+/ 0.014$ Background (cps) $0.720 .+/- 0.010$ $0.747 .+/ 0.003$ Sensitivity (mGy/a/cps) $2.280 .+/- 0.040$ $2.306 .+/ 0.026$ Sample counts 1284 1291 1233 1207 1295 1228 Sample counts 1284 1291 1233 1207 1295 1228 Sample counts 1284 1291 1233 1207 1295 1228 Mean gross rate (cps) 2.094 .+/- 0.026 (SD/rtN) 0.024 (poisson error) vers (false if value > 3SD different from mean) 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) 1.347 .+/- 0.026 (SD/rtN) 0.024 (poisson error) 2.047	Mean gross rate (cps)	2.248 .+/-	0.024	(SD/rtN)	0.027	7 (poisson	error)	
Beta dose rate (Gy/ka) $3.462 \cdot +/- 0.074$ Run 986 File 21107 Date 21107 HV 6.60 Threshold 0.45 Sample 2165 Mass (g) 20 Observed Rolling Average Standard (cps) $3.458 \cdot +/- 0.038$ $3.455 \cdot +/ 0.014$ Background (cps) $0.720 \cdot +/- 0.010$ $0.747 \cdot +/ 0.003$ Sensitivity (mGy/a/cps) $2.280 \cdot +/- 0.040$ $2.306 \cdot +/ 0.026$ Sample counts 1284 1291 1233 1207 1295 1228 Sample counts 1284 1291 1233 1207 1295 1228 Sample counts 1284 1291 1233 1207 1295 1228 Mean gross rate (cps) $2.094 \cdot +/- 0.026$ (SD/rtN) 0.024 (poisson error) Cps (false if value > 3SD different from mean) 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) $1.347 \cdot +/- 0.026$ (SD/rtN) 0.0	Net rate (cps)	1.501 .+/-	0.028	(poisson	error)			
Run 986 File 21107 Date 21107 HV 6.60 Threshold 0.45 Sample 2165 Mass (g) 20 Observed Rolling Average 3.455 .+/- 0.014 Background (cps) 0.720 .+/- 0.010 0.747 .+/- 0.003 Sensitivity (mGy/a/cps) 2.280 .+/- 0.040 2.306 .+/- 0.026 Sample counts 1284 1291 1233 1207 1295 1228 Sample counts 1284 1291 1233 1207 1295 1228 Sample counts 1284 1291 1233 1207 1295 1228 Mean gross rate (cps) 2.094 .+/- 0.026 SD/ttN) 0.024 (poisson error) cps (false if value > 3SD different from mean) 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) 1.347 .+/- 0.026 (SD/rtN) 0.024 (poisson error) 2.047 Mean gross ra	Beta dose rate (Gy/ka)	3.462 .+/-	0.074					
Num360Frile21107Date21107HV6.60Threshold 0.45Sample2165Mass (g) 20ObservedRolling AverageStandard (cps) $3.458 \cdot +/- 0.038$ $3.455 \cdot +/ 0.014$ Background (cps) $0.720 \cdot +/- 0.010$ $0.747 \cdot +/ 0.003$ Sensitivity (mGy/a/cps) $2.280 \cdot +/- 0.040$ $2.306 \cdot +/ 0.026$ Samplecounts 1284 1291 1233 1207 1295 Samplecounts 1284 1291 1233 1207 1295 1228 Mean gross rate (cps) $2.094 \cdot +/- 0.026$ (SD/rtN) 0.024 (poisson error) 2.047 Mean gross rate (cps) $2.094 \cdot +/- 0.026$ (SD/rtN) 0.024 (poisson error)Net rate (cps) $1.347 \cdot +/- 0.024$ (poisson error)Beta dose rate (Gy/ka) $3.107 \cdot +/- 0.026$ (poisson error)	Dun	096	Filo	21107		Data	21107	
Number of the stateStateStateMass (g) 20Sample2165Mass (g) 20ObservedRolling AverageStandard (cps) $3.458 \cdot +/- 0.038$ $3.455 \cdot +/- 0.014$ Background (cps) $0.720 \cdot +/- 0.010$ $0.747 \cdot +/- 0.003$ Sensitivity (mGy/a/cps) $2.280 \cdot +/- 0.040$ $2.306 \cdot +/- 0.026$ Samplecounts 1284 1291 1233 1207 1295 Samplecounts 1284 1291 1233 1207 1295 1228 Mean gross rate (cps) $2.094 \cdot +/- 0.026$ (SD/rtN) 0.024 (poisson error) 2.047 Net rate (cps) $1.347 \cdot +/- 0.026$ (SD/rtN) 0.024 (poisson error) 2.047 Net rate (cps) $1.347 \cdot +/- 0.024$ (poisson error) 2.047 Beta dose rate (Gy/ka) $3.107 \cdot +/- 0.026$ (poisson error)	HV	900 6 60		21107		Threshold	0.45	
Observed Standard (cps)Observed $3.458 . +/- 0.038$ Rolling Average $3.455 . +/- 0.014$ $0.720 . +/- 0.010$ Rolling Average $3.455 . +/- 0.014$ $0.747 . +/- 0.003$ $2.306 . +/- 0.026$ Samplecounts time 1284 1291 1233 1207 1295 1228 1295 Samplecounts counts 1284 time 600 cps 	Sample	2165				Mass (a)	20	
Standard (cps) $3.458 \cdot +/- 0.038$ $3.455 \cdot +/ 0.014$ Background (cps) $0.720 \cdot +/- 0.010$ $0.747 \cdot +/ 0.003$ Sensitivity (mGy/a/cps) $2.280 \cdot +/- 0.040$ $2.306 \cdot +/ 0.026$ Samplecounts 1284 1291 1233 1207 1295 Samplecounts 1284 1291 1233 1207 1295 1228 Mean gross rate (cps) 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) $2.094 \cdot +/- 0.026$ (SD/rtN) 0.024 (poisson error)Net rate (cps) $1.347 \cdot +/- 0.024$ (poisson error) 2.047 Net rate (cps) $1.347 \cdot +/- 0.024$ (poisson error)Beta dose rate (Gy/ka) $3.107 \cdot +/- 0.066$ $3.107 \cdot +/- 0.066$		Observed		Rolling Av	verage	(3)		
Background (cps) $0.720 . +/- 0.010$ $0.747 . +/ 0.003$ Sensitivity (mGy/a/cps) $2.280 . +/- 0.040$ $2.306 . +/ 0.026$ Samplecounts 1284 1291 1233 1207 1295 1228 Samplecounts 1284 1291 1233 1207 1295 1228 Mean gross rate (cps) 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) $2.094 . +/- 0.026$ (SD/rtN) 0.024 (poisson error)Net rate (cps) $1.347 . +/- 0.024$ (poisson error) 2.094 Net rate (cps) $1.347 . +/- 0.024$ (poisson error)Beta dose rate (Gy/ka) $3.107 . +/- 0.066$ $3.107 . +/- 0.066$	Standard (cps)	3.458 .+/-	0.038	3.455	.+/-	0.014		
Sensitivity (mGy/a/cps) $2.280 . +/- 0.040$ $2.306 . +/- 0.026$ Samplecounts128412911233120712951228time600600600600600600cps 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) $2.094 . +/- 0.026$ (SD/rtN) 0.024 (poisson error)cps (false if value > 3SD different from mean) 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) $2.094 . +/- 0.026$ (SD/rtN) 0.024 (poisson error) 2.047 Net rate (cps) $1.347 . +/- 0.024$ (poisson error) $3.107 . +/- 0.066$ $3.107 . +/- 0.066$	Background (cps)	0.720 .+/-	0.010	0.747	.+/-	0.003		
Samplecounts128412911233120712951228time 600 600 600 600 600 600 600 600 cps 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) 2.094 .+/- 0.026 (SD/rtN) 0.024 (poisson error) 2.047 Mean gross rate (cps) 2.094 .+/- 0.026 (SD/rtN) 0.024 (poisson error) 2.047 Net rate (cps) 1.347 .+/- 0.026 (SD/rtN) 0.024 (poisson error) 2.047 Net rate (cps) 1.347 .+/- 0.024 (poisson error) 2.047 Beta dose rate (Gy/ka) 3.107 .+/- 0.024 (poisson error)	Sensitivity (mGy/a/cps)	2.280 .+/-	0.040	2.306	.+/-	0.026		
time 600 600 600 600 600 600 600 cps 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) 2.094 .+/- 0.026 (SD/rtN) 0.024 (poisson error) 2.047 cps (false if value > 3SD different from mean) 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) 2.094 .+/- 0.026 (SD/rtN) 0.024 (poisson error)Net rate (cps) 1.347 .+/- 0.024 (poisson error)Beta dose rate (Gy/ka) 3.107 .+/- 0.066	Sample	counts	1284	1291	1233	1207	1295	1228
cps 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) 2.094 .+/- 0.026 (SD/rtN) 0.024 (poisson error) 2.047 cps (false if value > 3SD different from mean) 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) 2.094 .+/- 0.026 (SD/rtN) 0.024 (poisson error) 2.047 Net rate (cps) 1.347 .+/- 0.026 (SD/rtN) 0.024 (poisson error) Net rate (cps) 1.347 .+/- 0.024 (poisson error) 3.107 .+/- 0.066	•	time	600	600	600	600	600	600
Mean gross rate (cps) 2.094 .+/- 0.026 (SD/rtN) 0.024 (poisson error) cps (false if value > 3SD different from mean) 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) 2.094 .+/- 0.026 (SD/rtN) 0.024 (poisson error) Net rate (cps) 1.347 .+/- 0.024 (poisson error) Beta dose rate (Gy/ka) 3.107 .+/- 0.066		cps	2.140	2.152	2.055	2.012	2.158	2.047
cps (false if value > 3SD different from mean) 2.140 2.152 2.055 2.012 2.158 2.047 Mean gross rate (cps) 2.094 .+/- 0.026 (SD/rtN) 0.024 (poisson error) Net rate (cps) 1.347 .+/- 0.024 (poisson error) Beta dose rate (Gy/ka) 3.107 .+/- 0.066	Mean gross rate (cps)	2.094 .+/-	0.026	(SD/rtN)	0.024	(poisson	error)	
Mean gross rate (cps) 2.094 .+/- 0.026 (SD/rtN) 0.024 (poisson error) Net rate (cps) 1.347 .+/- 0.024 (poisson error) Beta dose rate (Gy/ka) 3.107 .+/- 0.066	cps (false if value > 3SD differe	nt from mean)	2.140	2.152	2.055	2.012	2.158	2.047
Net rate (cps) 1.347 .+/- 0.024 (poisson error) Beta dose rate (Gy/ka) 3.107 .+/- 0.066 (poisson error)	Mean gross rate (cps)	2.094 .+/-	0.026	(SD/rtN)	0.024	1 (poisson	error)	
Beta dose rate (Gy/ka) 3.107 .+/- 0.066	Net rate (cps)	13/7 +/	0.024	(noisson	error)			
	Beta dose rate (Gy/ka)	3.107 .+/-	0.066	(0000011	0101)			

Run	987	File	21107	Date 21107	
	0.00				
Sample	2100 Observed		Delling Average	wass (g) 20	
		0.000		÷	
Standard (cps)	3.458 .+/-	0.038	3.455 .+/-	0.014	
Background (cps)	0.720 .+/-	0.010	0.747 .+/-	0.003	
Sensitivity (mGy/a/cps)	2.280 .+/-	0.040	2.306 .+/-	0.026	
Sample	counts	1200	1166 115	3 1141 1133	1147
	time	600	600 600	0 600 600	600
	cps	2.000	1.943 1.92	22 1.902 1.888	1.912
Mean gross rate (cps)	1.928 .+/-	0.016	(SD/rtN) 0.023	(poisson error)	
cps (false if value > 3SD diffe	rent from mean)	FALSE	1.943 1.92	22 1.902 1.888	1.912
Mean gross rate (cps)	1.913 .+/-	0.009	(SD/rtN) 0.0	025 (poisson error)	
Net rate (cps)	1.167 .+/-	0.025	(poisson error)		
Beta dose rate (Gy/ka)	2.691 .+/-	0.066			
Run	988	File	21107	Date 21107	
HV	6.60			Threshold 0.45	
Sample	2167			Mass (g) 20	
	Observed				
	Obscived		Rolling Average	9	
Standard (cps)	3.458 .+/-	0.038	Rolling Average 3.455 .+/-	e 0.014	
Standard (cps) Background (cps)	3.458 .+/- 0.720 .+/-	0.038 0.010	Rolling Average 3.455 .+/- 0.747 .+/-	e 0.014 0.003	
Standard (cps) Background (cps) Sensitivity (mGy/a/cps)	3.458 .+/- 0.720 .+/- 2.280 .+/-	0.038 0.010 0.040	Rolling Average 3.455 .+/- 0.747 .+/- 2.306 .+/-	0.014 0.003 0.026	
Standard (cps) Background (cps) Sensitivity (mGy/a/cps) Sample	3.458 .+/- 0.720 .+/- 2.280 .+/-	0.038 0.010 0.040 1188	Rolling Average 3.455 .+/- 0.747 .+/- 2.306 .+/- 1129 119	0.014 0.003 0.026 7 1232 1170	1162
Standard (cps) Background (cps) Sensitivity (mGy/a/cps) Sample	3.458 .+/- 0.720 .+/- 2.280 .+/- counts time	0.038 0.010 0.040 1188 600	Rolling Average 3.455 .+/- 0.747 .+/- 2.306 .+/- 1129 119 600 600	0.014 0.003 0.026 7 1232 1170 0 600 600	1162 600
Standard (cps) Background (cps) Sensitivity (mGy/a/cps) Sample	3.458 .+/- 0.720 .+/- 2.280 .+/- counts time cps	0.038 0.010 0.040 1188 600 1.980	Rolling Average 3.455 .+/- 0.747 .+/- 2.306 .+/- 1129 119 600 600 1.882 1.99	0.014 0.003 0.026 7 1232 1170 0 600 600 95 2.053 1.950	1162 600 1.937
Standard (cps) Background (cps) Sensitivity (mGy/a/cps) Sample Mean gross rate (cps)	3.458 .+/- 0.720 .+/- 2.280 .+/- counts time cps 1.966 .+/-	0.038 0.010 0.040 1188 600 1.980 0.024	Rolling Average 3.455 .+/- 0.747 .+/- 2.306 .+/- 1129 119 600 600 1.882 1.99 (SD/rtN) 0.023	9 0.014 0.003 0.026 17 1232 1170 0 600 600 95 2.053 1.950 (poisson error)	1162 600 1.937
Standard (cps) Background (cps) Sensitivity (mGy/a/cps) Sample Mean gross rate (cps) cps (false if value > 3SD diffe	3.458 .+/- 0.720 .+/- 2.280 .+/- counts time cps 1.966 .+/- rent from mean)	0.038 0.010 0.040 1188 600 1.980 0.024 1.980	Rolling Average 3.455 .+/- 0.747 .+/- 2.306 .+/- 1129 119 600 600 1.882 1.99 (SD/rtN) 0.023 1.882 1.99	0.014 0.003 0.026 07 1232 100 600 05 2.053 100 (poisson error) 05 2.053 1.950 05 2.053 1.950	1162 600 1.937 1.937
Standard (cps) Background (cps) Sensitivity (mGy/a/cps) Sample Mean gross rate (cps) cps (false if value > 3SD diffe Mean gross rate (cps)	3.458 .+/- 0.720 .+/- 2.280 .+/- counts time cps 1.966 .+/- rent from mean) 1.966 .+/-	0.038 0.010 0.040 1188 600 1.980 0.024 1.980 0.024	Rolling Average 3.455 .+/- 0.747 .+/- 2.306 .+/- 1129 119 600 600 1.882 1.99 (SD/rtN) 0.023 1.882 1.99 (SD/rtN) 0.023	9 0.014 0.003 0.026 07 1232 1170 0 600 600 600 600 600 600 600	1162 600 1.937 1.937
Standard (cps) Background (cps) Sensitivity (mGy/a/cps) Sample Mean gross rate (cps) cps (false if value > 3SD diffe Mean gross rate (cps) Net rate (cps)	3.458 .+/- 0.720 .+/- 2.280 .+/- counts time cps 1.966 .+/- rent from mean) 1.966 .+/- 1.219 .+/-	0.038 0.010 0.040 1188 600 1.980 0.024 1.980 0.024 0.024	Rolling Average 3.455 .+/- 0.747 .+/- 2.306 .+/- 1129 119 600 600 1.882 1.99 (SD/rtN) 0.023 1.882 1.99 (SD/rtN) 0.0 (poisson error)	9 0.014 0.003 0.026 97 1232 1170 0 600 600 600 600 95 2.053 1.950 (poisson error) 95 2.053 1.950 023 (poisson error)	1162 600 1.937 1.937

Run HV Sample	989 6.60 2168 Observed	File	21107 Rolling Average	Date 21107 Threshold 0.45 Mass (g) 20	
Standard (cps) Background (cps) Sensitivity (mGy/a/cps)	3.458 .+/- 0.720 .+/- 2.280 .+/-	0.038 0.010 0.040	3.455 .+/- 0.747 .+/- 2.306 .+/-	0.014 0.003 0.026	
Sample	counts time cps	1310 600 2.183	1253 1209 600 600 2.088 2.015	120112426006002.0022.070	1232 600 2.053
Mean gross rate (cps)	2.069 .+/-	0.027	(SD/rtN) 0.024	(poisson error)	
cps (false if value > 3SD different Mean gross rate (cps)	nt from mean) 2.046 .+/-	FALSE 0.016	2.088 2.015 (SD/rtN) 0.02	2.002 2.070 6 (poisson error)	2.053
Net rate (cps) Beta dose rate (Gy/ka)	1.299 .+/- 2.996 .+/-	0.026 0.069	(poisson error)		
Run HV Sample	990 6.60 2169	File	21107	Date 21107 Threshold 0.45 Mass (g) 20	
Standard (cps) Background (cps) Sensitivity (mGy/a/cps)	Observed 3.458 .+/- 0.720 .+/- 2.280 .+/-	0.038 0.010 0.040	Rolling Average 3.455 .+/- 0.747 .+/- 2.306 .+/-	0.014 0.003 0.026	
Sample	counts time cps 2 023 +/-	1239 600 2.065 0.018	1220 1236 600 600 2.033 2.060 (SD/ttN) 0.024	1167 1221 600 600 1.945 2.035 (poisson error)	1200 600 2.000
ena (falsa if value > 20D differe	2.020,	0.010			2 000
Mean gross rate (cps)	2.039 .+/-	2.065 0.012	(SD/rtN) 0.02	e (poisson error)	2.000
Net rate (cps) Beta dose rate (Gy/ka)	1.292 .+/- 2.980 .+/-	0.026 0.069	(poisson error)		
Run HV Sample	991 6.60 2170	File	21107	Date 21107 Threshold 0.45 Mass (g) 20	
Standard (cps) Background (cps) Sensitivity (mGy/a/cps)	0.720 .+/- 2.280 .+/-	0.038 0.010 0.040	Rolling Average 3.455 .+/- 0.747 .+/- 2.306 .+/-	0.014 0.003 0.026	
Sample	counts time cps	1182 600 1.970	1196 1225 600 600 1.993 2.042	1211 1220 600 600 2.018 2.033	1157 600 1.928
Mean gross rate (cps)	1.998 .+/-	0.018	(SD/rtN) 0.024	(poisson error)	
cps (false if value > 3SD different Mean gross rate (cps)	nt from mean) 1.998 .+/-	1.970 0.018	1.993 2.042 (SD/rtN) 0.02	2.018 2.033 4 (poisson error)	1.928
Net rate (cps) Beta dose rate (Gy/ka)	1.251 .+/- 2.885 .+/-	0.024 0.064	(poisson error)		

C.2. High resolution gamma spectrometry

		Half Life	Energy (keV)	Intensity	Background Mass (g) Total time (ks) Wt Mean rate (cts/ks)	0 1515 Error	Shap Granite Mass (g) Total time (ks) Wt Mean rate (cts/ks)	100 g 100 250 Error	Net Rate (cts/ks)	error
Potassium	40-K	1.28e9a	1460.8	0.107	7.86	0.13	120.61	0.79	112.75	0.80
Uranium series	s238-U	4.47e9a								
	234-Th	24.1d	62 92.6	0.0402 0.054	33.41 38.71	0.19 0.24	55.56 64.48	0.73 0.89	22.15 25.77	0.76 0.92
	226-Ra (235-U)	1599a	185.99	0.0328	21.34	0.19	55.91	0.73	34.58	0.75
	214-PD	26.8M	241.91 295.2	0.0745 0.191	3.26	0.13	68.50	0.66	65.24	0.67
			351.9	0.369	4.17	0.16	125.09	0.87	120.92	0.88
	214-Bi	19.9m	609.3	0.468	4.97	0.18	98.21	0.83	93.25	0.85
			1120.28	0.154	1.01	0.09	20.63	0.41	19.62	0.42
			1238	0.06098	0.52	0.08	7.35	0.33	6.82	0.34
			1764.5	0.162	1.89	0.09	17.29	0.35	15.40	0.36
	210-Pb	22a	2204 45	0.052	4.50	0.10	5.65 15.60	0.34	4.89 11.10	0.36
Thorium Serie	€232-Th	1.405e10a								
	228-Ac	6.15h	338.7	0.12	1.79	0.13	34.71	0.56	32.92	0.58
			911.3	0.29	2.40	0.14	38.91	0.60	36.51	0.62
			964.84	0.0545						
			969.16	0.17458	6.33	0.22	34.37	0.78	28.04	0.81
	224-Ra	3.62d	240.987	0.0397						
	212-Pb	10.64h	238.625	0.434	13.71	0.32	229.50	1.42	215.79	1.45
	212-Bi	1.01h	727.2	0.0675	0.55	0.16	10.66	0.57	10.11	0.59
	208-TI	3.06m	277.358	0.0637	1.10	0.12	7.63	0.45	6.53	0.46
			583.19	0.851	3.70	0.19	57.11	0.75	53.41	0.78
			860.56	0.126	-1.12	0.16	5.21	0.53	6.33	0.56
			2614.5	0.999	5.27	0.14	25.35	0.60	20.08	0.62

Detector	#3														
Sample	2157														
Filename	2157														
Roi file	G3nov07														
Date	21/10/07														
Time (ks)	25.00				Net		Creatific		Canaa	atration	\A/ithin				
Mass (g)	90.0		Poto	orror	Reto	orror	Activity	orror	Conce	orror	2 orr of	wivi caics	i		
	Counts ent	ונ	(cte/ke		(cte/ke)	(Ra/ka)	enoi		enor					
			(015/16)	(015/K5)	(Dq/kg) K		%K						
40-K	1682	48	67.28	1.92	59.42	1.92	731	25	2.36	0.08					
238-U							238U	D	om eU	error		x/siama^2	1/sigma [,] sum		
234-Th	1004	43	40.16	1.72	6.75	1.73	46	12	3.70	0.97	TRUE	0.32	0.01 full	11.27	0.48
	1215	53	48.60	2.12	9.89	2.13	58	13	4.66	1.03	FALSE	0.35	0.01 preRn	1.26	0.03
226-Ra (23	3 734	43	29.36	1.72	8.02	1.73	35	8	2.82	0.63	TRUE	0.58	0.02 postRn	10.01	0.45
214-Pb															
	283	31	11.32	1.24	8.06	1.25	19	3	1.50	0.24	TRUE	2.04	0.11		
	599	41	23.96	1.64	19.79	1.65	25	2	1.99	0.19	TRUE	4.30	0.18		
214-Bi	480	43	19.20	1.72	14.23	1.73	23	3	1.85	0.24	TRUE	2.52	0.11		
	102	21	4.08	0.84	3.07	0.84	23	7	1.90	0.53	TRUE	0.54	0.02		
	12	19	0.48	0.76	-0.04	0.76	-1	-17	-0.08	-1.36	FALSE	0.00	0.00		
	126	19	5.04	0.76	3.15	0.77	31	8	2.48	0.62	TRUE	0.53	0.02		
	48	21	1.92	0.84	1.16	0.85	36	26	2.88	2.11	TRUE	0.05	0.00		
210-PD	125	22	4.92	0.00	0.42	0.69	0	12	0.40	0.97	IRUE	0.04	0.01		
232-Th							232Th	pp	om eTh	error			sum		
228-Ac	223	31	8.92	1.24	7.13	1.25	25	4	6.24	1.10	TRUE	1.27	0.05 full	14.40	0.60
	268	35	10.72	1.40	8.32	1.41	27	5	6.57	1.12	TRUE	1.30	0.05		
	302	49	12.08	1.96	5.75	1.97	24	8	5.91	2.03	TRUE	0.35	0.01		
224-Ra															
212-Pb	1494	75	59.76	3.00	46.05	3.02	25	2	6.15	0.41	TRUE	9.08	0.36		
212-Bi	81	36	3.24	1.44	2.69	1.45	31	17	7.67	4.15	TRUE	0.11	0.00		
208-11	80	28	3.20	1.12	2.10	1.13	38	20	9.28	5.01	TRUE	0.09	0.00		
	335	43	13.40	1.72	9.70	1.73	21	4	5.24	0.94	IRUE	1.47	0.07		
	-30	37	-1.20	1.48	-0.08	1.49	-1	-28	-0.35	-6.78	FALSE	0.00	0.00		
	203	20	8.12	0.80	2.85	0.81	17	5	4.10	1.17	TRUE	0.74	0.04		
	Sample			Specif	ic Activi	Conce	ntration	Dose F	Rates (r	nGy/a)					
				(Bq/kg)	(% or p	opm)	Alpha	error	Beta	error	Gamma	error		
	Full Series		ĸ	731	25	2.36	0.08			1.96	0.0664	0.56949	0.02		
	WM		U	23.61	2.095	1.912	0.17	5.31	0.47	0.28	0.0248	0.21965	0.02		
			Ih	24.1	1.673	5.939	0.41	4.39	0.30	0.17	0.0118	0.30528	0.02		
							Iotal	9.70	0.56	2.41	0.0718	5 1.09441	0.03		
	Thfull/Ufull					3.11									
	Pre 222Rn		U	42.01	33.43	3.402	2.71	9.45	7.52	0.50	0.3956	0.3909	0.31		
1	Post 222Rn		Ũ	22.37	2.235	1.812	0.18	5.04	0.50	0.26	0.0264	0.2082	0.02		
	Difference		-	19.63	33.51	1.59	2.71	4.42	7.54	0.23	0.40	0.18	0.31		
1															

Detector Sample	#3 2158															
Roi file Date	G3nov07 21/10/07															
Time (ks)	50.00															
Mass (g)	100					Net		Specific		Conce	ntration	Within	WM ca	lcs		
	Counts	error		Rate	error	Rate	error	Activity	error		error	2 err of				
				(CIS/KS)	(CIS/KS)	(Bq/kg)		%K		VVIVI ?				
40-K	3311		67	66.22	1.34	58.36	1.35	709	18	2.29	0.06					
238-U								238U	р	pm eU	error		x/sigm	1/sigm sum		
234-Th	2046		62	40.92	1.24	7.51	1.25	50	9	4.07	0.71	FALSE	0.65	0.01 full	20.99	0.75
	2527		76	50.54	1.52	11.83	1.54	68	10	5.51	0.77	FALSE	0.75	0.01 preRn	2.71	0.05
226-Ra (23 214-Pb	1592		62	31.84	1.24	10.50	1.26	45	6	3.64	0.47	FALSE	1.31	0.03 postRn	18.28	0.70
21110	660		44	13.20	0.88	9.94	0.89	23	2	1.83	0.19	FALSE	4.18	0.19		
	1321		58	26.42	1.16	22.25	1.17	27	2	2.21	0.16	TRUE	6.90	0.25		
214-Bi	1149		62	22.98	1.24	18.01	1.25	29	2	2.32	0.20	TRUE	4.72	0.16		
	253		32	5.06	0.64	4.05	0.65	31	5	2.48	0.42	TRUE	1.15	0.04		
	139		28	2.78	0.56	2.26	0.57	49	13	3.97	1.03	TRUE	0.30	0.01		
	214		28	4.28	0.56	2.39	0.57	23	6	1.86	0.45	TRUE	0.73	0.03		
210-Pb	295		32 31	5.90	0.64	1.40	0.65	10	20	1.51	0.68	TRUE	0.03	0.00		
232-Th								232Th	pp	om eTh	error			sum		
228-Ac	407		44	8.14	0.88	6.35	0.89	22	3	5.49	0.78	TRUE	2.24	0.10 full	29.11	1.17
	469		48	9.38	0.96	6.98	0.97	22	3	5.45	0.76	TRUE	2.30	0.10		
	678		68	13.56	1.36	7.23	1.38	30	6	7.35	1.41	TRUE	0.91	0.03		
224-Ra																
212-Pb	3090		108	61.80	2.16	48.09	2.18	26	1	6.35	0.30	TRUE	17.80	0.69		
212-BI	170		51	3.40	1.02	2.85	1.03	33	12	8.03	2.94	TRUE	0.23	0.01		
200-11	693		59 61	2.00	0.70	10.16	1 23	21	14	0.00 5.42	0.66	TRUE	3.03	0.01		
	87		49	1.74	0.98	2.86	0.99	52	19	12.87	4.66	TRUE	0.15	0.00		
	496		28	9.92	0.56	4.65	0.58	27	3	6.60	0.84	TRUE	2.32	0.09		
	Sample				Snecif	ic Activi	Conce	ntration	Dose F	Rates (r	mGv/a)					
	campio				(Bg/kg)	(% or	opm)	Alpha	error (Beta	error	Gamm	error		
	Full Serie	s		к	709	<i>.</i> 18	2.29	0.06	·		1.90	0.0477	0.553	0.01		
	WM			U	28.03	1.335	2.27	0.11	6.31	0.30	0.33	0.0158	0.261	0.01		
				Th	24.98	0.858	6.157	0.21	4.55	0.16	0.18	0.006	0.316	0.01		
								Iotal	10.86	0.34	2.41	0.0506	1.13	0.02		
	Thfull/Ufu	II					2.71									
	Pre 222R	n		U	51.05	18.83	4.135	1.52	11.49	4.24	0.60	0.2228	0.475	0.18		
	Post 222F	Rn		U	26.27	1.437	2.128	0.12	5.91	0.32	0.31	0.017	0.244	0.01		
	Difference	Э			24.78	18.88	2.01	1.53	5.58	4.25	0.29	0.22	0.23	0.18		
1																

Detector Sample Filename	#3 2159 2159															
Roi file Date	G3nov07 22/10/07															
Time (ks)	25.00									-						
Mass (g)	92.4 Counto	orror		Data	orror	Net	orror	Specific	orror	Conce	ntration	Within	WM ca	CS		
	Counts	enor		(cts/ks)	(cts/ks)	(Bq/kg) K	enor	%K	enor	WM ?				
40-K	1578		46	63.12	1.84	55.26	1.84	727	25	2.35	0.08					
238-U								238U	p	opm eU	error		x/sigm	1/sigm sum		
234-Th	914		42	36.56	1.68	3.15	1.69	23	12	1.85	1.00	TRUE	0.15	0.01 full	10.58	0.43
	1055		51	42.20	2.04	3.49	2.05	22	13	1.76	1.04	TRUE	0.13	0.01 preRn	0.80	0.03
226-Ra (23 214-Pb	713		42	28.52	1.68	7.18	1.69	33	8	2.70	0.65	TRUE	0.52	0.02 postRn	9.79	0.40
	284		31	11.36	1.24	8.10	1.25	20	3	1.61	0.26	TRUE	1.91	0.10		
214 Di	605		41	24.20	1.64	20.03	1.65	27	3	2.15	0.21	TRUE	4.04	0.15		
214-DI	440 110		22	4 76	0.88	3 75	0.88	22	37	2.48	0.25	TRUE	2.35	0.11		
	50		19	2 00	0.00	1 48	0.00	35	18	2.40	1 47	TRUE	0.30	0.02		
	113		18	4.52	0.72	2.63	0.73	27		2.22	0.62	TRUE	0.46	0.02		
	77		17	3.08	0.68	2.32	0.69	76	23	6.16	1.89	FALSE	0.14	0.00		
210-Pb	183		23	7.32	0.92	2.82	0.93	41	14	3.30	1.10	TRUE	0.22	0.01		
232-Th								232Th	pp	om eTh	error			sum		
228-Ac	189		30	7.56	1.20	5.77	1.21	22	5	5.40	1.14	TRUE	1.03	0.05 full	14.01	0.54
	216		34	8.64	1.36	6.24	1.37	21	5	5.27	1.16	TRUE	0.97	0.05		
	358		48	14.32	1.92	7.99	1.93	36	9	8.79	2.14	TRUE	0.47	0.01		
224-Ra	4447		74	50.00	0.00	40.07	0.00	05	0	0.44	0.40	TOUE	0.40	0.00		
212-PD	1417		74	56.68	2.96	42.97	2.98	25	2	6.14	0.43	TRUE	8.16	0.33		
212-BI	48		30	1.92	1.44	1.37	1.45	17	10	4.18	4.43	TRUE	0.05	0.00		
200-11	/17		12	16 68	1.00	12.04	1.09	49	21	7 50	0.10	TRUE	1 01	0.00		
	-4		35	-0.16	1.00	0.96	1.03	19	28	4 67	6.88	TRUE	0.02	0.00		
	267		20	10.68	0.80	5.41	0.81	34	5	8.31	1.27	TRUE	1.28	0.04		
	Sample				Specifi	c Activi	Conce	ntration	Dose I	Rates (r	nGy/a)					
					(Bq/kg)	(% or)	opm)	Alpha	error	Beta	error	Gamm	error		
	Full Serie	s		K	727	25	2.35	0.08			1.95	0.0679	0.566	0.02		
	WM			U	24.63	2.327	1.995	0.19	5.54	0.52	0.29	0.0275	0.229	0.02		
				Th	25.92	1.85	6.388	0.46 Total	4.72 10.26	0.34 0.62	0.18 2.42	0.013 0.0744	0.328 1.124	0.02 0.04		
	Thfull/Ufu	ıll					3.20									
	Dro 2220	n			20.24	25 17	2 205	2 07	6 20	7.00	0.24	0 4 1 0 7	0.264	0.22		
	Poet 222R	u Dn		0	20.34	30.47	2.295	2.8/	0.38	1.98	0.34	0.4197	0.204	0.33		
	Difference	e		U	3.98	2.49 35.56	0.32	2.88	0.89	8.00	0.29	0.0295	0.227	0.33		

Detector Sample Filename Roi file Date Time (ks)	#3 2160 2160 G3nov07 22/10/07 50.00															
Mass (q)	103.6					Net		Specific		Conce	ntration	Within	WM ca	cs		
	Counts	error		Rate (cts/ks	error)	Rate (cts/ks	error)	Activity (Bq/kg)	error		error	2 err of WM ?				
40-K	3716		69	74.32	1.38	66.46	1.39	K 779	18	%K 2.52	0.06					
238-U								238U	p	pm eU	error		x/sigm	1/sigm sum		
234-Th	1837		60	36.74	1.20	3.33	1.22	21	8	1.74	0.64	TRUE	0.34	0.02 full	21.58	0.73
	2335		75	46.70	1.50	7.99	1.52	44	9	3.59	0.71	TRUE	0.58	0.01 preRn	1.92	0.07
226-Ra (23 214-Pb	1394		60	27.88	1.20	6.54	1.22	27	5	2.19	0.42	TRUE	0.99	0.04 postRn	19.67	0.67
	835		46	16.70	0.92	13.44	0.93	29	3	2.39	0.20	TRUE	4.61	0.16		
04.4 D	1430		59	28.60	1.18	24.43	1.19	29	2	2.34	0.16	TRUE	7.03	0.24		
214-BI	1214		01	24.28	1.22	19.31	1.23	30	2	2.40	0.20	TRUE	5.08	0.17		
	290		28	1.82	0.00	1 36	0.07	28	12	2.90	0.42	TRUE	0.20	0.04		
	230		20	4 78	0.50	2.80	0.57	20	5	2.30	0.37	TRUE	0.20	0.04		
	71		31	1 42	0.04	0.66	0.63	19	18	1.56	1 49	TRUE	0.00	0.00		
210-Pb	349		33	6.98	0.66	2.48	0.67	32	9	2.59	0.71	TRUE	0.41	0.01		
232-Th								232Th	pg	om eTh	error			sum		
228-Ac	485		44	9.70	0.88	7.91	0.89	27	3	6.60	0.75	TRUE	2.87	0.11 full	30.74	1.24
	545		50	10.90	1.00	8.50	1.01	26	3	6.40	0.77	TRUE	2.66	0.10		
	770		67	15.40	1.34	9.07	1.36	36	5	8.90	1.35	FALSE	1.20	0.03		
224-Ra																
212-Pb	2941		107	58.82	2.14	45.11	2.16	23	1	5.75	0.28	TRUE	17.72	0.76		
212-Bi	83		51	1.66	1.02	1.11	1.03	12	11	3.02	2.81	TRUE	0.09	0.01		
208-TI	186		39	3.72	0.78	2.62	0.79	45	14	11.04	3.39	TRUE	0.24	0.01		
	844		61	16.88	1.22	13.18	1.23	28	3	6.79	0.64	TRUE	4.02	0.15		
	-4 481		51 31	-0.08 9.62	1.02 0.62	1.04 4.35	1.03 0.64	18 24	18 4	4.52 5.96	4.51 0.89	TRUE	0.05 1.88	0.00		
	Sample				Specif	ic Activi	Conce	ntration	Dose F	Rates (r	nGy/a)					
					(Bq/kg)	(% or	ppm)	Alpha	error	Beta	error	Gamm	error		
	Full Serie	S		ĸ	779	18	2.52	0.06			2.09	0.0482	0.607	0.01		
	WM			U	29.46	1.365	2.386	0.11	6.63	0.31	0.35	0.0162	0.274	0.01		
				Th	24.75	0.805	6.1	0.20 Total	4.51 11.14	0.15 0.34	0.17 2.62	0.0057 0.0512	0.314 1.195	0.01 0.02		
	Thfull/Ufu	11					2.56									
	D 0005				00.45	45.04	0.004	4.00	0.50	0.40		0.40	0.074	0.44		
	Pre 222R	n 		U	29.15	15.21	2.361	1.23	6.56	3.42	0.34	0.18	0.271	0.14		
	Post 222F Difference	kn B		U	29.49 -0.34	1.5 15.29	-0.03	0.12 1.24	6.64 -0.08	0.34 3.44	0.35	0.0177 0.18	0.274	0.01 0.14		

Detector	#3															
Sample	2161															
Filename	2161															
Roi file	G3nov07															
Date	23/10/07															
Time (ks)	25.00															
Mass (g)	100					Net		Specific		Conce	ntratior	h Within	WM ca	lcs		
	Counts	error		Rate	error	Rate	error	Activity	error		error	2 err of				
				(cts/ks)	(cts/ks)	(Bq/kg)		0/1/		WM?				
10.14	4005			70.00	0.00	70 74	0.00	K aaa		%K	0.00					
40-K	1965		50	78.60	2.00	70.74	2.00	860	26	2.78	0.08					
238-U								238U	n	om el J	error		x/siam	1/siam sum		
234-Th	949		43	37 96	1 72	4 55	1 73	30	12	2 46	0.95	TRUE	0.22	0.01 full	11.35	0 49
	1185		53	47 40	2 12	8 69	2 13	50	13	4 05	1 02	FALSE	0.32	0.01 preRn	0.80	0.03
226-Ra (23	614		42	24 56	1 68	3 22	1 69	14	7	1 12	0.59	TRUE	0.26	0.02 postRn	10.55	0.46
214-Pb	011			1		0.22					0.00		0.20	poor in		0.10
	253		29	10.12	1.16	6.86	1.17	16	3	1.26	0.22	FALSE	2.03	0.13		
1	660		41	26.40	1.64	22.23	1.65	27	2	2.21	0.20	TRUE	4.57	0.17		
214-Bi	520		42	20.80	1.68	15.83	1.69	25	3	2.04	0.24	TRUE	2.85	0.11		
	98		21	3.92	0.84	2.91	0.84	22	6	1.78	0.53	TRUE	0.52	0.02		
	31		20	1.24	0.80	0.72	0.80	16	17	1.26	1.42	TRUE	0.05	0.00		
	100		20	4.00	0.80	2.11	0.80	20	8	1.64	0.63	TRUE	0.33	0.02		
	3		24	0.12	0.96	-0.64	0.97	-19	-29	-1.57	-2.37	FALSE	-0.02	0.00		
210-Pb	176		23	7.04	0.92	2.54	0.93	34	12	2.75	1.01	TRUE	0.22	0.01		
000 TI								000 T I		- .						
232-1h			~~		4.00			2321h	pp	mein	error	TOUL		sum	10.00	
228-AC	234		30	9.36	1.20	1.57	1.21	27	4	6.55	1.05	TRUE	1.46	0.05 full	13.90	0.62
	211		35	8.44	1.40	6.04	1.41	19	4	4.71	1.10	TRUE	0.96	0.05		
	220		10	12 52	1 02	7 10	1 02	20	0	7 21	1 07	TDUE	0.46	0.02		
224-Ra	550		40	15.52	1.52	1.13	1.55	50	0	7.51	1.37	INCL	0.40	0.02		
212-Ph	1400		75	56.00	3.00	42 29	3 02	23	2	5 58	0 40	TRUE	8 4 8	0.37		
212-10 212-Bi	1400		36	1 60	1 11	1 05	1 / 5	12	17	2.00	1 00	TRUE	0.40	0.07		
200 TI	0		27	2 20	1.44	2 10	1.40	27	10	0.17	4.03	TDUE	0.04	0.00		
200-11	334		11	13 36	1.00	0.66	1.03	21	13	5 15	0.05	TPILE	1 / 1	0.00		
	_1		36	-0.04	1.70	1 08	1.77	20	27	1 86	6.54	TRUE	0.03	0.07		
	224		20	8 96	0.80	3 69	0.81	20	21	5 24	1 16		0.03	0.00		
	227		20	0.00	0.00	0.00	0.01	21	0	0.24	1.10	INCL	0.00	0.00		
	Sample				Specific .	Activity	Conce	ntration	Dose F	Rates (r	nGy/a)					
					(Bq/kg)		(% or)	opm)	Alpha	error	Beta	error	Gamm	error		
	Full Serie	es		K	860	26	2.78	0.08			2.31	0.0692	0.67	0.02		
	WM			U	22.93	2.02	1.857	0.16	5.16	0.45	0.27	0.0239	0.213	0.02		
				Th	22.595	1.626	5.569	0.40	4.12	0.30	0.16	0.0115	0.286	0.02		
								Total	9.28	0.54	2.74	0.0741	1.169	0.03		
	The	.0					2.00									
	i niui/Oft	111					3.00									
	Pre 222R	Rn		U	24.61	30.73	1.993	2.49	5.54	6.92	0.29	0.3636	0.229	0.29		
	Post 222	Rn		U	22.81	2.162	1.847	0.18	5.13	0.49	0.27	0.0256	0.212	0.02		
	Differenc	е			1.81	30.81	0.15	2.49	0.41	6.93	0.02	0.36	0.02	0.29		
•																

Detector	#3															
Sample	2162															
Filename	2162															
Roi file	G3nov07															
Date	23/10/07															
Time (ks)	50.00									_						
Mass (g)	102.1					Net		Specific		Concent	tration	Within	WM ca	cs		
	Counts	error		Rate	error	Rate	error	Activity	error		error	2 err of				
				(CIS/KS)	(CIS/KS)	(Bq/kg)		0/. K		VVIVI ?				
10.K	3627		60	72 54	1 38	64 68	1 30	770	18	70N 2/10	0.06					
40-10	5027		03	72.54	1.50	04.00	1.55	110	10	2.43	0.00					
238-U								238U		ppm eU	error		x/siam	1/siam sum		
234-Th	1860		60	37.20	1.20	3.79	1.22	25	8	2.01	0.65	TRUE	0.38	0.02 full	19.38	0.84
	2004		74	40.08	1.48	1.37	1.50	8	8	0.62	0.68	TRUE	0.11	0.01 preRn	1.44	0.07
226-Ra (23	1382		60	27.64	1.20	6.30	1.22	26	5	2.14	0.43	TRUE	0.95	0.04 postRn	17.94	0.78
214-Pb																
	734		45	14.68	0.90	11.42	0.91	25	2	2.06	0.19	TRUE	4.41	0.17		
	1248		57	24.96	1.14	20.79	1.15	25	2	2.02	0.15	TRUE	7.14	0.29		
214-Bi	904		61	18.08	1.22	13.11	1.23	20	2	1.65	0.18	TRUE	4.29	0.21		
	144		31	2.88	0.62	1.87	0.63	14	5	1.12	0.38	TRUE	0.63	0.05		
	143		28	2.86	0.56	2.34	0.57	50	12	4.02	1.01	FALSE	0.32	0.01		
	235		27	4.70	0.54	2.81	0.55	26	5	2.14	0.43	TRUE	0.93	0.03		
210 Dh	112		28	2.24	0.56	1.48	0.57	44	17	3.56	1.40	TRUE	0.15	0.00		
210-PD	244		31	4.88	0.62	0.38	0.63	5	8	0.40	0.66	FALSE	0.07	0.01		
232-Th								232Th	r	nte ma	error			sum		
228-Ac	406		44	8.12	0.88	6.33	0.89	22	3	5.36	0.76	TRUE	2.28	0.10 full	30.70	1.22
	551		48	11.02	0.96	8.62	0.97	27	3	6.59	0.75	TRUE	2.88	0.11		
	537		70	10.74	1.40	4.41	1.42	18	6	4.39	1.41	TRUE	0.54	0.03		
224-Ra																
212-Pb	3198		107	63.96	2.14	50.25	2.16	26	1	6.50	0.29	TRUE	19.22	0.73		
212-Bi	110		50	2.20	1.00	1.65	1.01	18	11	4.56	2.81	TRUE	0.14	0.01		
208-TI	66		38	1.32	0.76	0.22	0.77	4	13	0.94	3.29	TRUE	0.02	0.01		
	738		61	14.76	1.22	11.06	1.23	23	3	5.78	0.65	TRUE	3.36	0.14		
	-35		51	-0.70	1.02	0.42	1.03	8	18	1.85	4.56	TRUE	0.02	0.00		
	483		28	9.66	0.56	4.39	0.58	25	3	6.10	0.82	TRUE	2.24	0.09		
	Sample				Snecifi	c Activi	Conce	ntration	Dose I	Rates (m	Gv/a)					
	oumpio				(Ba/ka)	(% or)	naraalon nm)	Alpha	error	Beta	error	Gamm	error		
	Full Serie	s		к	770	, 18	2.49	0.06	/ uprice	CITO	2.07	0.0487	0.6	0.01		
	WM	-		U	23.05	1.19	1.867	0.10	5.19	0.27	0.27	0.0141	0.215	0.01		
				Th	25.13	0.819	6.194	0.20	4.58	0.15	0.18	0.0058	0.318	0.01		
								Total	9.77	0.31	2.52	0.051	1.133	0.02		
	Thfull/Ufu	III					3.32									
1	Pre 222R	n		U	22.04	15.33	1.785	1.24	4.96	3.45	0.26	0.1814	0.205	0.14		
1	Post 222F	Rn		U	23.14	1.29	1.874	0.10	5.21	0.29	0.27	0.0153	0.215	0.01		
	Difference	е			-1.10	15.39	-0.09	1.25	-0.25	3.46	-0.01	0.18	-0.01	0.14		
I																Į

Detector Sample	#3 2163 a															1
Filename	2163a															
Roi file	G3nov07															
Date	24/10/07															
Time (ks)	25.00															
Mass (g)	100					Net		Specific	;	Conce	ntratior	Within	WM ca	lcs		
	Counts	error		Rate	error	Rate	error	Activity	error		error	2 err of				
				(cts/ks)	(cts/ks	.)	(Bq/kg)				WM?				
			-				- 	К		[™] K						
40-K	2039		50	81.56	2.00	73.70	2.00	896	26	2.90	0.08					
238-U								238U	р	pm eU	error		x/sigm	1/sigm sum		
234-Th	925		43	37.00	1.72	3.59	1.73	24	12	1.94	0.94	TRUE	0.18	0.01 full	11.67	0.48
	1012		52	40.48	2.08	1.77	2.09	10	12	0.82	0.98	TRUE	0.07	0.01 preRn	0.63	0.03
226-Ra (23 214-Pb	652		42	26.08	1.68	4.74	1.69	20	7	1.65	0.59	TRUE	0.38	0.02 postRn	11.05	0.45
	366		31	14.64	1.24	11.38	1.25	26	3	2.09	0.25	TRUE	2.65	0.10		
	565		41	22.60	1.64	18.43	1.65	23	2	1.83	0.19	TRUE	4.20	0.19		
214-Bi	503		44	20.12	1.76	15.15	1.77	24	3	1.95	0.25	TRUE	2.56	0.11		
	103		22	4.12	0.88	3.11	0.88	23	7	1.90	0.55	TRUE	0.51	0.02		
	32		19	1.28	0.76	0.76	0.76	16	17	1.33	1.35	TRUE	0.06	0.00		
	127		18	5.08	0.72	3.19	0.73	31	7	2.48	0.58	TRUE	0.60	0.02		
	85		19	3.40	0.76	2.64	0.77	80	24	6.47	1.95	FALSE	0.14	0.00		
210-Pb	221		24	8.84	0.96	4.34	0.96	58	13	4.69	1.08	FALSE	0.33	0.01		
232-Th								232Th	рр	om eTh	error			sum		
228-Ac	141		30	5.64	1.20	3.85	1.21	14	4	3.33	1.05	FALSE	0.75	0.06 full	13.61	0.61
	248		34	9.92	1.36	7.52	1.37	24	4	5.87	1.07	TRUE	1.26	0.05		
	327		50	13.08	2.00	6.75	2.01	28	8	6.86	2.05	TRUE	0.40	0.01		
224-Ra																
212-Pb	1402		75	56.08	3.00	42.37	3.02	23	2	5.59	0.40	TRUE	8.49	0.37		
212-Bi	105		36	4.20	1.44	3.65	1.45	42	17	10.29	4.12	TRUE	0.15	0.00		
208-11	69		27	2.76	1.08	1.66	1.09	29	19	7.25	4.76	TRUE	0.08	0.00		
	329		44	13.16	1.76	9.46	1.77	20	4	5.05	0.95	TRUE	1.39	0.07		
	256		36 22	10.24	1.44 0.88	4.97	1.45 0.89	29	5	5.06 7.06	6.54 1.28	TRUE	1.06	0.00		
	Sample				Specifi (Bq/kg	ic Activi	Conce (% or	ntration ppm)	Dose F Alpha	tes (r error	nGy/a) Beta	error	Gamm	error		
	Full Serie	s		К	896	[′] 26	2.90	0.08	•		2.40	0.0695	0.698	0.02		
	WM			U	24.31	2.083	1.969	0.17	5.47	0.47	0.29	0.0246	0.226	0.02		
				Th	22.33	1.641	5.504	0.40	4.07	0.30	0.16	0.0116	0.283	0.02		
								Total	9.54	0.56	2.85	0.0746	1.207	0.03		
	Thfull/Ufu	ıll					2.80	1								

 Pre 222Rn
 U
 19.02
 30.39
 1.54
 2.46
 4.28
 6.84
 0.23
 0.3595
 0.177
 0.28

 Post 222Rn
 U
 24.70
 2.236
 2
 0.18
 5.56
 0.50
 0.29
 0.026
 0.23
 0.02

 Difference
 -5.68
 30.47
 -0.46
 2.47
 -1.28
 6.86
 -0.07
 0.36
 -0.05
 0.28

Detector Sample	#3 2163b															
Roi file Date	G3nov07 24/10/07															
Time (ks)	50.00															
Mass (g)	100			. .		Net		Specific		Conce	ntratior	Within	WM ca	lcs		
	Counts	error		Rate (cts/ks	error)	Rate (cts/ks	error)	Activity (Bq/kg) K	error	%K	error	2 err of WM ?				
40-K	5330		80	#####	1.60	98.74	1.61	1200	23	3.88	0.07					
238-U								238U	r	opm eU	error		x/sigm	1/sigm sum		
234-Th	2006		64	40.12	1.28	6.71	1.29	45	9	3.63	0.73	TRUE	0.56	0.01 full	20.75	0.48
	2412		78	48.24	1.56	9.53	1.58	55	10	4.44	0.77	TRUE	0.61	0.01 preRn	2.39	0.05
226-Ra (23 214-Pb	1579		64	31.58	1.28	10.24	1.29	44	6	3.55	0.49	TRUE	1.22	0.03 postRn	18.37	0.43
	1094		50	21.88	1.00	18.62	1.01	42	3	3.42	0.25	TRUE	4.28	0.10		
214_Bi	1914		67	30.20	1.20	34.11	1.29	42	3	3.38	0.21	TRUE	0.02	0.14		
214-01	327		33	6.54	0.66	5.53	0.67	42	6	3.38	0.25	TRUE	1.38	0.03		
	179		30	3.58	0.60	3.06	0.60	66	14	5.37	1.12	TRUE	0.34	0.01		
	306		28	6.12	0.56	4.23	0.57	41	6	3.29	0.48	TRUE	1.18	0.03		
	90		32	1.80	0.64	1.04	0.65	32	20	2.55	1.60	TRUE	0.08	0.00		
210-Pb	403		35	8.06	0.70	3.56	0.71	48	10	3.85	0.79	TRUE	0.49	0.01		
232-Th								232Th	p	om eTh	error			sum		
228-Ac	523 455		46 51	10.46 9.10	0.92 1.02	8.67 6.70	0.93 1.03	30 21	3 3	7.50 5.23	0.82 0.81	TRUE TRUE	2.77 1.97	0.09 full 0.09	28.22	1.09
	589		74	11.78	1.48	5.45	1.50	22	6	5.54	1.53	TRUE	0.59	0.03		
224-Ra																
212-Pb	3114		111	62.28	2.22	48.57	2.24	26	1	6.41	0.30	TRUE	17.07	0.66		
212-Bi	148		52	2.96	1.04	2.41	1.05	28	12	6.79	2.99	TRUE	0.19	0.01		
208-11	70		39	15.64	1.78	0.40	1 20	1	14	1.75	3.45	TDUE	0.04	0.01		
	-34		53	-0.68	1.20	0.44	1.29	20	20	1.98	4 83	TRUE	0.02	0.12		
	517		29	10.34	0.58	5.07	0.60	29	4	7.20	0.87	TRUE	2.36	0.08		
	Sample				Specif	ic Activi	Conce	ntration	Dose	Rates (r	nGy/a)					
					(Bq/kg)	(% or	opm)	Alpha	error	Beta	error	Gamm	error		
	Full Series	6		ĸ	1200	23	3.88	0.07	0.70	0.47	3.22	0.0611	0.935	0.02		
	VV IVI			UTh	43.35	2.089	3.511	0.17	9.76	0.47	0.51	0.0247	0.403	0.02		
				In	25.99	0.921	0.400	Total	4.73	0.17	0.18 3.92	0.0065	1.668	0.01		
	Thfull/Uful	I					1.82									
	Pre 222Rr	ı		U	46.48	19.47	3.764	1.58	10.46	4.38	0.55	0.2304	0.432	0.18		
	Post 222F	In		Ū	42.98	2.34	3.481	0.19	9.67	0.53	0.51	0.0277	0.4	0.02		
	Difference	•			3.50	19.61	0.28	1.59	0.79	4.41	0.04	0.23	0.03	0.18		

Detector Sample Filename Roi file Date Time (ks)	#3 2165 2165 G3nov07 28/10/07 25.00															
Mass (g)	102.40 Counts	error		Rate	error	Net Rate	error	Specific Activity	error	Conce	ntration error	Within 2 err of	WM ca	lcs		
				(cts/ks)	(cts/ks)	(Bq/kg)		0/1/		WM?				
40-K	2067		52	82.68	2.08	74.82	2.08	к 888	26	%K 2.87	0.08					
238-U								238U	р	pm eU	error		x/sigm	1/sigm sum		
234-Th	991		44	39.64	1.76	6.23	1.77	41	12	3.29	0.95	TRUE	0.29	0.01 full	12.15	0.49
000 De (00	1098		54	43.92	2.16	5.21	2.17	29	12	2.37	1.00	TRUE	0.19	0.01 preRn	1.01	0.03
226-Ra (23 214-Pb	703		43	28.12	1.72	6.78	1.73	28	1	2.30	0.60	TRUE	0.52	0.02 postRn	11.14	0.45
	366		32	14.64	1.28	11.38	1.29	25	3	2.04	0.25	TRUE	2.58	0.10		
214-Bi	476		43	19 04	1.04	14 07	1.05	20	2	2.00	0.19	TRUE	2 59	0.18		
2110	122		22	4.88	0.88	3.87	0.88	29	7	2.31	0.54	TRUE	0.64	0.02		
	25		21	1.00	0.84	0.48	0.84	10	18	0.82	1.45	TRUE	0.03	0.00		
	101		19	4.04	0.76	2.15	0.77	20	7	1.63	0.59	TRUE	0.38	0.02		
	62		21	2.48	0.84	1.72	0.85	51	25	4.12	2.05	TRUE	0.08	0.00		
210-Pb	178		23	7.12	0.92	2.62	0.93	34	12	2.77	0.99	TRUE	0.23	0.01		
232-Th								232Th	рр	m eTh	error			sum		
228-Ac	276		33	11.04	1.32	9.25	1.33	32	5	7.81	1.13	TRUE	1.51	0.05 full	17.38	0.57
	287		37	11.48	1.48	9.08	1.49	28	5	6.92	1.14	TRUE	1.31	0.05		
	277		52	11.08	2.08	4.75	2.09	19	8	4.71	2.08	TRUE	0.27	0.01		
224-Ra	4740		70	00 70	0.40	50.04	0.40		0	7.00	0.40	TOUE	40.00	0.05		
212-PD 212 Pi	1/43		79 27	69.72 5.76	3.10	55.01	3.18	29	17	1/22	0.42	TRUE	10.23	0.35		
212-DI 208-TI	51		27	2 04	1.40	0.21	1.49	16	10	4 01	4.17	TRUE	0.20	0.00		
200-11	487		45	19 48	1.00	15 78	1.03	33	4	8.22	0.95	TRUE	2 24	0.07		
	36		34	1.44	1.36	2.56	1.37	46	25	11.27	6.13	TRUE	0.07	0.00		
	290		21	11.60	0.84	6.33	0.85	36	5	8.77	1.20	TRUE	1.50	0.04		
	Sample				Specif	c Activi	Conce	ntration	Dose F	Rates (r	nGy/a)					
					(Bq/kg)	(% or)	opm)	Alpha	error	Beta	error	Gamm	error		
	Full Serie	s		K	888	26	2.87	0.08			2.38	0.0704	0.692	0.02		
	WM			U	25.04	2.061	2.028	0.17	5.64	0.46	0.30	0.0244	0.233	0.02		
				Th	30.24	1.741	7.455	0.43 Total	5.51 11.14	0.32 0.56	0.21 2.89	0.0123 0.0755	0.383 1.308	0.02 0.04		
	Thfull/Ufu	11					3.68									
	D 655-					.	0.50-	6 - 6								
	Pre 222R	n Dm		U	31.33	31.1	2.537	2.52	7.05	7.00	0.37	0.3679	0.292	0.29		
	POSt 222F	<i)< td=""><td></td><td>U</td><td>24.59</td><td>2.207</td><td>1.992</td><td>0.18</td><td>5.53</td><td>0.50</td><td>0.29</td><td>0.0261</td><td>0.229</td><td>0.02</td><td></td><td></td></i)<>		U	24.59	2.207	1.992	0.18	5.53	0.50	0.29	0.0261	0.229	0.02		
	Dinerence	5			0.74	JI.10	0.55	2.52	1.52	1.02	0.08	0.37	0.00	0.29		
Detector	#3															
----------------------	------------	-------	----------------	----------	--------	-----------	---------	-----------	--------	----------	----------	----------	--------	-------------	-------	------
Sample	2166															
Filename	2166															
Roi file	G3nov07															
Date	28/10/07															
Time (ks)	50.00															
Mass (g)	100.00					Net		Specific	:	Conce	ntratior	Within	WM ca	lcs		
(g)	Counts	error		Rate	error	Rate	error	Activity	error	001100	error	2 err of				
	oounto	01101		(cts/ks		(cts/ks	3	(Ba/ka)	CITO		ener	WM 2				
				(013/113	/	(013/113	/	K		%K						
40-K	3750		70	75.00	1.40	67.14	1.41	816	19	2.64	0.06					
238-U								238U	р	pm eU	error		x/sigm	1/sigm sum		
234-Th	1860		61	37.20	1.22	3.79	1.24	25	8	2.05	0.68	TRUE	0.36	0.01 full	20.11	0.71
	2333		75	46.66	1.50	7.95	1.52	46	9	3.70	0.73	TRUE	0.56	0.01 preRn	1.91	0.06
226-Ra (23 214-Pb	1418		61	28.36	1.22	7.02	1.24	30	6	2.44	0.45	TRUE	0.99	0.03 postRn	18.20	0.65
	767		46	15.34	0.92	12.08	0.93	27	3	2.22	0.20	TRUE	4.29	0.16		
	1368		60	27.36	1.20	23.19	1.21	28	2	2.30	0.17	TRUE	6.68	0.24		
214-Bi	1101		64	22.02	1.28	17.05	1.29	27	2	2.19	0.20	TRUE	4.44	0.16		
	240		31	4.80	0.62	3.79	0.63	29	5	2.32	0.40	TRUE	1.16	0.04		
	143		28	2.86	0.56	2 34	0.57	51	13	4 11	1 03	TRUE	0.31	0.01		
	252		27	5.04	0.54	3 15	0.55	30	. 6	2 4 5	0.45	TRUE	1 00	0.03		
	80		32	1 60	0.64	0.10	0.65	25	20	2.10	1 60	TRUE	0.07	0.00		
210-Pb	299		32	5.98	0.64	1.48	0.65	20	9	1.60	0.71	TRUE	0.26	0.01		
232-Th								232Th	nn	m eTh	error			sum		
202-111 228-Ac	529		45	10 58	0 90	8 79	0.91	31	2 2	7 60	0.80	TRUE	2 93		30.90	1 12
220-70	440		5 0	8.80	1.00	6.40	1.01	20	3	4.99	0.79	FALSE	1.95	0.10	50.50	1.12
	750		68	15.00	1.36	8.67	1.38	36	6	8.81	1.42	TRUE	1.08	0.03		
224-Ra																
212-Pb	3212		109	64.24	2.18	50.53	2.20	27	1	6.67	0.30	TRUE	18.28	0.68		
212-Bi	55		52	1.10	1.04	0.55	1.05	6	12	1.55	2.97	TRUE	0.04	0.01		
208-TI	158		39	3.16	0.78	2.06	0.79	36	14	8.99	3.49	TRUE	0.18	0.00		
	877		62	17.54	1.24	13.84	1.25	30	3	7.38	0.68	TRUE	3.94	0.13		
	35		51	0.70	1.02	1.82	1.03	33	19	8.19	4.72	TRUE	0.09	0.00		
	540		30	10.80	0.60	5.53	0.62	32	4	7.85	0.90	TRUE	2.40	0.08		
	Sample				Specif	ic Activi	i Conce	entration	Dose F	Rates (r	mGy/a)					
					(Bq/kg)	(% or	ppm)	Alpha	error	Beta	error	Gamm	error		
	Full Serie	s		К	816	19	2.64	0.06			2.19	0.0506	0.636	0.01		
	WM			U	28.33	1.409	2.294	0.11	6.38	0.32	0.34	0.0167	0.264	0.01		
				Th	27.63	0.894	6.81	0.22	5.03	0.16	0.19	0.0063	0.35	0.01		
								Total	11.41	0.36	2.72	0.0537	1.249	0.02		
	Thfull/Ufu	II					2.97									

 32.16
 16.85
 2.604
 1.36
 7.24
 3.79
 0.38
 0.1994
 0.299
 0.16

 27.98
 1.537
 2.266
 0.12
 6.30
 0.35
 0.33
 0.0182
 0.26
 0.01

 4.18
 16.92
 0.34
 1.37
 0.94
 3.81
 0.05
 0.20
 0.04
 0.16

Pre 222Rn U Post 222Rn U Difference

Detector Sample	#3 2167															
Roi file Date	G3nov07 29/10/07															
Time (ks)	25.00									-						
Mass (g)	88.60	orror		Data	orror	Net	orror	Specific	orror	Conce	ntration	Within	WM ca	lcs		
	Counts	enor		(cts/ks)	(cts/ks)	(Bq/kg)	enor	%K	enor	WM?				
40-K	1689		45	67.56	1.80	59.70	1.81	819	26	2.65	0.08					
238-U								238U	P	opm eU	error		x/sigm	1/sigm sum		
234-Th	992		43	39.68	1.72	6.27	1.73	47	13	3.83	1.08	TRUE	0.27	0.01 full	11.6	62 0.33
	1101		53	44.04	2.12	5.33	2.13	35	14	2.80	1.13	TRUE	0.18	0.01 preRn	0.9	0.02
226-Ra (23 214-Pb	400		43	29.76	1.72	8.42	1.73	41	9	3.30	0.70	TRUE	0.55	0.01 postRn	10.6	62 0.31
	429		32	17.16	1.28	13.90	1.29	36	4	2.88	0.30	TRUE	2.52	0.07		
214-Bi	7 50 604		42	24 16	1.00	20.07	1.09	30	3	2.92	0.24	TRUE	4.1Z	0.11		
214-01	101		21	4 04	0.84	3.03	0.84	26	7	2.75	0.29	TRUE	0.48	0.02		
	22		20	0.88	0.80	0.36	0.80	9	20	0.71	1.60	TRUE	0.02	0.00		
	138		19	5.52	0.76	3.63	0.77	39	9	3.19	0.69	TRUE	0.54	0.01		
	39		19	1.56	0.76	0.80	0.77	27	26	2.22	2.13	TRUE	0.04	0.00		
210-Pb	176		23	7.04	0.92	2.54	0.93	38	14	3.10	1.14	TRUE	0.19	0.01		
232-Th								232Th	pp	om eTh	error			sum		
228-Ac	229		31	9.16	1.24	7.37	1.25	29	5	7.19	1.23	TRUE	1.18	0.04 full	12.5	52 0.46
	199		35	7.96	1.40	5.56	1.41	20	5	4.90	1.24	TRUE	0.78	0.04		
224 Do	281		49	11.24	1.96	4.91	1.97	23	9	5.63	2.27	TRUE	0.27	0.01		
224-Ra 212-Ph	1536		77	61 11	3 08	47 73	3 10	20	2	7 1 1	0.47	TRUE	8 01	0.28		
212-FU 212-Bi	76		35	3.04	1 40	2 49	1 41	29	ے 18	7.11	4 50	TRUE	0.01	0.28		
208-TI	36		27	1.44	1.08	0.34	1.09	7	22	1.68	5.36	TRUE	0.01	0.00		
	423		43	16.92	1.72	13.22	1.73	32	4	7.96	1.05	TRUE	1.78	0.06		
	-35		35	-1.40	1.40	-0.28	1.41	-6	-29	-1.42	-7.16	FALSE	-0.01	0.00		
	183		22	7.32	0.88	2.05	0.89	13	6	3.29	1.43	FALSE	0.40	0.03		
	Sample				Specif	ic Activi	Conce	ntration	Dose I	Rates (I	mGy/a)					
					(Bq/kg)	(% or	opm)	Alpha	error	Beta	error	Gamm	error		
	Full Serie	s		ĸ	819	26	2.65	0.08			2.20	0.0698	0.638	0.02		
	VVIVI			UTh	35.27	3.037	2.857	0.25	7.94	0.68	0.42	0.0359	0.328	0.03		
				In	27.21	2.173	0.700	Total	4.96	0.40	0.19 2.81	0.0153	1.311	0.03		
	Thfull/Ufu	III					2.35									
	Pre 222R	'n		u	40 97	41 31	3 3 1 8	3 35	9 22	9 30	0 48	0 4888	0.381	0.38		
	Post 2221	Rn		Ŭ	34.82	3.278	2.82	0.27	7.84	0.74	0.41	0.0388	0.324	0.03		
	Difference	e		-	6.15	41.44	0.50	3.36	1.38	9.33	0.07	0.49	0.06	0.39		

Detector Sample Filename Roi file Date	#3 2168 2168 G3nov07 29/10/07															
Mass (g)	100.00	orror		Pata	orror	Net	orror	Specific	orror	Conce	ntration	Within	WM ca	lcs		
	Counts	enoi		(cts/ks)	(cts/ks)	(Bq/kg)	enoi		enoi	WM?				
40-K	4133		71	82.66	1.42	74.80	1.43	K 909	19	%K 2.94	0.06					
238-U								238U	p	opm eU	error		x/sigm	1/sigm sum		
234-Th	1827		62	36.54	1.24	3.13	1.25	21	8	1.69	0.69	TRUE	0.29	0.01 full	19.03	0.77
	2077		75	41.54	1.50	2.83	1.52	16	9	1.32	0.71	TRUE	0.21	0.01 preRn	1.46	0.06
226-Ra (23 214-Pb	1404		61	28.08	1.22	6.74	1.24	29	6	2.34	0.45	TRUE	0.96	0.03 postRn	17.57	0.71
	688		45	13.76	0.90	10.50	0.91	24	2	1.93	0.19	TRUE	4.16	0.17		
214 Di	1266		59	25.32	1.18	21.15	1.19	26	2	2.10	0.16	TRUE	6.75	0.26		
214-DI	1014		31	20.20	0.62	2 57	0.63	24 10	2 5	1.97	0.19	TRUE	4.44	0.18		
	89		28	1 78	0.02	1 26	0.00	27	12	2 21	1 00	TRUE	0.00	0.04		
	240		28	4.80	0.56	2.91	0.57	28	6	2.27	0.46	TRUE	0.87	0.03		
	64		33	1.28	0.66	0.52	0.67	16	20	1.28	1.64	TRUE	0.04	0.00		
210-Pb	314		32	6.28	0.64	1.78	0.65	24	9	1.92	0.71	TRUE	0.31	0.01		
232-Th								232Th	pp	om eTh	error			sum		
228-Ac	460		45	9.20	0.90	7.41	0.91	26	3	6.41	0.80	TRUE	2.49	0.10 full	33.41	1.10
	646		50	12.92	1.00	10.52	1.01	33	3	8.21	0.80	TRUE	3.14	0.09		
224-Ra	805		69	16.10	1.38	9.77	1.40	40	6	9.93	1.44	TRUE	1.18	0.03		
212-Pb	3384		110	67.68	2.20	53.97	2.22	29	1	7.13	0.30	TRUE	19.04	0.66		
212-Bi	158		51	3.16	1.02	2.61	1.03	30	12	7.36	2.94	TRUE	0.21	0.01		
208-TI	163		39	3.26	0.78	2.16	0.79	38	14	9.43	3.49	TRUE	0.19	0.00		
	932		63	18.64	1.26	14.94	1.27	32	3	7.97	0.69	TRUE	4.11	0.13		
	-21 598		52 29	-0.42 11.96	1.04 0.58	0.70 6.69	1.05 0.60	13 39	19 4	3.15 9.50	4.75 0.88	FALSE	0.03 3.01	0.00 0.08		
	Sample				Specif	ic Activi	Conce	entration	Dose F	Rates (r	nGy/a) Beta	error	Gamm	error		
	Full Serie	\$		к	909	, 19	2 94	0.06	Лірпа	enoi	2 44	0.0523	0 708	0.02		
	WM	0		Ü	24.62	1.293	1.993	0.10	5.54	0.29	0.29	0.0153	0.229	0.01		
				Th	30.43	0.911	7.5	0.22 Total	5.54 11.08	0.17	0.21 2.95	0.0064	0.386	0.01 0.02		
	Thfull/Ufu	11					3.76									
	Pre 222R	n		U	24.30	16.67	1.968	1.35	5.47	3.75	0.29	0.1972	0.226	0.16		
	Post 222F Difference	Rn Ə		U	24.64 -0.34	1.402 16.72	1.996 -0.03	0.11 1.35	5.55 -0.08	0.32 3.76	0.29 0.00	0.0166 0.20	0.229 0.00	0.01 0.16		

Detector Sample	#3 2169															
Roi file Date	G3nov07 30/10/07															
Time (ks)	25.00															
Mass (g)	91.60					Net		Specific		Conce	ntratior	Within	WM ca	cs		
	Counts	error		Rate (cts/ks	error)	Rate (cts/ks	error)	Activity (Bq/kg)	error	0/1/	error	2 err of WM ?				
40-K	1718		48	68.72	1.92	60.86	1.92	к 807	27	%K 2.61	0.09					
238-U								238U	р	pm eU	error		x/sigm	1/sigm sum		
234-Th	926		44	37.04	1.76	3.63	1.77	26	13	2.15	1.05	TRUE	0.16	0.01 full	11.83	0.33
	1153		54	46.12	2.16	7.41	2.17	47	14	3.77	1.12	TRUE	0.24	0.01 preRn	1.02	2 0.02
226-Ra (23 214-Pb	781		44	31.24	1.76	9.90	1.77	46	9	3.75	0.70	TRUE	0.62	0.01 postRn	10.80	0.31
	426		33	17.04	1.32	13.78	1.33	34	4	2.77	0.30	TRUE	2.47	0.07		
014 5	773		43	30.92	1.72	26.75	1.73	36	3	2.90	0.24	TRUE	4.16	0.12		
214-BI	627 150		45	25.08	1.80	20.11	1.81	35	4	2.83	0.29	TRUE	2.69	0.08		
	100		22	2.64	0.88	4.99	0.88	41	10	3.33	0.62	TRUE	0.71	0.02		
	115		20	4 60	0.80	2.12	0.00	28	9	2.30	0.73	TRUE	0.15	0.00		
	95		18	3.80	0.04	3.04	0.04	101	25	8 14	2 05	FALSE	0.00	0.00		
210-Pb	151		22	6.04	0.88	1.54	0.89	22	13	1.82	1.05	TRUE	0.13	0.01		
232-Th								232Th	pp	om eTh	error			sum		
228-Ac	240		32	9.60	1.28	7.81	1.29	30	5	7.38	1.22	TRUE	1.21	0.04 full	16.47	0.48
	323		34	12.92	1.36	10.52	1.37	36	5	8.96	1.18	TRUE	1.60	0.04		
	400		48	16.00	1.92	9.67	1.93	44	9	10.73	2.16	TRUE	0.57	0.01		
224-Ra																
212-Pb	1777		78	71.08	3.12	57.37	3.14	34	2	8.27	0.46	TRUE	9.59	0.29		
212-BI	118		30	4.72	1.44	4.17	1.45	52	18	12.83	4.51	TRUE	0.16	0.00		
208-11	101		28	4.04	1.12	2.94	1.13	21	22	7.59	5.43	TRUE	0.12	0.00		
	410		44 34	2 24	1.70	3 36	1.77	67	28	16 51	6.04	TRUE	0.08	0.00		
	316		22	12.64	0.88	7.37	0.89	46	6	11.42	1.41	FALSE	1.41	0.03		
	Sample				Specif	ic Activi	Conce	ntration	Dose F	Rates (r	mGv/a)					
					(Bq/kg)	(% or)	opm)	Alpha	error	Beta	error	Gamm	error		
	Full Serie	s		К	807	27	2.61	0.09			2.17	0.0717	0.629	0.02		
	WM			U	35.84	3.03	2.902	0.25	8.07	0.68	0.42	0.0359	0.333	0.03		
				Th	34.57	2.099	8.52	0.52 Total	6.30 14.36	0.38 0.78	0.24 2.83	0.0148 0.0815	0.438 1.401	0.03 0.04		
	Thfull/Ufu	ıll					2.94									
	Dro 222D	'n			41 EO	40.60	3 360	3 20	0.26	0.16	0.40	0 4 9 1 4	0 297	0.39		
	Post 222R	Rn		0	41.09	40.09	2 865	3.3U 0.27	9.30	9.10	0.49	0.4014	0.307	0.30		
	Difference	e		0	6.22	40.82	0.50	3.31	1.40	9.19	0.42	0.0387	0.029	0.38		

Detector Sample	#3 2170															1
Filename Roi file	2170 G3nov07															
Date Time (ks)	30/10/07															
Mass (g)	100.00					Net		Specific		Conce	ntration	Within	WM ca	lcs		
,	Counts	error		Rate	error	Rate	error	Activity	error		error	2 err of				
				(cts/ks)	(cts/ks)	(Bq/kg)				WM?				
40-K	4069		72	81.38	1.44	73.52	1.45	к 893	20	%K 2.89	0.06					
238-U								238U	p	pm eU	error		x/sigm	1/sigm sum		
234-Th	1955		62	39.10	1.24	5.69	1.25	38	9	3.08	0.70	TRUE	0.51	0.01 full	20.42	0.73
	2365		76	47.30	1.52	8.59	1.54	49	9	4.00	0.75	FALSE	0.58	0.01 preRn	2.05	0.06
226-Ra (23 214-Pb	1391		60	27.82	1.20	6.48	1.22	28	5	2.25	0.44	TRUE	0.95	0.03 postRn	18.37	0.67
	765		46	15.30	0.92	12.04	0.93	27	3	2.21	0.20	TRUE	4.28	0.16		
214-Bi	1042		59 61	20.04	1.10	16 97	1.19	20	2	2.20	0.10	TRUE	0.79 4 72	0.24		
214-01	226		32	4.52	0.64	3.51	0.65	26	5	2.15	0.41	TRUE	1.03	0.04		
	76		29	1.52	0.58	1.00	0.58	22	13	1.75	1.04	TRUE	0.13	0.01		
	230		27	4.60	0.54	2.71	0.55	26	5	2.11	0.44	TRUE	0.88	0.03		
	62		31	1.24	0.62	0.48	0.63	15	19	1.18	1.54	TRUE	0.04	0.00		
210-Pb	396		34	7.92	0.68	3.42	0.69	46	10	3.70	0.77	TRUE	0.50	0.01		
232-Th	40.4			0.40	0.00	0.00	0.00	232Th	pp	m eTh	error	TOUE	0.00	sum	00.07	
228-AC	424 653		44 48	8.48 13.06	0.88	6.69 10.66	0.89 0.97	23 34	3	5.79 8.32	0.78	TRUE	2.36 3.44	0.10 full 0.10	32.97	1.11
004 D-	678		71	13.56	1.42	7.23	1.44	30	6	7.35	1.47	TRUE	0.84	0.03		
224-Ra 212 Ph	2441	4	110	60 02	2 20	55 11	2 22	20	1	7 20	0.30	TDUE	10.20	0.66		
212-PU 212-Bi	226		52	4 52	2.20	3 97	1.05	30 45	12	11 10	3.03	TRUE	0.30	0.00		
208-TI	193		39	3.86	0.78	2.76	0.79	49	14	12.05	3.52	TRUE	0.24	0.00		
	962		63	19.24	1.26	15.54	1.27	34	3	8.29	0.69	TRUE	4.26	0.13		
	13		51	0.26	1.02	1.38	1.03	25	19	6.21	4.69	TRUE	0.07	0.00		
	484		29	9.68	0.58	4.41	0.60	25	4	6.26	0.86	TRUE	2.07	0.08		
	Sample				Specifi	c Activi	Conce	ntration	Dose F	Rates (r	nGy/a)					
					(Bq/kg)	(% or p	opm)	Alpha	error	Beta	error	Gamm	error		
	Full Series	5		K	893	20	2.89	0.06	0.04	0.04	2.40	0.0527	0.696	0.02		
	VVIVI			U Th	28.05	1.374	2.272	0.11	6.31 5.41	0.31	0.33	0.0163	0.261	0.01		
				111	29.71	0.901	1.323	Total	5.41 11.72	0.16	2.94	0.0064	1.334	0.01		
	Thfull/Uful	I					3.22									
	Pre 222R	n		U	34.38	16.81	2.784	1.36	7.74	3.78	0.41	0.1989	0.32	0.16		
	Post 222F	Rn		Ũ	27.49	1.496	2.226	0.12	6.19	0.34	0.33	0.0177	0.256	0.01		
	Difference	•			6.90	16.88	0.56	1.37	1.55	3.80	0.08	0.20	0.06	0.16		

C.3. Field Gamma Spectrometry

File	:	e:\rainbow\	new1.asc			
Live	time	(S)	600			
Energy	calibration	coefficients	6			
	b1=	43.25188				
	b2=	2.931298				
	b3=	0			-	
E	=	450	keV	in	Ch	138
Integrated	counts,	count	rates	(cps)		
Iotal	spectrum	:	57759	96.265		
E>450	keV	:	24649	41.08167		
E>1350	kev	:	4/40	7.9		
Energy	Integral	:	3.23E+07	Kev	1	
Energy	deposition	rate	:	53816	KeV/S	550 0404
Mean	energy	per	pnoton		:	559.0401
Dose	Rate	(mGy/a)	-	>450	0.801093	4.14E-02
Dose	Rate	(mGy/a)	-	>1350	0.84135	4.13E-02
Dose	rate	(mGy/a)	-	energy	0.825537	4.14E-02
Filo		e·\rainhow/	new2 asc			
Live	time	(s)	600			
Energy	calibration	coefficients	3			
Liioigy	b1=	19 77891				
	b2=	2 96144				
	b3=	0				
E	=	450	keV	in	Ch	145
Integrated	counts.	count	rates	(CDS)		
Total	spectrum	:	61702	102.8367		
E>450	keV	:	24937	41.56167		
E>1350	keV	:	4818	8.03		
Energy	integral	:	3.32E+07	keV		
Energy	deposition	rate	:	55272.59	keV/s	
Mean	energy	per	photon	detected	:	537.4794
Dose	Rate	(mGy/a)	-	>450	0.810453	4.19E-02
Dose	Rate	(mGy/a)	-	>1350	0.855195	4.20E-02
Dose	rate	(mGy/a)	-	energy	0.847882	4.26E-02
File	:	e:\rainbow\	new3.asc			
Live	time	(s)	600			
Energy	calibration	coefficients	3			
	b1=	41.48875				
	b2=	2.887218				
-	b3=	0	1.0)/		<u>C</u> h	
E	=	450	Kev retec	IN (ana)	Ch	141
Total	counts,		65470	(CPS)		
TULAI E \ 150	spectrum koV	· ·	27320	109.1317		
E>1350	keV		5/17	9 028333		
Energy	integral		3 64E+07	9.020000 ko\/		
Energy	denosition	rate		60624 60	ke\//s	
Mean	energy	ner	nhoton	detected		555 5187
Dose	Rate	(mGv/a)	-	>450	0 888193	4 59F-02
Dose	Rate	(mGv/a)	-	>1350	0.961518	4.70F-02
Dose	rate	(mGy/a)	-	enerav	0.929983	4.67E-02

File Live Energy	: e:\rainbow\new4.asc time (s) 600 calibration coefficients b1= 21.28536 b2= 2.858561 b3= 0										
E Integrated Total E>450 E>1350 Energy Energy Mean	= counts, spectrum keV keV integral deposition energy	450 count : : : : rate per	keV rates 65254 25933 5072 3.45E+07 : photon	in (cps) 108.7567 43.22167 8.453333 keV 57522.52 detected	Ch keV/s	149 528 9103					
Dose Dose Dose	Rate Rate rate	(mGy/a) (mGy/a) (mGy/a)	- -	>450 >1350 energy	0.842823 0.90028 0.882395	4.35E-02 4.41E-02 0.044293					
File Live Energy	: time calibration b1= b2= b3=	e:\rainbow\ (s) coefficients 0.639442 2.946291 0	new5.asc 600								
E Integrated Total E>450 E>1350 Energy	= counts, spectrum keV keV integral	450 count : :	keV rates 72452 28087 5688 3.78E+07	in (cps) 120.7533 46.81167 9.48 keV	Ch	152					
Energy Mean Dose Dose Dose	deposition energy Rate Rate rate	rate per (mGy/a) (mGy/a) (mGy/a)	: photon - -	62945.28 detected >450 >1350 energy	keV/s : 0.912828 1.00962 0.965581	521.2716 4.71E-02 4.93E-02 4.85E-02					
File Live Energy	: time calibration b1= b2= b3=	e:\rainbow\ (s) coefficients 39.95509 2.872818 0	new6.asc 600 S								
E Integrated Total E>450 E>1350 Energy	= counts, spectrum keV keV integral	450 count : : :	keV rates 66510 27496 5301 3.65E+07	in (cps) 110.85 45.82667 8.835 keV	Ch	142					
Energy Mean Dose Dose Dose	energy Rate Rate rate	per (mGy/a) (mGy/a) (mGy/a)	photon - -	detected >450 >1350 energy	0.89362 0.940928 0.932663	548.4837 4.61E-02 4.60E-02 0.046816					

File Live Energy	: time calibration b1= b2= b3=	e:\rainbow\ (s) coefficients 63.55224 2.865672 0	new7.asc 600 S			
E Integrated Total E>450 E>1350 Energy Energy	= counts, spectrum keV keV integral deposition	450 count : : : : :	keV rates 92352 42158 7860 5.39E+07	in (cps) 153.92 70.26333 13.1 keV 89809 99	Ch ke\//s	134
Mean Dose Dose Dose	energy Rate Rate rate	per (mGy/a) (mGy/a) (mGy/a)	photon - -	detected >450 >1350 energy	: 1.370135 1.39515 1.377685	583.4848 0.07058 6.74E-02 6.92E-02
File Live Energy	: time calibration b1= b2= b3=	e:\rainbow\ (s) coefficients 7.306108 2.938776 0	new8.asc 600 S			
E Integrated Total E>450 E>1350 Energy	= counts, spectrum keV keV integral	450 count : :	keV rates 80018 31643 6399 4.23E+07	in (cps) 133.3633 52.73833 10.665 keV	Ch	150
Energy Mean Dose Dose Dose	deposition energy Rate Rate rate	rate per (mGy/a) (mGy/a) (mGy/a)	: photon - -	70435.65 detected >450 >1350 energy	keV/s : 1.028398 1.135823 1.080483	528.1485 5.31E-02 0.055183 0.054236
File Live Energy	: time calibration b1= b2= b3=	e:\rainbow\ (s) coefficients 41.88752 2.946291 0	new9.asc 600 S			
E Integrated Total E>450 E>1350 Energy	= counts, spectrum keV keV integral	450 count : :	keV rates 74150 31883 6348 4.21E+07	in (cps) 123.5833 53.13833 10.58 keV	Ch	138
Energy Mean Dose Dose Dose	deposition energy Rate Rate rate	rate per (mGy/a) (mGy/a) (mGy/a)	: photon - -	70214.59 detected >450 >1350 energy	keV/s : 1.036198 1.12677 1.077092	568.1558 5.35E-02 5.48E-02 5.41E-02

File Live Energy	: time calibration b1= b2= b3=	e:\rainbow\ (s) coefficients 45.27269 2.909091 0	new10.asc 600			
E Integrated Total E>450 E>1350 Energy	= counts, spectrum keV keV integral	450 count : :	keV rates 72485 30920 6056 4.10E+07	in (cps) 120.8083 51.53333 10.09333 keV	Ch	139
Energy Mean Dose Dose Dose	deposition energy Rate Rate rate	rate per (mGy/a) (mGy/a) (mGy/a)	: photon - -	68379.36 detected >450 >1350 energy	keV/s : 1.0049 1.07494 1.048939	566.0153 5.18E-02 0.052323 5.27E-02
File Live Energy	: time calibration b1= b2= b3=	e:\rainbow\ (s) coefficients 13.77144 2.992208 0	new11.asc 600			
E Integrated Total E>450 E>1350 Energy	= counts, spectrum keV keV integral	450 count : : :	keV rates 29406 5951 3.90E+07	in (cps) 119.1083 49.01 9.918333 keV	Ch	145
Energy Mean Dose Dose Dose	deposition energy Rate Rate rate	rate per (mGy/a) (mGy/a) (mGy/a)	: photon - -	64958.14 detected >450 >1350 energy	keV/s : 0.955695 1.056302 0.996458	545.3702 4.93E-02 5.14E-02 5.00E-02
File Live Energy	: time calibration b1= b2= b3=	e:\rainbow\ (s) coefficients 8.429333 3.015707 0	new12.asc 600			
E Integrated Total E>450 E>1350 Energy	= counts, spectrum keV keV integral	450 count : :	keV rates 73499 29906 6136 3.98E+07	in (cps) 122.4983 49.84333 10.22667 keV	Ch	146
Energy Mean Dose Dose Dose	deposition energy Rate Rate rate	rate per (mGy/a) (mGy/a) (mGy/a)	: photon - -	66407.26 detected >450 >1350 energy	keV/s : 0.971945 1.08914 1.018687	542.1075 5.02E-02 0.05299 5.11E-02

C.4. Cosmic dose rate

Sample	Number	Approx.	Prescott	& Stephar	ı (1982)	Approx.	Surface	Depth	Present	Representativ	/e Values (Est.	from context and age)
SUERC	Field	Latitude	Paramete	ers for Eqr	າ. 1 ^{a.}	Altitude	Cosmic	below	Cosmic	Depth belo	w surface	Cosmic
			Read fror	m Fig. 2			Dose Rate	surface	Dose Rate	Estimation	Estimated	Dose Rate
		N	F	Ĵ	Н	(km)	(Gy/ka)	(cm) ^{b.}	(Gy/ka) ^{c,d}		(cm)	(Gy/ka) ^{c,d,e}
SUTL 2157	NEW S1#1	54	0.24	0.77	4.10	0.05	0.294	24	0.24	.=present/2	12	0.27 ± 0.03
SUTL 2158	NEW S1#2	54	0.24	0.77	4.10	0.05	0.294	84	0.20	.=present/2	42	0.22 ± 0.04
SUTL 2159	NEW S1#3	54	0.24	0.77	4.10	0.05	0.294	103	0.19	.=present/2	52	0.22 ± 0.03
SUTL 2160	NEW S1#4	54	0.24	0.77	4.10	0.05	0.294	123	0.19	.=present/2	62	0.21 ± 0.03
SUTL 2161	NEW S1#5	54	0.24	0.77	4.10	0.05	0.294	148	0.18	.=present/2	74	0.20 ± 0.03
SUTL 2162	NEW S1#6	54	0.24	0.77	4.10	0.05	0.294	101	0.19	.=present/2	51	0.22 ± 0.03
SUTL 2163a	NEW Pit1#1a	54	0.24	0.77	4.10	0.05	0.294	20	0.25	.=present*2	40	0.23 ± 0.01
SUTL 2163b	NEW Pit1#1b	54	0.24	0.77	4.10	0.05	0.294	20	0.25	.=present*2	40	0.23 ± 0.01
SUTL 2165	NEW S2#1	54	0.24	0.77	4.10	0.05	0.294	33	0.23	.=present/2	17	0.26 ± 0.04
SUTL 2166	NEW S2#2	54	0.24	0.77	4.10	0.05	0.294	91	0.20	.=present/2	46	0.22 ± 0.04
SUTL 2167	NEW S2#3	54	0.24	0.77	4.10	0.05	0.294	111	0.19	.=present/2	56	0.21 ± 0.03
SUTL 2168	NEW S2#4	54	0.24	0.77	4.10	0.05	0.294	131	0.19	.=present/2	66	0.21 ± 0.03
SUTL 2169	NEW S2#5	54	0.24	0.77	4.10	0.05	0.294	157	0.18	.=present/2	79	0.20 ± 0.03
SUTL 2170	NEW S2#6	54	0.24	0.77	4.10	0.05	0.294	165	0.18	=present/2	83	0.20 ± 0.03

a. Cosmic dose rate as a fn. of altitude = K*(F+J*exp(h/H)): h = altitude (km) (Prescott & Stephan, 1982)

b. Depth values in normal text were quoted in fieldwork notes, those in italics were inferred from photos and notes

c. Sediment bulk density assumed = 1.6 g/cm^3

d. Cosmic dose rate as a fn. of depth = $0.08*EXP(-0.02*(d*1.6))+0.21*EXP(-0.0007*(d*1.6)+0.0000008*(d*1.6)^2)$: d = mass depth (g/cm2), parameters from fit to data in Prescott and Hutton (1988)

e. Estimated error = 5%Dcrep. + |Dcpresent-Dcrep.|

C.5. Water content

Sample		Subsample	e for Wat	er Conte	nt Determ	ninations											
N	umber		Sample	"InSitu"	Mass	Sat.	Mass	DUL	Mass	Dry	Mass	Tube +	Water Co	ontent as	Mass Fra	ction	
SUERC	Fie	əld	From		inc.T&G	Soak	inc.T&G	Drip Dry	inc.T&G		inc.T&G	Gauze	ISWC/	SatWC/	DULWC/	Expected	d Burial
				date	(g)	date	(g)	date	(g)	date	(g)	(g)	Dry Sed	Dry Sed	Dry Sed	(IS+Dl	JL)/2
SUTL 2157	NEW S'	1#1	all, in tube	110907	348.7	110907	392.6	160907	381.6	041007	332.9	215.7	0.13	0.51	0.42	0.28 ±	0.10
SUTL 2158	NEW S	1#2	all, in tube	110907	385.3	110907	423.9	160907	417.5	041007	356.8	217.8	0.21	0.48	0.44	0.32 ±	0.08
SUTL 2159	NEW S	1#3	all, in tube	110907	367.8	110907	398.4	160907	393.5	041007	335.1	216.7	0.28	0.53	0.49	0.38 ±	0.08
SUTL 2160	NEW S	1#4	all, in tube	110907	366.7	110907	399.6	160907	394.6	041007	340.3	217.2	0.21	0.48	0.44	0.33 ±	0.08
SUTL 2161	NEW S	1#5	all, in tube	110907	424.9	110907	450.9	160907	446.9	041007	393.6	218.1	0.18	0.33	0.30	0.24 ±	0.04
SUTL 2162	NEW S	1#6	all, in tube	110907	386.4	110907	421.9	160907	415.9	041007	367.8	217.8	0.12	0.36	0.32	0.22 ±	0.07
SUTL 2163a	a NEW Pi	it1#1a	all, in pot	280607	218.2	-	-	-	-	170707	183.8	20	0.21	-	-	0.32 ±	0.10
SUTL 2163b	NEW Pi	it1#1b	all, in pot	280607	178.3	-	-	-	-	170707	149.0	20	0.23	-	-	0.34 ±	0.10
SUTL 2165	NEW S2	2#1	all, in tube	110907	363.0	110907	406.2	160907	396.8	041007	347.2	218.3	0.12	0.46	0.38	0.25 ±	0.09
SUTL 2166	NEW S2	2#2	all, in tube	110907	374.3	110907	412.7	160907	403.6	041007	347.2	217	0.21	0.50	0.43	0.32 ±	0.08
SUTL 2167	NEW S2	2#3	all, in tube	110907	372.1	110907	406.4	160907	399.8	041007	343.5	217.2	0.23	0.50	0.45	0.34 ±	0.08
SUTL 2168	NEW S2	2#4	all, in tube	110907	398.2	110907	427.6	160907	433.4	041007	372.4	216.3	0.17	0.35	0.39	0.28 ±	0.08
SUTL 2169	NEW S2	2#5	all, in tube	110907	390.2	110907	418.2	160907	417.2	041007	351.0	218.1	0.29	0.51	0.50	0.40 ±	0.07
SUTL 2170	NEW S2	2#6	all, in tube	110907	416.6	110907	439.1	160907	410.1	041007	384.1	217.6	0.20	0.33	0.16	0.18 ±	0.01

Appendix D. Equivalent dose determinations

Aliquot	Preheat	Aliquot	Sens	itivity	Dose Re	sponse	Recyc	ing Point	Post	IRSL	Zero	Dose	Equival	ent Dose	AMC Robu	st Statis	tics V1.0
		Mass	(cps/	Change	Э		4.02	Gy	4.02	Gy	0.00	Gy					
	(°C/30s)	(g)	mg/Gy)	(frn.)	D0 (Gy)	Err	ratio	error	ratio	error	ratio	error	(Gy)	error	ROBUST S	STATIST	ICS SU
1	200	6.6	215	1.2	23	2.9	1.05	0.04	1.02	0.04	0.000	0.007	0.856	0.020	Estimate E	stimate	/alue
2	200	-2.1	-953	1.2	27	2.8	1.05	0.03	1.02	0.03	0.000	0.005	0.675	0.010	Median 0	.65971	
3	200	4.7	340	1.0	24	2.8	0.99	0.04	0.98	0.04	0.005	0.005	0.655	0.010	A15 mea 0	.68239	
4	200	-2.0	-258	1.3	21	3.8	1.05	0.07	1.00	0.07	0.018	0.012	0.604	0.030	H15 mea	0.7127	
5	220	-3.2	-229	1.4	20	2.4	1.12	0.05	1.11	0.05	0.005	0.008	0.624	0.020	MAD 0	.04532	
6	220	4.8	199	1.5	34	6.7	1.04	0.05	1.04	0.05	0.005	0.008	0.635	0.020	MADe	0.0672	
7	220	4.3	449	1.5	22	1.7	1.05	0.03	1.05	0.03	0.001	0.004	0.655	0.010	sMAD	0.0672	
8	220	-2.2	-548	1.0	25	3.6	1.05	0.05	1.04	0.05	0.008	0.007	1.047	0.020	H15 Std 0	.12717	
9	240	4.3	251	1.6	20	1.9	1.08	0.04	1.01	0.04	0.008	0.005	0.776	0.020			
10	240	4.6	446	1.8	26	1.9	1.04	0.03	1.04	0.03	0.006	0.003	0.665	0.010			
11	240	4.4	216	2.0	24	2.7	1.02	0.04	1.02	0.04	0.011	0.006	0.755	0.020			
12	240	8.0	173	2.0	22	1.8	0.99	0.03	0.99	0.03	0.009	0.004	0.866	0.020			
13	260	4.0	336	2.2	30	2.9	1.05	0.03	1.05	0.03	0.007	0.003	0.655	0.010			
14	260	4.0	414	2.2	27	2.2	1.04	0.03	1.06	0.03	0.008	0.003	0.554	0.010			
15	260	4.6	210	2.3	24	2.3	1.06	0.04	1.04	0.04	0.007	0.005	0.635	0.020			
16	260	2.4	311	2.2	21	2.0	1.02	0.04	1.05	0.04	0.007	0.005	0.977	0.020			
													n =	16		n =	16
Mean		3.0	98	1.6	24.3		1.04		1.03		0.007	Mean	0.727	Internal	H1	5 mean	0.713
SD		3.4	395	0.4	3.9		0.03		0.03		0.004	SD	0.141	Error	H15 S	Std Dev	0.127
SD/rtN		0.8	99	0.1	1.0		0.01		0.01		0.001	SD/rtN	0.035	0.004	9	SD/rtN	0.032
%err		29	101	7	4		1		1		16	%err	5			%err	4

Aliquot	Preheat	Aliquot	Sens	itivity	Dose Re	sponse	Recycl	ing Point	Post	IRSL	Zero	Dose	Equival	ent Dose	AMC Rob	oust Statis	stics V1.0
		Mass	(cps/	Change	е		4.02	Gy	4.02	Gy	0.00	Gy					
	(°C/30s)	(g)	mg/Gy)	(frn.)	D0 (Gy)	Err	ratio	error	ratio	error	ratio	error	(Gy)	error	ROBUST	STATIST	TICS SU
17	200	5.1	216	1.2	21	2.6	0.99	0.04	1.00	0.04	-0.002	-0.008	2.407	0.040	Estimate	Estimate	Parame
18	200	4.6	351	1.1	23	2.3	0.95	0.03	0.97	0.03	0.005	0.005	2.196	0.030	Median	2.15538	
19	200	4.8	176	1.2	23	4.3	1.02	0.06	0.95	0.05	0.011	0.011	2.145	0.040	A15 meε	2.17512	c=1.5: C
20	200	4.3	487	1.1	25	2.3	1.00	0.03	1.02	0.03	0.003	0.004	2.155	0.020	H15 meε	2.2007	c=1.5: C
21	220	5.0	231	1.3	25	3.2	1.03	0.04	1.03	0.04	0.009	0.006	2.155	0.030	MAD	0.05036	
22	220	4.0	484	1.5	25	2.0	1.06	0.03	1.07	0.03	0.003	0.003	2.306	0.030	MADe	0.07466	
23	220	5.2	195	1.5	28	4.4	1.02	0.04	1.00	0.04	0.007	0.007	2.196	0.040	sMAD	0.07466	
24	220	4.2	327	1.0	23	2.7	0.98	0.04	0.96	0.04	0.005	0.005	2.437	0.030	H15 Std	0.16534	c=1.5: C
25	240	5.1	326	2.0	22	1.6	1.02	0.03	0.98	0.03	0.003	0.003	2.135	0.030			
26	240	4.6	611	1.6	12	13.9	1.04	0.02	1.01	0.02	0.008	0.002	1.924	0.020			
27	240	5.4	375	1.9	21	1.3	1.03	0.03	1.04	0.03	0.005	0.003	2.095	0.020			
28	240	4.9	244	1.6	35	5.3	1.03	0.04	1.05	0.04	0.005	0.005	2.145	0.030			
29	260	3.8	441	2.7	25	1.6	1.02	0.03	1.01	0.03	0.005	0.002	2.578	0.030			
30	260	4.8	383	2.4	36	3.5	1.04	0.03	1.03	0.03	0.024	0.003	1.964	0.020			
31	260	2.8	333	2.2	31	4.2	0.98	0.04	1.00	0.04	0.013	0.005	2.155	0.040			
32	260	4.1	417	2.1	21	1.3	1.05	0.03	1.05	0.03	0.010	0.003	2.317	0.030			
													n =	16		n =	16
Mean		4.5	350	1.6	24.8		1.02		1.01		0.007	Mean	2.207	Internal	Н	15 mean	2.201
SD		0.7	121	0.5	6.0		0.03		0.04		0.006	SD	0.168	Error	H15	Std Dev	0.165
SD/rtN		0.2	30	0.1	1.5		0.01		0.01		0.001	SD/rtN	0.042	0.008		SD/rtN	0.041
%err		4	9	8	6		1		1		20	%err	2			%err	2

 Sample
 SUTL 2159

 Date
 91107
 to
 121107

 Reader
 Riso 1

 Source Calibration
 0.1007
 ±
 0.0017
 Gy/s

 Regenerative Dose Sequence (Gy)

 D
 D1
 D2
 D3
 D4
 D5
 D6
 D7
 D8
 D9
 0.00
 0.00
 Test Dose (Gy)
 2.00

 Measurement
 Signal
 Background

 0.00
 0.00
 0.00
 0.00

 0.00
 0.00
 0.00
 0.00
 0.00

 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00

Aliquot	Preheat	Aliquot	Sens	itivity	Dose Re	sponse	Recycl	ing Point	Post	IRSL	∠ero	Dose	Equival	ent Dose	AMC Rot	Just Statis	stics V1.0
		Mass	(cps/	Change	Э		4.02	Gy	4.02	Gy	0.00	Gy					
	(°C/30s)	(g)	mg/Gy)	(frn.)	D0 (Gy)	Err	ratio	error	ratio	error	ratio	error	(Gy)	error	ROBUST	STATIST	FICS SU
33	200	1.1	404	1.1	30	9.2	0.97	0.07	0.97	0.07	0.010	0.014	2.246	0.060	Estimate	Estimate	Parame
34	200	2.2	168	1.4	21	4.5	0.99	0.07	0.99	0.07	0.002	0.014	2.770	0.081	Median	2.49782	
35	200	1.6	518	1.0	24	3.5	1.04	0.05	1.03	0.05	-0.003	-0.007	2.488	0.040	A15 mea	2.507	c=1.5: C
36	200	1.5	132	1.2	27	12.7	1.02	0.13	1.02	0.12	-0.022	-0.028	2.407	0.111	H15 mea	2.50772	c=1.5: C
37	220	2.6	449	1.1	16	1.3	1.00	0.04	1.03	0.04	0.001	0.005	2.518	0.040	MAD	0.16115	
38	220	2.4	292	1.4	19	2.3	1.00	0.05	1.01	0.05	0.001	0.008	2.468	0.050	MADe	0.23892	
39	220	2.6	312	1.3	22	3.0	1.08	0.05	1.06	0.05	0.005	0.008	2.870	0.050	sMAD	0.23892	
40	220	2.7	218	1.3	23	3.8	1.03	0.06	1.07	0.06	0.002	0.009	2.911	0.060	H15 Std	0.23405	c=1.5: C
41	240	2.9	441	1.8	25	2.3	1.04	0.03	1.03	0.03	0.007	0.004	2.508	0.030			
42	240	3.0	79	1.4	17	4.2	1.03	0.11	1.06	0.11	-0.008	-0.023	2.639	0.111			
43	240	2.2	380	1.5	18	1.8	1.04	0.05	1.02	0.04	0.005	0.006	2.538	0.050			
44	240	1.7	63	1.8	24	11.9	1.08	0.17	1.15	0.18	0.014	0.038	2.306	0.171			
45	260	2.5	577	2.0	31	3.0	1.03	0.03	1.05	0.03	0.002	0.003	2.095	0.030			
46	260	2.1	580	1.8	29	3.0	0.98	0.03	1.01	0.03	0.008	0.004	2.306	0.030			
47	260	2.5	372	1.6	22	2.2	1.00	0.04	0.93	0.04	0.006	0.005	2.679	0.050			
48	260	2.2	316	1.0	19	2.7	0.96	0.05	0.99	0.06	0.009	0.008	2.387	0.050			
													n =	16		n =	16
Mean		2.2	331	1.4	23.0		1.02		1.03		0.003	Mean	2.509	Internal	Н	15 mean	2.508
SD		0.5	165	0.3	4.6		0.03		0.05		0.008	SD	0.225	Error	H15	Std Dev	0.234
SD/rtN		0.1	41	0.1	1.2		0.01		0.01		0.002	SD/rtN	0.056	0.018		SD/rtN	0.059
%err		6	12	5	5		1		1		81	%err	2			%err	2

 Sample
 SUTL 2160

 Date
 91107
 to
 151107

 Reader
 Riso 2
 2
 2

 Source Calibration
 0.0936
 ±
 0.001
 Gy/s

 Regenerative Dose Sequence (Gy)
 0
 0
 1
 D2
 D3
 D4
 D5
 D6
 D7
 D8
 D9

 0.00
 3.77
 0.02
 0.96
 6.57
 9.38
 3.77
 3.77
 0.02
 0.02

 Test Dose (Gy)
 1.89

 Signal Background
 OSL 60s@125°C, 240C111-30
 191-230
 ISL 1205@50°C, 240C111-30
 191-230

Aliquot	Preheat	Aliquot	Sensi	itivity	Dose Re	sponse	Recycl	ing Point	Pos	t IRSL	Zero	Dose	Equival	ent Dose	AMC Rob	ust Statis	tics V1.0
		Mass	(cps/	Change	Э		3.77	Gy	3.77	Gy	0.00	Gy					
	(°C/30s)	(g)	mg/Gy)	(frn.)	D0 (Gy)	Err	ratio	error	ratio	error	ratio	error	(Gy)	error	ROBUST	STATIST	TICS SU
1	200	3.5	338	1.6	20	2.3	1.09	0.05	1.02	0.04	0.015	0.008	3.435	0.056	Estimate I	Estimate	value
2	200	5.2	686	1.1	23	1.8	0.99	0.03	0.97	0.02	0.007	0.004	1.863	0.019	Median	2.96705	
3	200	4.6	615	1.2	27	2.7	1.01	0.03	0.99	0.03	0.011	0.005	6.383	0.066	A15 mea	2.947	
4	200	2.4	429	1.1	16	1.9	1.11	0.06	1.04	0.05	0.013	0.010	3.407	0.066	H15 meε	2.947	
5	220	4.6	501	1.3	36	5.4	1.02	0.03	0.97	0.03	0.015	0.005	3.650	0.037	MAD	0.45395	
6	220	7.4	466	1.6	23	1.7	1.03	0.02	1.01	0.02	0.013	0.004	3.154	0.028	MADe	0.67303	
7	220	5.1	267	1.4	25	3.7	1.03	0.04	1.04	0.04	0.022	0.008	3.332	0.056	sMAD	0.67303	
8	220	6.1	288	1.6	25	2.9	1.07	0.04	1.03	0.03	0.022	0.007	2.930	0.037	H15 Std	0.74774	
9	240	7.9	380	2.5	24	1.5	1.04	0.02	1.00	0.02	0.029	0.003	2.686	0.028			
10	240	7.2	398	1.9	19	1.2	1.03	0.03	1.01	0.02	0.023	0.004	3.866	0.037			
11	240	6.2	328	2.1	21	1.8	1.00	0.03	0.96	0.03	0.032	0.005	2.677	0.037			
12	240	6.9	395	1.9	20	1.4	1.03	0.03	0.99	0.02	0.020	0.004	3.004	0.028			
13	260	6.3	581	2.4	20	1.0	0.97	0.02	0.96	0.02	0.024	0.002	2.115	0.019			
14	260	5.9	525	2.4	21	1.1	0.99	0.02	0.97	0.02	0.030	0.003	2.434	0.028			
15	260	7.0	475	2.2	30	2.2	0.96	0.02	0.94	0.02	0.030	0.003	2.621	0.028			
16	260	6.3	382	2.6	19	1.1	0.99	0.02	0.97	0.02	0.035	0.004	1.947	0.028			
													n =	16		n =	16
Mean		5.8	441	1.8	23.0		1.02		0.99		0.021	Mean	3.094	Internal	H	15 mean	2.947
SD		1.5	119	0.5	4.9		0.04		0.03		0.008	SD	1.059	Error	H15	Std Dev	0.748
SD/rtN		0.4	30	0.1	1.2		0.01		0.01		0.002	SD/rtN	0.265	0.010		SD/rtN	0.187
%err		6	7	7	5		1		1		10	%err	9			%err	6

90

1.E+04

1.E+03

 Sample
 SUTL 2161

 Date
 91107
 to
 151107

 Reader
 Riso 2
 Source Calibration
 0.0936
 ±
 0.001
 Gy/s

 Source Calibration
 0.0936
 ±
 0.001
 Gy/s

 Regenerative Dose Sequence (Gy)
 Dn
 D1
 D2
 D3
 D4
 D5
 D6
 D7
 D8
 D9

 0.00
 3.77
 0.02
 0.96
 6.57
 9.38
 3.77
 3.77
 0.02
 0.02

 Test Dose (Gy)
 1.89

 0.02
 0.02
 0.02

 0.02
 0.02
 0.02
 0.02

 0.02
 0.02
 0.02

 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02</td

Aliquot	Preheat	Aliquot	Sens	itivity	Dose Re	sponse	Recycl	ing Point	Post	IRSL	Zero	Dose	Equival	ent Dose	AMC Rob	ust Statis	tics V1.0
		Mass	(cps/	Change	е		3.77	Gy	3.77	Gy	0.00	Gy					
	(°C/30s)	(g)	mg/Gy)	(frn.)	D0 (Gy)	Err	ratio	error	ratio	error	ratio	error	(Gy)	error	ROBUST	STATIST	ICS SU
17	200	8.9	466	1.3	21	1.5	1.03	0.02	0.99	0.02	0.008	0.004	4.109	0.037	Estimate I	Estimate	Paramet
18	200	7.4	289	1.2	29	4.1	1.03	0.04	0.98	0.03	0.010	0.006	3.585	0.047	Median	3.70647	
19	200	6.1	646	1.3	23	1.5	1.02	0.02	1.00	0.02	0.002	0.003	3.735	0.028	A15 meε	3.67606	c=1.5: C
20	200	7.9	275	1.3	27	3.7	1.00	0.03	0.97	0.03	0.013	0.006	3.753	0.047	H15 meε	3.67606	c=1.5: C
21	220	6.3	280	1.5	20	2.0	1.05	0.04	1.04	0.04	0.023	0.007	3.697	0.047	MAD	0.0936	
22	220	6.0	672	1.6	21	1.2	1.03	0.02	1.01	0.02	0.012	0.003	4.043	0.028	MADe	0.13877	
23	220	6.9	278	1.7	25	2.7	1.02	0.03	0.99	0.03	0.016	0.006	3.772	0.047	sMAD	0.13877	
24	220	6.4	847	1.6	24	1.3	1.05	0.02	1.03	0.02	0.005	0.002	3.688	0.028	H15 Std	0.16742	c=1.5: C
25	240	5.7	504	1.6	22	1.6	1.07	0.03	1.03	0.02	0.014	0.004	3.482	0.037			
26	240	6.6	456	1.9	25	1.8	1.04	0.02	1.01	0.02	0.015	0.003	3.716	0.037			
27	240	6.0	412	1.6	18	1.2	1.05	0.03	1.00	0.03	0.015	0.004	3.594	0.037			
28	240	6.4	374	2.0	18	1.0	1.06	0.03	1.00	0.03	0.020	0.004	3.220	0.037			
29	260	5.8	1257	1.8	24	0.9	1.03	0.01	1.01	0.01	0.018	0.002	3.781	0.019			
30	260	6.2	783	2.3	20	0.8	1.00	0.02	0.98	0.02	0.018	0.002	2.948	0.019			
31	260	6.2	1573	1.9	27	1.0	1.05	0.01	1.00	0.01	0.013	0.001	3.725	0.019			
32	260	5.7	654	2.0	17	0.7	1.00	0.02	0.95	0.02	0.031	0.003	3.585	0.028			
													n =	16		n =	16
Mean		6.5	610	1.7	22.5		1.03		1.00		0.014	Mean	3.652	Internal	H	15 mean	3.676
SD		0.9	367	0.3	3.6		0.02		0.02		0.007	SD	0.276	Error	H15	Std Dev	0.167
SD/rtN		0.2	92	0.1	0.9		0.01		0.01		0.002	SD/rtN	0.069	0.009		SD/rtN	0.042
%err		3	15	4	4		1		1		12	%err	2			%err	1

 Sample
 SUTL 2162

 Date
 91107
 to
 151107

 Reader
 Riso 2
 Source Calibration
 0.0936
 ±
 0.001
 Gy/s

 Source Calibration
 0.0936
 ±
 0.001
 Gy/s

 Regenerative Dose Sequence (Gy)
 Dn
 D1
 D2
 D3
 D4
 D5
 D6
 D7
 D8
 D9

 0.00
 3.77
 0.02
 0.96
 6.57
 9.38
 3.77
 3.77
 0.02
 0.02

 Test Dose (Gy)
 1.89
 Heasurement
 Signal Background
 OSL 60:60/125°C, 240CI 11-30
 191-230
 IRSL 120S@50°C, 240C 11-30
 191-230

Aliquot	Preheat	Aliquot	Sensi	tivity	Dose Re	sponse	Recycl	ing Point	Post	IRSL	Zero	Dose	Equival	ent Dose	AMC Rot	oust Statis	tics V1.0
		Mass	(cps/	Change	Э		3.77	Gy	3.77	Gy	0.00	Gy					
	(°C/30s)	(g)	mg/Gy)	(frn.)	D0 (Gy)	Err	ratio	error	ratio	error	ratio	error	(Gy)	error	ROBUST	STATIST	TICS SU
33	200	3.4	360	1.3	28	4.6	1.05	0.04	1.04	0.04	0.015	0.008	3.744	0.056	Estimate	Estimate	Parame
34	200	2.9	227	1.1	18	3.8	1.04	0.08	1.03	0.08	0.037	0.016	3.491	0.094	Median	3.24784	
35	200	3.5	260	1.5	24	4.4	1.07	0.06	1.06	0.06	0.004	0.012	3.267	0.066	A15 meε	3.29119	c=1.5: C
36	200	3.6	248	1.5	20	3.2	1.00	0.05	1.01	0.05	0.011	0.011	4.156	0.084	H15 mea	3.29927	c=1.5: C
37	220	4.9	246	1.7	20	2.3	1.02	0.04	0.96	0.04	0.014	0.008	3.753	0.066	MAD	0.29483	
38	220	3.0	424	1.6	21	2.4	1.09	0.04	1.05	0.04	0.010	0.007	3.501	0.056	MADe	0.43712	
39	220	4.2	149	2.0	19	3.1	1.14	0.07	1.09	0.06	0.034	0.015	3.033	0.084	sMAD	0.43712	
40	220	3.3	177	1.7	17	2.9	1.05	0.07	1.00	0.06	0.022	0.013	2.873	0.084	H15 Std	0.46069	c=1.5: C
41	240	4.4	274	1.8	19	1.8	1.06	0.04	1.05	0.04	0.017	0.007	2.958	0.047			
42	240	3.4	239	2.0	29	5.6	1.04	0.05	1.00	0.05	0.041	0.011	4.465	0.103			
43	240	3.1	331	1.4	27	4.4	1.03	0.05	1.02	0.04	0.007	0.008	3.407	0.056			
44	240	3.9	273	1.8	36	6.7	1.06	0.04	1.04	0.04	0.016	0.007	3.229	0.056			
45	260	3.7	677	2.1	26	1.9	1.00	0.02	0.97	0.02	0.010	0.003	2.948	0.028			
46	260	3.9	407	1.3	18	1.5	1.02	0.04	0.98	0.03	0.013	0.005	2.714	0.037			
47	260	3.7	543	1.7	17	1.0	1.03	0.03	1.01	0.03	0.016	0.004	3.089	0.037			
48	260	4.8	759	1.4	25	1.7	1.00	0.02	0.98	0.02	0.010	0.002	2.845	0.028			
													n =	16		n =	16
Mean		3.7	350	1.6	22.8		1.04		1.02		0.017	Mean	3.342	Internal	Н	15 mean	3.299
SD		0.6	175	0.3	5.3		0.04		0.03		0.011	SD	0.493	Error	H15	Std Dev	0.461
SD/rtN		0.1	44	0.1	1.3		0.01		0.01		0.003	SD/rtN	0.123	0.016		SD/rtN	0.115
%err		4	13	4	6		1		1		15	%err	4			%err	3

Sample SUTL 2165 Date 121107 to Reader Riso 1 151107 Source Calibration 0.1007 ± 0.0017 Gy/s
 Source calibration
 0.1007
 ±
 0.0017
 Gyrs

 Regenerative Dose Sequence (Gy)
 Dn
 D1
 D2
 D3
 D4
 D5
 D6
 D7
 D8
 D9

 0.00
 4.02
 0.00
 1.00
 7.04
 10.06
 4.02
 4.02
 0.00
 0.00

 Test Dose (Gy)
 2.00
 Measurement
 Signal Background
 Signal Background
 Signal Background
 Measurement Signal Background OSL 60s@125°C, 240Cl 11-30 191-230 IRSL 120s@50°C, 240C 11-30 191-230

Aliquot	Preheat	Aliquot	Sens	itivity	Dose R	esponse	Recycl	ing Point	Post	IRSL	Zero	Dose	Equivale	ent Dose	AMC Rob	ust Statis	tics V1.0
		Mass	(cps/	Change	Э		4.02	Gy	4.02	Gy	0.00	Gy					
	(°C/30s)	(g)	mg/Gy)	(frn.)	D0 (Gy)	Err	ratio	error	ratio	error	ratio	error	(Gy)	error	ROBUST	STATIST	ICS SU
1	200	0.0	#DIV/0!	1.0	13	3.0	1.06	0.14	0.98	0.13	-0.013	-0.025	0.665	0.050	Estimate I	Estimate	value
2	200	0.0	#DIV/0!	1.3	4887	######	1.00	0.20	1.09	0.22	0.068	0.051	1.339	0.161	Median	0.76536	
3	200	0.0	#DIV/0!	2.9	5	3.7	0.72	0.53	0.54	0.39	0.123	0.180	2.679	1.742	A15 mea	0.8075	
4	200	0.0	#DIV/0!	1.0	20	6.3	0.96	0.11	0.93	0.11	-0.018	-0.020	0.685	0.040	H15 meε	0.90518	
5	220	0.0	#DIV/0!	1.5	63	101.5	1.01	0.17	0.93	0.16	0.020	0.046	1.420	0.151	MAD	0.10071	
6	220	0.0	#DIV/0!	1.1	2	0.8	0.71	0.58	0.50	0.38	-0.143	-0.132	0.947	0.181	MADe	0.14931	
7	220	0.0	#DIV/0!	1.8	158	360.6	1.15	0.14	1.17	0.14	-0.007	-0.029	0.685	0.070	sMAD	0.14931	
8	220	0.0	#DIV/0!	1.6	15	8.1	0.98	0.26	0.94	0.24	0.004	0.055	1.017	0.161	H15 Std	0.38515	
9	240	0.0	#DIV/0!	1.7	27	3.8	1.02	0.04	1.03	0.04	0.008	0.006	0.715	0.020			
10	240	0.0	#DIV/0!	1.7	3	3.7	0.75	1.66	1.23	1.66	-0.188	-0.358	0.141	0.504			
11	240	0.0	#DIV/0!	1.5	58	60.8	0.99	0.14	0.97	0.13	0.024	0.034	0.755	0.091			
12	240	0.0	#DIV/0!	1.9	15	3.6	1.07	0.14	1.01	0.13	0.002	0.026	0.806	0.081			
13	260	0.0	#DIV/0!	2.4	3817	######	1.00	0.11	1.02	0.11	0.037	0.024	0.735	0.091			
14	260	0.0	#DIV/0!	2.3	28	5.1	1.07	0.06	1.05	0.06	0.016	0.009	0.665	0.030			
15	260	0.0	#DIV/0!	1.6	23	2.9	1.01	0.05	0.99	0.05	-0.001	-0.006	2.659	0.050			
16	260	0.0	#DIV/0!	2.1	16	5.8	0.97	0.18	0.95	0.17	0.041	0.038	0.775	0.121			
													n =	16		n =	16
Mean		0.0	#DIV/0!	1.7	571.8		0.97		0.96		-0.002	Mean	1.043	Internal	H	15 mean	0.905
SD		0.0	#DIV/0!	0.5	1489.1		0.13		0.19		0.073	SD	0.697	Error	H15	Std Dev	0.385
SD/rtN		0.0	#DIV/0!	0.1	372.3		0.03		0.05		0.018	SD/rtN	0.174	0.116		SD/rtN	0.096
%err		#DIV/0!	#DIV/0!	8	65		3		5		-1029	%err	17			%err	11

45 40

220 240 PH (°C)

260

280

-0.20

160

180

200

Aliquot	Preheat	Aliquot	Sens	itivity	Dose Re	sponse	Recycl	ing Point	Post	IRSL	Zero	Dose	Equival	ent Dose	AMC Rob	oust Statis	tics V1.0
		Mass	(cps/	Change	е		4.02	Gy	4.02	Gy	0.00	Gy					
	(°C/30s)	(g)	mg/Gy)	(frn.)	D0 (Gy)	Err	ratio	error	ratio	error	ratio	error	(Gy)	error	ROBUST	STATIST	TICS SU
17	200	3.2	513	1.1	26	2.9	0.98	0.03	1.01	0.03	0.003	0.004	2.508	0.030	Estimate	Estimate	Paramet
18	200	4.0	261	1.2	28	4.4	1.03	0.05	1.00	0.04	0.014	0.007	2.296	0.040	Median	2.45721	
19	200	3.9	380	1.2	25	3.1	1.00	0.04	1.01	0.04	0.000	0.006	2.115	0.030	A15 meε	2.43714	c=1.5: C
20	200	2.9	274	1.3	20	2.8	0.98	0.05	1.03	0.05	0.014	0.008	2.467	0.050	H15 meε	2.43519	c=1.5: C
21	220	4.0	485	1.1	36	4.8	1.05	0.03	1.06	0.03	0.003	0.004	2.417	0.030	MAD	0.06546	
22	220	4.8	249	1.3	38	7.7	1.04	0.04	1.02	0.04	0.002	0.006	2.457	0.040	MADe	0.09705	
23	220	4.0	408	1.5	23	2.0	1.04	0.03	1.04	0.03	0.005	0.004	2.407	0.030	sMAD	0.09705	
24	220	3.8	313	1.2	20	2.0	0.97	0.04	0.97	0.04	0.007	0.006	2.377	0.040	H15 Std	0.10963	c=1.5: C
25	240	3.4	779	1.4	6	3.8	1.03	0.02	1.06	0.02	0.003	0.002	2.367	0.020			
26	240	5.2	663	1.8	29	1.8	1.04	0.02	1.06	0.02	0.004	0.002	2.135	0.020			
27	240	4.4	428	1.8	22	1.5	1.09	0.03	1.06	0.03	0.003	0.003	2.548	0.030			
28	240	5.9	384	1.6	23	1.6	1.07	0.03	1.05	0.03	0.004	0.003	2.457	0.030			
29	260	3.0	319	2.0	22	2.1	1.03	0.04	1.03	0.04	0.008	0.005	2.578	0.040			
30	260	3.1	311	2.1	15	0.9	1.03	0.04	1.01	0.04	0.002	0.004	2.558	0.040			
31	260	4.7	379	1.9	24	1.7	1.03	0.03	1.02	0.03	0.008	0.003	2.497	0.030			
32	260	4.2	235	2.2	23	2.1	1.02	0.04	1.05	0.04	0.007	0.004	2.477	0.040			
													n =	16		n =	16
Mean		4.0	399	1.5	23.8		1.03		1.03		0.005	Mean	2.416	Internal	Н	15 mean	2.435
SD		0.8	151	0.4	7.4		0.03		0.03		0.004	SD	0.136	Error	H15	Std Dev	0.110
SD/rtN		0.2	38	0.1	1.9		0.01		0.01		0.001	SD/rtN	0.034	0.009		SD/rtN	0.027
%err		5	9	6	8		1		1		18	%err	1			%err	1

Aliquot	Preheat	Aliquot	Sensi	tivity	Dose Re	sponse	Recycl	ing Point	Post	IRSL	Zero	Dose	Equival	ent Dose	AMC Rot	oust Statis	stics V1.0
		Mass	(cps/	Change	Э		4.02	Gy	4.02	Gy	0.00	Gy					
	(°C/30s)	(g)	mg/Gy)	(frn.)	D0 (Gy)	Err	ratio	error	ratio	error	ratio	error	(Gy)	error	ROBUST	STATIS	rics su
33	200	4.2	297	1.1	36	7.4	1.00	0.04	1.00	0.04	0.014	0.007	3.857	0.050	Estimate	Estimate	Parame
34	200	4.8	420	1.1	22	2.1	0.99	0.03	1.00	0.03	0.002	0.005	3.233	0.040	Median	3.23264	
35	200	5.3	285	1.1	44	9.8	1.02	0.04	1.04	0.04	0.009	0.007	3.464	0.040	A15 meε	3.26726	c=1.5: C
36	200	5.6	314	1.2	29	3.8	0.99	0.03	0.99	0.03	0.003	0.005	3.072	0.040	H15 meε	3.27221	c=1.5: C
37	220	4.7	493	1.2	27	2.5	1.00	0.03	1.01	0.03	0.007	0.004	3.152	0.030	MAD	0.1712	
38	220	6.1	442	1.3	23	1.7	0.99	0.03	1.00	0.03	0.005	0.003	2.920	0.030	MADe	0.25382	
39	220	5.0	295	1.6	19	1.6	1.01	0.03	1.04	0.04	0.008	0.005	3.092	0.040	sMAD	0.25382	
40	220	5.8	249	1.3	24	3.0	1.01	0.04	1.03	0.04	0.008	0.006	3.273	0.050	H15 Std	0.2611	c=1.5: C
41	240	5.3	417	1.4	35	4.0	1.04	0.03	1.02	0.03	0.012	0.004	3.525	0.040			
42	240	6.2	398	1.6	36	3.8	1.00	0.02	1.05	0.03	0.015	0.003	3.484	0.030			
43	240	5.3	426	1.5	28	2.5	1.02	0.03	1.02	0.03	0.013	0.004	3.122	0.030			
44	240	4.8	492	1.7	32	2.8	1.04	0.03	1.03	0.02	0.011	0.003	3.414	0.030			
45	260	3.8	411	1.8	21	1.4	1.02	0.03	1.00	0.03	0.009	0.003	3.233	0.040			
46	260	6.1	452	1.8	21	1.2	1.01	0.02	1.01	0.02	0.007	0.002	3.233	0.030			
47	260	3.4	439	2.2	25	1.9	1.01	0.03	1.00	0.03	0.009	0.003	3.595	0.040			
48	260	4.6	837	1.4	29	1.8	1.02	0.02	1.00	0.02	0.008	0.002	2.769	0.020			
													n =	16		n =	16
Mean		5.1	417	1.5	28.2		1.01		1.01		0.009	Mean	3.277	Internal	Н	15 mean	3.272
SD		0.8	136	0.3	6.8		0.02		0.02		0.004	SD	0.271	Error	H15	Std Dev	0.261
SD/rtN		0.2	34	0.1	1.7		0.00		0.00		0.001	SD/rtN	0.068	0.009		SD/rtN	0.065
%err		4	8	5	6		0		0		11	%err	2			%err	2

Sample SUTL 2168 Date 151107 to 181107 Reader Riso 2 Source Calibration 0.0936 ± 0.001 Gy/s Regenerative Dose Sequence (Gy) Dn D1 D2 D3 D4 D5 D6 D7 D8 D9 0.00 3.77 0.02 0.96 6.57 9.38 3.77 3.77 0.02 0.02 Test Dose (Gy) 1.89 Measurement Signal Background OSL 60s@125°C, 240C111-30 191-230 IRSL 120s@50°C, 240C 11-30 191-230

Note:

1. Final test dose irradiation appeared incomplete (possibly due to reduced gas pressure: see plot of Tx/Tn vs cycle). Previous test dose response used to normalise OSL signal measured following IRSL was This did not affect measurements for De determinati

Aliquot	Preheat	Aliquot	Sens	itivity	Dose Re	sponse	Recycl	ing Point	Post	IRSL ¹	Zero	Dose	Equival	ent Dose	AMC Rob	ust Statis	tics V1.
		Mass	(cps/	Change	е		3.77	Gy	3.77	Gy	0.00	Gy					
	(°C/30s)	(g)	mg/Gy)	(frn.)	D0 (Gy)	Err	ratio	error	ratio	error	ratio	error	(Gy)	error	ROBUST	STATIST	ICS SU
1	200	4.2	451	1.3	22	2.5	1.04	0.04	1.06	0.04	0.011	0.007	4.332	0.056	Estimate E	Estimate	value
2	200	5.7	322	1.5	25	3.2	0.98	0.03	1.04	0.04	0.020	0.007	5.100	0.066	Median 4	4.53829	
3	200	4.7	121	1.2	40	21.9	1.04	0.09	1.10	0.09	0.031	0.022	4.735	0.140	A15 mea	4.53733	
4	200	3.8	568	1.3	28	3.2	1.03	0.03	1.06	0.03	0.011	0.005	4.295	0.047	H15 mea -	4.54229	
5	220	5.9	784	1.6	21	1.1	1.03	0.02	1.09	0.02	0.011	0.003	5.044	0.037	MAD	0.22458	
6	220	5.1	416	1.4	18	1.4	1.03	0.03	1.08	0.03	0.017	0.005	4.417	0.056	MADe	0.33296	
7	220	4.9	233	1.6	19	2.3	1.00	0.04	1.03	0.05	0.029	0.009	4.716	0.094	sMAD	0.33296	
8	220	5.1	245	1.5	22	2.8	1.01	0.04	1.04	0.04	0.030	0.008	4.239	0.075	H15 Std	0.38779	
9	240	5.6	572	1.8	20	1.1	1.01	0.02	1.06	0.02	0.013	0.003	4.164	0.037			
10	240	5.1	316	1.9	24	2.5	1.04	0.03	1.08	0.03	0.027	0.006	4.679	0.075			
11	240	4.7	815	1.7	27	1.8	1.05	0.02	1.09	0.02	0.011	0.003	4.201	0.037			
12	240	5.1	256	2.0	26	3.1	1.01	0.04	1.10	0.04	0.036	0.007	4.566	0.075			
13	260	5.6	369	1.9	18	1.1	0.98	0.03	1.00	0.03	0.023	0.004	4.594	0.056			
14	260	6.4	694	1.6	29	1.9	1.03	0.02	1.05	0.02	0.011	0.002	3.836	0.028			
15	260	6.8	627	1.9	24	1.2	0.99	0.02	1.01	0.02	0.017	0.002	5.371	0.037			
16	260	5.2	665	2.1	21	1.0	0.99	0.02	1.03	0.02	0.015	0.002	4.510	0.037			
													n =	16		n =	16
Mean		5.2	466	1.7	24.0		1.02		1.06		0.019	Mean	4.550	Internal	H1	15 mean	4.542
SD		0.8	213	0.3	5.5		0.02		0.03		0.009	SD	0.392	Error	H15	Std Dev	0.388
SD/rtN		0.2	53	0.1	1.4		0.01		0.01		0.002	SD/rtN	0.098	0.016		SD/rtN	0.097
%err		4	11	4	6		1		1		11	%err	2			%err	2

Sample SUTL 2169 Date 151107 to 181107 Reader Riso 2 Source Calibration 0.0936 ± 0.001 Gy/s Regenerative Dose Sequence (Gy) Dn D1 D2 D3 D4 D5 D6 D7 D8 D9 0.00 3.77 0.02 0.96 6.57 9.38 3.77 3.77 0.02 0.02 Test Dose (Gy) Measurement 1.89 Signal Background OSL 60s@125°C, 240Cl 11-30 191-230 IRSL 120s@50°C, 240C 11-30 191-230

Note:

1. Final test dose irradiation appeared incomplete (possibly due to reduced gas pressure: see plot of Tx/Tn vs cycle). Previous test dose response used to normalise OSL signal measured following IRSL was This did not affect measurements for De determinati

6.0

8

8.0

10

Aliquot	Preheat	Aliquot	Sens	itivity	Dose Re	sponse	Recycl	ing Point	Post	IRSL'	Zero	Dose	Equival	lent Dose	AMC Rol	oust Statis	stics V1.
		Mass	(cps/	Change	е		3.77	Gy	3.77	Gy	0.00	Gy					
	(°C/30s)	(g)	mg/Gy)	(frn.)	D0 (Gy)	Err	ratio	error	ratio	error	ratio	error	(Gy)	error	ROBUST	STATIS	FICS SU
17	200	5.1	332	1.3	25	3.4	0.98	0.04	1.05	0.04	0.012	0.007	5.268	0.075	Estimate	Estimate	Parame
18	200	4.1	503	1.1	18	1.6	1.05	0.04	1.08	0.04	0.015	0.006	5.044	0.066	Median	4.52426	
19	200	3.8	727	1.1	20	1.7	0.99	0.03	1.03	0.03	0.008	0.005	4.389	0.047	A15 mea	4.63089	c=1.5: C
20	200	4.4	736	1.2	29	3.2	1.04	0.03	1.08	0.03	0.014	0.005	7.055	0.075	H15 mea	4.64974	c=1.5: C
21	220	4.1	306	1.6	27	4.2	0.99	0.04	1.04	0.04	0.030	0.008	5.334	0.094	MAD	0.31815	
22	220	4.3	705	1.6	21	1.3	1.01	0.02	1.06	0.03	0.010	0.003	4.248	0.037	MADe	0.47169	
23	220	5.4	734	1.3	30	2.8	1.03	0.02	1.06	0.02	0.012	0.004	3.958	0.037	sMAD	0.47169	
24	220	5.0	682	1.3	26	2.0	1.02	0.02	1.06	0.02	0.008	0.003	4.351	0.037	H15 Std	0.51332	c=1.5: C
25	240	4.0	510	1.7	22	1.7	1.04	0.03	1.08	0.03	0.015	0.004	4.248	0.056		-	
26	240	4.4	483	1.6	21	1.6	1.00	0.03	1.04	0.03	0.017	0.004	4.389	0.056			
27	240	4.3	453	1.6	26	2.7	1.01	0.03	1.04	0.03	0.018	0.005	4.108	0.056			
28	240	3.6	551	2.0	21	1.5	1.02	0.03	1.06	0.03	0.009	0.004	4.931	0.056			
29	260	3.6	756	1.8	18	0.9	1.00	0.02	1.00	0.02	0.016	0.003	4.585	0.047			
30	260	3.0	857	2.0	18	0.9	1.00	0.02	1.01	0.02	0.007	0.002	4.463	0.047			
31	260	1.6	462	1.8	21	2.8	0.99	0.05	0.99	0.05	0.020	0.007	4.800	0.103			
32	260	4.0	763	1.9	21	1.2	0.98	0.02	1.01	0.02	0.015	0.002	4.885	0.047			
													n =	16		n =	16
Mean		4.0	597	1.6	22.9		1.01		1.04		0.014	Mean	4.754	Interna	I H	15 mean	4.650
SD		0.9	167	0.3	3.9		0.02		0.03		0.006	SD	0.736	Error	H15	Std Dev	0.513
SD/rtN		0.2	42	0.1	1.0		0.01		0.01		0.001	SD/rtN	0.184	0.015		SD/rtN	0.128
%err		5	7	5	4		1		1		10	%err	4			%err	3

220 240 PH (°C)

É

220 240 PH (°C)

260

280

300

0.0

0.10

0.00

160

160

180

180

200

200

T1 (cps)

Sample SUTL 2170 Date 151107 to 181107 Reader Riso 2 Source Calibration 0.0936 ± 0.001 Gy/s Regenerative Dose Sequence (Gy) Dn D1 D2 D3 D4 D5 D6 D7 D8 D9 0.00 3.77 0.02 0.96 6.57 9.38 3.77 3.77 0.02 0.02 Test Dose (Gy) 1.89 Measurement Signal Background OSL 60s@125°C, 240C111-30 191-230 IRSL 120s@50°C, 240C 11-30 191-230

1. Final test dose irradiation appeared incomplete (possibly due to reduced gas pressure: see plot of Tx/Tn vs cycle). Previous test dose response used to normalise OSL signal measured following IRSL was This did not affect measurements for De determinati

Aliquot	Preheat	Aliquot	Sens	itivity	Dose Re	sponse	Recycl	ing Point	Post	IRSL'	Zero	Dose	Equival	ent Dose	AMC Rob	oust Statis	stics V1.
		Mass	(cps/	Change	е		3.77	Gy	3.77	Gy	0.00	Gy					
	(°C/30s)	(g)	mg/Gy)	(frn.)	D0 (Gy)	Err	ratio	error	ratio	error	ratio	error	(Gy)	error	ROBUST	STATIST	rics su
33	200	5.5	855	1.0	18	1.1	1.01	0.02	1.00	0.02	0.007	0.003	5.165	0.037	Estimate	Estimate	Parame
34	200	3.3	455	1.3	21	2.6	1.01	0.04	1.05	0.04	0.003	0.008	5.109	0.075	Median	4.98276	
35	200	3.4	407	1.2	24	4.1	1.00	0.05	1.01	0.05	0.012	0.010	5.044	0.094	A15 meε	4.95548	c=1.5: C
36	200	4.0	380	1.4	22	2.6	1.05	0.04	1.08	0.04	0.022	0.008	4.828	0.075	H15 mea	4.96046	c=1.5: C
37	220	6.1	445	1.4	20	1.5	1.05	0.03	1.09	0.03	0.016	0.005	4.557	0.056	MAD	0.18715	
38	220	3.4	511	1.7	20	1.9	1.06	0.04	1.13	0.04	0.007	0.006	4.520	0.066	MADe	0.27746	
39	220	3.0	761	1.6	24	2.0	1.08	0.03	1.11	0.03	0.013	0.004	4.922	0.056	sMAD	0.27746	
40	220	3.7	279	1.4	16	1.9	1.01	0.05	1.06	0.05	0.013	0.010	4.866	0.103	H15 Std	0.34518	c=1.5: C
41	240	4.9	935	1.6	29	1.8	1.01	0.02	1.04	0.02	0.013	0.002	4.782	0.037			
42	240	4.3	377	2.1	20	1.6	1.02	0.03	1.09	0.03	0.035	0.006	5.577	0.084			
43	240	5.9	379	2.1	16	0.9	1.01	0.03	1.07	0.03	0.016	0.004	4.791	0.056			
44	240	6.3	504	1.8	22	1.3	1.03	0.02	1.07	0.02	0.015	0.003	5.278	0.056			
45	260	6.5	640	2.7	23	1.1	0.97	0.02	1.01	0.02	0.015	0.002	5.044	0.037			
46	260	5.6	523	2.7	16	0.6	0.98	0.02	1.02	0.02	0.015	0.003	5.614	0.056			
47	260	7.3	846	1.9	20	0.7	1.00	0.01	1.01	0.01	0.016	0.002	5.081	0.037			
48	260	5.6	684	2.0	24	1.3	1.03	0.02	1.05	0.02	0.016	0.002	4.407	0.037			
													n =	16		n =	16
Mean		4.9	561	1.7	21.0		1.02		1.06		0.015	Mean	4.974	Internal	Н	15 mean	4.960
SD		1.3	201	0.5	3.4		0.03		0.04		0.007	SD	0.342	Error	H15	Std Dev	0.345
SD/rtN		0.3	50	0.1	0.9		0.01		0.01		0.002	SD/rtN	0.085	0.016		SD/rtN	0.086
%err		7	9	7	4		1		1		12	%err	2			%err	2

Appendix E: Luminescence Profiling

Site Seq File	Newry Rir pmc32	ng Fort : 2.seq	Sect	tion 1 hfc32.seq								
Bin File	new1pm	nc.bin	r	new1hfc.bin		new1p	mc.bir	new	1hfc.bin			
Date	12/18	/07		12/18/07	Dos	e DN	D1	Dt (HFC) DN	D1	Dt (HFC)		
Reader	Riso	2		Riso 1	(sB)	0	100	- 0	100	20		
Calib	0.09	34		0.1005	(Gv/s) (Gv)) 0	9.34	- 0	10.05	2.01		
Err	0.00	10		0.0017	(Gv/s) (Err)) -	0.10		0.17	0.03		
Sample	Sample		f	Sensitivity			0.10		Equivale	ent Dose		I
vanipio				Polymineral C	Coarse			HFE Coarse	Polymine	eral Coarse		HFE Coarse
	DfS			IRSI	Post IR OSI	Post IR (0.51	IRSI	Post IR OSI	PostIR&OSI TI	OSI
SUTL	(cm)	Laver	Ali	(cps/Gv)	(cps/Gv)	(cp°	C/Gv)	(cps/Gv)	(Gv	(Gv)	(Gv)	(Gv)
2156 #	1 5	1	1	250 ± 4	1289 ± 16	60.7	± 0.7	392 ± 7	2.28 ±	$0.06 0.23 \pm 0.02$	273.6 ± 0.9	0.06 ± 0.02
			2	218 ± 3	1319 ± 16	56.2	± 0.7	564 ± 10	1.73 ±	0.06 0.56 ± 0.02	$2 56.6 \pm 0.7$	0.39 ± 0.02
2156 #	2 11	1	1	73 ± 2	391 ± 6	32.5	± 0.4	2417 ± 41	4.63 ±	0.18 1.02 ± 0.08	3 78.4 ± 1.1	0.43 ± 0.01
			2	147 ± 3	698 ± 9	41.2	± 0.5	1853 ± 32	3.64 ±	0.11 0.78 ± 0.05	5 60.5 ± 0.8	0.49 ± 0.01
2156 #	3 19	2	1	114 ± 2	571 ± 8	34.8	± 0.5	1962 ± 34	7.20 ±	0.19 1.37 ± 0.06	3 65.1 ± 0.9	0.55 ± 0.01
			2	119 ± 2	581 ± 8	36.1	± 0.5	2773 ± 47	4.81 ±	0.14 0.92 ± 0.05	5 61.5 ± 0.8	0.68 ± 0.02
2156 #	4 39	2	1	92 ± 2	553 ± 8	30.2	± 0.4	880 ± 15	16.9 ±	0.41 1.97 ± 0.08	3 110 ± 1.6	0.93 ± 0.03
			2	168 ± 3	738 ± 10	50.8	± 0.6	358 ± 7	15.2 ±	0.29 1.98 ± 0.07	7 66.4 ± 0.9	0.87 ± 0.04
2156 #	5 56	2	1	83 ± 2	376 ± 6	21.7	± 0.3	684 ± 12	4.83 ±	0.17 4.10 ± 0.1 ²	1 57.3 ± 0.9	1.97 ± 0.06
			2	99 ± 2	863 ± 11	26.7	± 0.4	778 ± 14	16.7 ±	0.39 3.58 ± 0.07	7 70.8 ± 1.0	2.13 ± 0.06
2156 #	6 79	2	1	119 ± 2	908 ± 12	35.6	± 0.5	1076 ± 19	8.18 ±	0.20 3.33 ± 0.06	3 54.2 ± 0.8	23.2 ± 0.52
			2	175 ± 3	565 ± 8	50.2	± 0.6	793 ± 14	13.2 ±	0.25 3.72 ± 0.09	∂ 66.4 ± 0.9	2.71 ± 0.07
2156 #	7 93	2	1	156 ± 3	660 ± 9	51.8	± 0.7	2927 ± 50	10.9 ±	0.23 4.61 ± 0.10) 90.5 ± 1.2	3.75 ± 0.07
			2	173 ± 3	620 ± 9	36.9	± 0.5	911 ± 16	7.93 ±	0.17 3.59 ± 0.08	3 62.1 ± 0.9	2.97 ± 0.07
2156 #	8 99	3	1	169 ± 3	558 ± 8	42.5	± 0.6	2052 ± 35	6.92 ±	0.15 4.92 ± 0.10) 53.9 ± 0.7	2.66 ± 0.06
			2	98 ± 2	666 ± 9	33.3	± 0.5	1114 ± 19	23.8 ±	0.54 5.49 ± 0.12	1 98.8 ± 1.4	2.69 ± 0.06
2156 #	9 105	4	1	184 ± 3	784 ± 10	50.7	± 0.6	1457 ± 25	94.6 ±	1.55 12.4 ± 0.22	2 192 ± 2.4	3.27 ± 0.07
			2	114 ± 2	365 ± 6	40.4	± 0.5	837 ± 15	50.4 ±	1.00 7.03 ± 0.18	3 112 ± 1.5	3.94 ± 0.10
2156 #	10 112	5	1	174 ± 3	1130 ± 14	39.2	± 0.5	2269 ± 39	204 ±	3.33 12.3 ± 0.18	3 193 ± 2.6	5.75 ± 0.12
			2	282 ± 4	578 ± 8	42.9	± 0.6	1558 ± 27	155 ±	2.22 20.9 ± 0.35	5 206 ± 2.7	4.67 ± 0.10
2156 #	11 124	6	1	202 ± 3	248 ± 5	47.1	± 0.6	1180 ± 21	10.9 ±	0.20 5.82 ± 0.2	1 96.2 ± 1.2	5.46 ± 0.14
			2	178 ± 3	999 ± 13	41.2	± 0.5	784 ± 14	15.3 ±	0.28 3.03 ± 0.07	7 101 ± 1.3	3.58 ± 0.10
2156 #	12 134	7	1	182 ± 3	998 ± 13	26.6	± 0.4	1691 ± 29	15.1 ±	0.28 3.34 ± 0.06	3 95.0 ± 1.4	3.81 ± 0.09
			2	137 ± 2	265 ± 5	32.3	± 0.4	762 ± 13	19.1 ±	0.38 6.45 ± 0.24	126 ± 1.8	3.92 ± 0.10
2156 #	13 145	7	1	200 ± 3	1010 ± 13	42.9	± 0.6	885 ± 16	17.2 ±	0.30 7.23 ± 0.11	1 102 ± 1.3	4.54 ± 0.11
			2	253 ± 4	559 ± 8	47.1	± 0.6	407 ± 8	495 ±	7.23 44.6 ± 0.7	1 286 ± 3.7	5.79 ± 0.19
2156 #	14 154	8	1	182 ± 3	785 ± 10	38.1	± 0.5	755 ± 13	22.1 ±	0.39 5.43 ± 0.11	1 93.5 ± 1.3	4.72 ± 0.12
			2	114 ± 2	466 ± 7	26.3	± 0.4	1473 ± 26	15.3 ±	0.34 5.60 ± 0.12	2 91.4 ± 1.3	4.19 ± 0.09
2156 #	15 164	9	1	49 ± 1	24 ± 2	10.9	± 0.2	141 ± 3	340 ±	9.33 103 ± 7.2	1 398 ± 7.8	28.4 ± 1.82
			2	82 ± 2	94 ± 3	24.0	± 0.4	260 ± 5	338 ±	7.21 47.7 ± 1.58	3 388 ± 5.8	18.5 ± 0.91
2156 #	16 105	3	1	232 ± 3	2081 ± 24	68.1	± 0.8	1911 ± 33	6.45 ±	0.13 2.67 ± 0.04	49.2 ± 0.6	2.08 ± 0.04
			2	135 ± 2	1549 ± 19	42.8	± 0.6	1262 ± 22	10.7 ±	0.23 4.35 ± 0.06	3 67.2 ± 0.9	2.44 ± 0.06

Site	Newry Ring Fort Section 2														
Seq File	pmc30.seq hfc30.seq														
Bin File	new2pmc.bin new2		ew2hfc.bin	new2pmc.bin					new2hfc.bin						
Date	12/2	12/20/07 12/20/07			Dose	9 DN	D1	Dt (HFC	C) DN	D1	Dt (HF	C)			
Reader	r Riso 2			Riso 1		(sB)	0	100	-	0	100	20			
Calib	0.0	934		0.1005	(Gy/s)	(Gy)	0	9.34	-	0	10.05	2.01			
Err	0.0010			0.0017	(Gy/s)	(Err)	-	0.10	-	-	0.17	0.03			
Sample				Sensitivity				Equivalent Do			ent Dose				
				Polymineral C	Coarse			HFE Coarse Poly		Polymin	eral Coar	se		HFE Coarse	
	DfS	6		IRSL	Post IR	OSL	Post IR	& OSL TI	. 05	SL	IRS	L	Post IR OSL	PostIR&OSLTL	OSL
SUTL	. (cm) Layer	Ali	(cps/Gy)	(cps/0	Gy)	(cp°	C/Gy)	(cps	/Gy)	(Gy	/)	(Gy)	(Gy)	(Gy)
2164 #	1 8	1	1	107 ± 2.05	474 ±	7	31.1	±0.43	3381	± 58	1.14 ±	0.077 (0.45 ± 0.04	48.5 ± 0.7	0.4 ± 0.01
			2	235 ± 3.52	316 ±	5.36	48.9	± 0.62	1316	± 23	1.46 ±	0.05 0	0.35 ± 0.06	54.6 ± 0.7	0.4 ± 0.01
2164 #	2 17	2	1	118 ± 2.21	385 ±	6.03	40.5	± 0.53	928	± 16	4.41 ±	0.132 (0.65 ± 0.05	55.2 ± 0.7	1.44 ± 0.04
			2	160 ± 2.68	379 ±	6.01	48.7	± 0.62	758	± 13	7.75 ±	0.172	1.44 ± 0.09	83.7 ± 1.1	0.72 ± 0.03
2164 #	3 31	3	1	211 ± 3.28	699 ±	9.51	54.5	± 0.68	2653	± 45	37.6 ±	0.618	1.57 ± 0.06	88.5 ± 1.1	1.06 ± 0.02
			2	174 ± 2.84	745 ±	9.96	47.3	± 0.61	1075	± 19	10.8 ±	0.219	2.86 ± 0.09	140 ± 1.8	1.87 ± 0.05
2164 #	4 48	3	1	82.4 ± 1.76	331 ±	5.39	26.6	± 0.38	825	± 15	9.71 ±	0.279	1.51 ± 0.08	88.3 ± 1.3	1.45 ± 0.04
			2	114 ± 2.14	321 ±	5.32	30.3	± 0.42	1075	± 19	14.2 ±	0.318	1.34 ± 0.08	81.4 ± 1.2	2.12 ± 0.05
2164 #	5 67	3	1	120 ± 2.21	1462 ±	17.6	38.4	± 0.51	1620	± 28	4.11 ±	0.126	1.76 ± 0.03	47.8 ± 0.7	2.5 ± 0.06
			2	327 ± 4.52	1359 ±	16.6	53.4	± 0.67	716	± 13	10.4 ±	0.172	2.08 ± 0.05	95.3 ± 1.2	2.08 ± 0.06
2164 #	6 80	3	1	105 ± 2.05	974 ±	12.4	31.1	± 0.43	1460	± 25	25.1 ±	0.544	3.51 ± 0.06	46 ± 0.7	3.68 ± 0.08
			2	180 ± 2.93	1523 ±	18.3	42	± 0.55	1728	± 30	6.53 ±	0.143 2	2.28 ± 0.04	43.2 ± 0.6	3.04 ± 0.07
2164 #	7 98	3	1	87.2 ± 1.83	770 ±	10.2	24.3	± 0.36	1545	± 27	4.96 ±	0.169	3.35 ± 0.07	47.3 ± 0.7	2.95 ± 0.07
			2	97.1 ± 1.94	843 ±	11	27.8	± 0.4	2017	± 35	4.18 ±	0.142	2.65 ± 0.05	30 ± 0.5	3.13 ± 0.06
2164 #	8 107	4	1	164 ± 2.72	1221 ±	15.1	47.8	± 0.61	2020	± 35	15.7 ±	0.302	2.61 ± 0.05	42.7 ± 0.6	2.9 ± 0.06
			2	169 ± 2.8	1131 ±	14.1	43.1	± 0.56	1172	± 20	11 ±	0.223	3.34 ± 0.06	62.9 ± 0.8	3.37 ± 0.08
2164 #	9 116	6 4	1	63.2 ± 1.52	281 ±	4.83	20.4	± 0.32	929	± 16	4.54 ±	0.192 2	2.68 ± 0.09	40.9 ± 0.7	3.69 ± 0.09
			2	57.4 ± 1.44	483 ±	7.04	21.3	± 0.32	801	± 14	4.61 ±	0.207 3	3.94 ± 0.09	53.8 ± 0.9	3.65 ± 0.09
2164 #	10 126	65	1	163 ± 2.7	1189 ±	14.7	42.9	± 0.56	1535	± 27	5.65 ±	0.134 3	3.36 ± 0.06	55.3 ± 0.7	4.15 ± 0.09
			2	103 ± 2.02	582 ±	8.17	32.9	± 0.45	1095	± 19	26.9 ±	0.583	3.76 ± 0.09	84.5 ± 1.2	3.79 ± 0.09
2164 #	11 143	3 5/6	1	158 ± 2.65	1065 ±	13.4	42.4	± 0.55	1683	± 29	8.84 ±	0.19	3.1 ± 0.06	72.1 ± 1	4.75 ± 0.1
			2	69.5 ± 1.59	388 ±	6.01	21.6	± 0.33	1415	± 24	10.6 ±	0.316	3.9 ± 0.1	88.2 ± 1.4	4.98 ± 0.11
2164 #	12 155	56	1	154 ± 2.59	728 ±	9.76	30.7	± 0.43	1655	± 29	9.52 ±	0.202 4	4.23 ± 0.08	67.2 ± 1	4.99 ± 0.11
			2	96.9 ± 1.94	451 ±	6.72	24.5	± 0.36	1034	± 18	22.7 ±	0.518	5.87 ± 0.13	124 ± 1.8	4.66 ± 0.11
2164 #	13 16	7	1	119 ± 2.19	868 ±	11.3	27.2	± 0.39	722	± 13	47.2 ±	0.921 \$	5.77 ± 0.1	138 ± 2	5.53 ± 0.15
			2	202 ± 3.15	894 ±	11.6	43.4	± 0.56	1173	± 20	31.4 ±	0.523 4	4.67 ± 0.09	116 ± 1.5	7.25 ± 0.17
2164 #	14 17	8	1	383 ± 5.13	992 ±	12.8	87.4	± 1.04	2712	± 46	26.6 ±	0.378	4.82 ± 0.08	48.7 ± 0.6	10 ± 0.2
			2	190 ± 3.02	851 ±	11.1	43.1	± 0.56	2420	± 41	35.3 ±	0.599	5.07 ± 0.1	106 ± 1.4	5 ± 0.1
2164 #	15 180) 9	1	51.5 ± 1.38	46.4 ±	1.93	13.2	± 0.24	397	± 7.5	62.7 ±	1.763	15.7 ± 1	277 ± 5	10 ± 0.35
			2	71 ± 1.6	31.6 ±	1.83	18	± 0.29	315	± 6.1	74.4 ±	1.749	34.3 ± 2.31	286 ± 4.6	14.3 ± 0.54