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Abstract:  Magneto-encephalography (meg) is an imaging technique which measures neuronal 
activity in the brain. Even when a subject is in a resting state, meg data show characteristic spatial and 
temporal patterns, resulting from electrical current at specific locations in the brain. The key pattern of 
interest is a ‘dipole’, consisting of two adjacent regions of high and low activation which oscillate over 
time in an out-of-phase manner. Standard approaches are based on averages over large numbers of  
trials in order to reduce noise. In contrast, this article addresses the issue of dipole modelling for  
single trial data, as this is of interest in application areas. There is also clear evidence that the frequency 
of this oscillation in single trials generally changes over time and so exhibits quasi-periodic rather 
than periodic behaviour. A framework for the modelling of dipoles is proposed through estimation 
of a spatiotemporal smooth function constructed as a parametric function of space and a smooth 
function of time. Quasi-periodic behaviour is expressed in phase functions which are allowed to evolve 
smoothly over time. The model is fitted in two stages. First, the spatial location of the dipole is identified 
and the smooth signals characterizing the amplitude functions for each separate pole are estimated. 
Second, the phase and frequency of the amplitude signals are estimated as smooth functions. The 
model is applied to data from a real meg experiment focusing on motor and visual brain processes.  
In contrast to existing standard approaches, the model allows the variability across trials and subjects 
to be identified. The nature of this variability is informative about the resting state of the brain.
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1  Introduction

Magneto-encephalography (meg) data record measurements of the magnetic field 
outside the head with the aim of detecting the electrical activation of neurons in the 
brain. Hämäläinen et al. (1993) give a description of meg imaging. Data are collected 
by around 200–300 sensitive sensor devices embedded in a helmet placed over the head 
of the patient. These observations are usually available at a high temporal resolution 
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of around 4ms and moderate spatial resolution, with sensor spacing around 2-3cm. 
However, the magnetic and electrical nature of the process can produce substan-
tial noise in the data. A general aim in meg experiments is to study brain activation 
associated with particular experimental conditions where participants are exposed 
to sensory stimuli. In many cases, the resulting activation can be modelled as point-
like current sources that produce a characteristic magnetic field pattern outside the 
head, consisting of two adjacent spatial regions with oppositely signed fields; see, for 
example, Hämäläinen et al. (1993). Four idealized examples of this are given in the 
top row of Figure 1, using information provided in the FieldTrip software described 
by Oostenveld et al. (2011). Here the surface of the helmet has been flattened into 
a two-dimensional representation, with the face at the top. In addition to this char-
acteristic spatial pattern, activated brain areas often show a characteristic temporal 
pattern consisting of periodic oscillations. The underlying spatiotemporal meg signal 
associated with this type of brain activation is referred to as a ‘dipole’. The middle 
left panel of Figure 1 gives an example of the spatial pattern (or topography) of a 
dipole, with a line superimposed to show the distance between the two oppositely-
signed ‘poles’. The two-dimensional location of the dipole pattern is identified by the 
mid-point of this line and its orientation by the perpendicular angle (corresponding 
to current flow). The middle right hand panel of Figure 1 shows idealized temporal 
behaviour of the dipole at the highlighted sensors, with periodic oscillation.

meg data can exhibit substantial noise and this is commonly addressed by taking 
measurements from a large number of repeated trials from each subject. It is then 
standard practice to employ some form of averaging across trials in order to reduce 
the noise in the data. For example, signal processing methods can be used to identify 
the dominant frequency at a particular sensor, averaged over trials, and the resulting 
spatial pattern of frequency inspected. The three-dimensional location of a dipole 
within the brain can then be estimated from the meg data observed on the surface of 
the scalp by the solution of an inverse problem, as discussed by Mosher et al. (1992), 
Darvas et al. (2004) and many later authors. A recent example of work directed at 
dipole models and the associated inverse problem is Tian et al. (2012).

However, the isolation of particular features such as frequency may lose valuable 
information in its simplification of a complex spatiotemporal pattern, and the use 
of averaging also risks the danger of blurring the within-trial variation of spatial 
features. In contrast, there is particular interest in the alertness status which the 
brain retains when it is attending to visual stimuli, as described by Van Dijk et al. 
(2008) and Thut et al. (2006) and a number of studies, such as those described by 
Liu and Ioannides (1996) and Mustaffa et al. (2010), have provided evidence that 
variations in the state of the brain at stimulus presentation may influence some of 
the signal components of the response. In other words, some of the variation across 
trials in the meg response to a stimulus may be explained by the variation in brain-
activation during the pre-stimulus period. Models of pre-stimulus brain activation 
may therefore provide useful information for the modelling of post-stimulus 
activation. The general issue of trial-to-trial variability has been the focus of several 
papers which address methods for the analysis of single-trial data; see, for example, 
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Figure 1  The upper plots show the topography of four idealized dipoles with different locations and/or 
orientations. These correspond to active neuronal sources in the motor cortex (panels a and b) and the visual 
cortex (panels c and d), which are located in the parietal and occipital lobes respectively. The middle left  
hand plot gives a further synthetic example with the sensors activated by the two halves of the dipole 
indicated as dark and light points. The temporal oscillations observed at these sensors are displayed in the 
middle right hand plot. The lower plots show real single-trial data during the pre-stimulus period, with the 
topography (left, at a single time snapshot) and quasi-periodic temporal oscillation (right) of a dipole.

Source:  Produced in the free software environment R (R Development Core Team, 2011).
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Quiroga and Garcia (2003) and Ventrucci et al. (2011). The models developed  
below therefore focus on the analysis of, and variation in, single trial data during the 
pre-stimulus period.

A focus on single trial data introduces several issues. The first is the substantial 
noise inherent in single replicates. Smoothing techniques can ameliorate this, as 
discussed by Ventrucci et al. (2011). A second issue is that inspection of single trial 
data suggests that, while the spatial location of a dipole is likely to be reasonably 
constant for each trial, there is clear evidence of changes in dipole frequency over 
time. This may be indicative of changes in brain activity which are of interest and 
a model which can accommodate changes of this type is therefore necessary. This 
is illustrated on real data (described in Section 2) in the lower panels of Figure 1. 
The spatial characteristics of a dipole are evident in the lower left panel and its 
oscillations tracked in the lower right panel. From the latter plot, it is clear that the 
description of dipole behaviour over time needs to allow quasi-periodic rather than 
strictly periodic patterns. A third issue is that modelling at the single trial level then 
allows variability across trials to be investigated. Insights of this type are not available 
from standard methods of averaging based on an assumption of stationarity.

These considerations require a model for the occurrence of dipoles over the pre-
stimulus period at the single trial level. The meg literature is able to provide useful 
guidance on the pre-stimulus period, with dipoles expected in the visual and motor 
cortex with oscillations in the range 8–12 Hz, referred to as the a-band frequency; 
see Schnitzler and Gross (2005). A quasi-periodic spatiotemporal smooth dipole 
model is introduced in Section 3. The main aim of the model is to characterize  
dipoles through a small number of flexible and informative parameters. This includes 
simple quantities such as location and orientation as well as functional parameters 
which describe smooth changes in frequency (or phase) and amplitude over time. 
A two-stage fitting algorithm for this model is described in Section 4 and its per-
formance is evaluated in a simulation study reported in Section 5. The results of 
applying the model to real meg data are presented in Section 6, where very interest-
ing insights into trial variability are provided. All of this work is conducted in the 
two-dimensional space of the scalp surface, avoiding the need to solve the inverse 
problem to identify dipole location in the three-dimensional brain. The article closes 
with further discussion in Section 7.

2  Experimental data

The purpose of the experiment discussed here was to study information transfer from 
visual to motor areas and to investigate to what extent reaction time is determined 
by the brain state prior to stimulus presentation. A stimulus in the form of a light 
appearing on a screen was used to prompt activation in the visual cortex of the brain.

Nineteen participants were asked to focus on a fixation cross presented in the 
centre of the screen. An arrowhead pointing to the left or right was added to the 
fixation cross and participants could be asked to respond with either a left or right 
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index finger button-press, giving a combination of four experimental conditions. 
Perception of the light stimulus is associated with activation of the visual cortex 
while finger movement is associated with activation of the motor cortex. As is 
common in this type of experimental protocol, around one hundred replicates (or 
trials) were undertaken for each experimental condition. The order of presentation 
of the experimental conditions was randomized across the full sequence of trials in 
order to avoid bias due to learning effects.

In a single trial of this experiment, the meg field was measured at 248 sensors, 
with one observation every 4ms, for a time lasting one second in total. The first half 
second, from –500ms to 0ms, corresponds to a pre-stimulus period which is the 
main focus of this article. A stimulus onset at 0ms is followed by a post-stimulus 
monitoring period of half a second, from 0 to 500ms.

3  Spatiotemporal smooth dipole model

When a neuronal source located inside the brain is active we expect meg signals to 
exhibit the structure of a smooth function of both space and time, following a dipole 
pattern, corrupted by random noise. The spatial smooth component of the dipole 
consists of two ellipsoidal regions located close to each other. Figure 1 shows four 
idealized examples of meg topographies. The dipole is located in the motor cortex in 
panels a and b and in the visual cortex in panels c and d. Within each pair, the dipole 
has the same location but different orientations. In panel d, the orientation of the 
dipole current means that only one pole of the magnetic field lies within the region 
captured by the meg sensors. The model described below can in principle be adapted 
to accommodate this situation but the focus will be on the much more common 
situation where both parts of the dipole lie within the sensor region.

When a dipole is present, the mean brain map m(x, y, t) over spatial locations x, y 
and time t can be described as the sum of two spatiotemporal smooth functions, one 
for each pole. Under the reasonable assumption that the location and orientation of 
the dipole is fixed for a particular trial, this can be structured as:

	 ( , , ) ( , ) ( ) ( , ) ( )m x y t x y t x y t1 1 2 2$ $c { c{= + � (3.1)

where the smooth functions ( , )x y1{ , ( , )x y2{  define the topography of the two poles 
and the smooth functions ( )t1c , ( )t2c  describe the oscillating pattern of the poles over 
time. It is reasonable to assume that outside the region of influence of the dipole the 
mean signal is 0 and so no intercept term is required in the model.

3.1  Modelling the spatial pattern

Figure 1 shows that idealized dipoles exhibit relatively simple, smooth shapes. Interest 
lies in the key characteristics of location, orientation and size and not in the very 
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detailed features of the dipole topography. From this perspective, and supported by 
inspection of observed dipole patterns, a very simple but effective model for dipole 
topography is proposed by giving each pole the shape of a (scaled) bivariate normal 
density function:

	 ( , ) {( ) ( ) } , ,expx y
h

x y i
2
1 1 2, ,i x i y i2

2 2{ n n= - - + - =' 1 � (3.2)

with location determined by ( , ), ,x i y in n R and radial size by h, where i = 1, 2 indexes 
the two poles. It would be feasible to measure distance across the helmet surface in 
geodesic form, as discussed by Ventrucci et al. (2011), but for convenience simple 
Euclidean distance on the flattened brain map has been used here.

The relationship between the two parts of the dipole can be expressed in polar 
co-ordinates by defining the individual locations as:

,cos sinr r, ,x x y y1 1n n i n n i= + = +

,cos sinr r, ,x x y y2 2n n i n n i= - = -

where (nx, ny) denotes the centre of the dipole, i denotes its orientation and r denotes 
the separation distance of the two poles. This assumes that the two poles have the 
same shape and the same size h. In order to avoid excessive overlap and thereby 
maintain a suitable dipole pattern, r should not exceed 2h.

3.2  Modelling the quasi-periodic temporal pattern

The general form of the dipole model in (3.1) modifies the fixed spatial patterns for 
the two poles, {1 and {2, by temporal weight functions c1(t) and c2(t). These are 
smooth functions of time which allow the size of each pole to vary and can therefore, 
in particular, characterize the oscillation of the dipole.

In practice, brain signals exhibit quasi-periodic rather than periodic oscillations, 
as illustrated in the real data displayed in Figure 1. Here, in order to display the 
underlying signal more clearly, the data have been smoothed in a similar manner 
to that described by Ventrucci et al. (2011), using 50 ‘effective degrees of freedom’ 
for space and 40 for time. The left hand plot shows a brain map with two sets 
of sensors highlighted, while the right hand plot shows the meg signals at these 
highlighted locations. The shading on the left hand plot indicates the spatial pattern 
at a time snapshot. The plot of the highlighted sensors over time exhibits the typical 
oscillating behaviour of a dipole. As there are approximately five cycles within half a 
second, the dominant frequency is clearly in the a-band range of 8–12 Hz. However, 
there are several features worth noting.

	 • � The signals at each pole do not have constant frequency. The behaviour is 
therefore quasi-periodic rather than perfectly periodic.
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	 • � The signals from the two poles are not out-of-phase for the whole timescale, 
as the phase shift changes with time. This is a common feature of dipoles 
which is due to their transient nature.

	 • � The amplitude of the oscillations changes over time, both within and between 
the two poles.

These features require a strong degree of flexibility in the temporal weight functions 
c1 and c2. In addition to accommodating these features within the model, the aim  
is to quantify effects such as changes in amplitude and phase, so that the trial-to-trial 
variation in the behaviour of dipoles can be identified and characterized.

Eilers (2010) proposed a model for the smooth complex logarithm of an observed 
signal which is assumed to be the composition of two smooth functions over time. This 
approach can be adapted to the dipole setting by expressing the weight functions as:

	 ( ) ( ( )) ( ( ))exp cost t ti i ic a z= � (3.3)

where a(t) denotes amplitude on a log scale and z(t) denotes phase. There are two 
steps in avoiding identifiability issues in model (3.3). The first is to express the 
amplitude curves as exp(ai(t)), so that they capture the size of the quasi-periodic 
signal in absolute terms. The second is to use the time points at which the temporal 
weight functions pass through 0 (‘zero-crossings’) to provide the crucial information 
on the phase zi(t) of the quasi-periodic cycles, as discussed by Eilers (2010).  
The phase functions must also be non-decreasing. These issues will be revisited in the 
context of estimation, discussed in Section 4 below.

Finally, (3.3) is extended to the model:

	 ( ) ( ) ( ) ( ( ))exp cost t t ti i i ic d a z= + ^ h � (3.4)

by the introduction of a smooth intercept term di(t). This allows possible shifts in the 
mean level of the signal, due to artifacts and noise, to be tracked. The issues involved 
in estimating the intercept function and the other terms of the model are discussed 
in Section 4 below.

4  Estimation

The process of model fitting is most easily approached in two stages. The first stage 
involves estimation of the two-dimensional spatial location, orientation and size of 
the dipole, as well as the temporal weight functions c1 and c2. The second stage uses 

1ct  and 2ct  to construct estimates of the intercept, phase and amplitude of the dipole 
over time. These latter objects are the principal focus of the modelling process, as 
they characterize the dipole in a flexible but interpretable form and, in particular, 
allow changes over time to be tracked in a simple manner.
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4.1  Estimation of the spatial parameters and temporal weights

The first stage involves estimation of the four spatial parameters defining the 
centre (nx, ny), orientation i, radial size h and separation distance r, as well as 
the temporal weight functions c1 and c2, using the notation introduced in Section 
3.1. Minimization of the sum-of-squares ( ( , , ))z m x y tj k jk j j k

2-| | , where zjk 
denotes the observed signal at sensor j and time point k, clearly involves non-linear 
optimization. However, the problem has a partially linear structure which can be 
exploited, since for fixed values of the spatial parameters, the model (3.1) is linear  
in c1 and c2. The fitting strategy described below therefore involves estimation of  
c1 and c2 nested within an optimization over the four spatial parameters, to achieve 
a global minimum of the sum-of-squares function.

If the meg signals over space and time are structured as a vector z, then the model 
can be expressed in vector-matrix form using Kronecker products as 

	 z ( ) ( )I IT T2 1 2 27 7{ c { c e= + + � (4.1)

where {1 and {2 are vectors of length S(= 248) which define the spatial pattern 
of the poles across the sensors, c1 and c2 are vectors of length T(= 128) which 
denote the value of the temporal weight functions for the two poles at the observed 
time points and e is a vector of errors. This can be expressed in standard linear 
model form as z Xc e= + , with design matrix [ , ]X I IT T1 27 7{{=  and vector of 
parameters ( , )1 2c c c= R R R.

A simple linear model could be fitted to the data from each separate time point. 
However, the spatiotemporal model (4.1) allows the estimation of c to be improved 
by exploiting the assumption of smooth evolution of the underlying dipole over 
time. A simple strategy is to add to the sum-of-squares function z( ) ( )zX Xc c- -R  
a penalty term which will induce smoothness over time. This is a well established 
approach which is discussed in Eilers and Marx (1996) and many others papers. The 
smoothness of c can be quantified by Pc cm R , where P I D D27= R  and the matrix 
D constructs second-order differences of the elements of c1 and c2. This leads to the 
penalized least squares solution:

	 .zX( )X X P 1c m= +R R-c � (4.2)

Note that this makes the reasonable assumption of a common penalty parameter m 
for each half of the dipole. The formation of X XR  can be carried out very efficiently 
by exploiting the sparse nature of X while the solution of (4.2) can be efficiently 
computed through Cholesky decomposition.

The choice of smoothing parameter m is an important issue. It is more convenient 
to address this on the more interpretable scale of the ‘effective degrees of freedom’ 
(edf) of the smoothing operation. This is easily calculated as the trace of the hat matrix 
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( )X X X P X1m+R R- , or equivalently the trace of ( )X X P X X1+R R- , as discussed by 
Hastie and Tibshirani (1990), Wood (2006) and many others. Knowledge of the brain 
imaging context provides valuable information to inform a suitable choice of edf. For 
example, the oscillating frequency of dipoles occurring in the pre-stimulus period in 
the visual cortex is well known to be at the a-band of 8–12 Hz, as discussed by Van 
Dijk et al. (2008). For the range of data in the present application, a value of 60 edf 
was used in order to focus on frequencies of this order. This selection is justified by 
observing that for 10 Hz frequency we expect approximately five cycles over a period 
of 0.5 seconds, and so 60 edf allows modest flexibility of 6 edf for each cycle for each 
pole. This is further supported by empirical evaluation in Section 5. The value of  
m which produces this specified value of edf can then be identified by a simple search.

The first stage of estimation can then be completed by minimizing the sum-of-
squares from the penalized regression over the spatial parameters (n

x, ny), i, r and h.  
With non-linear optimization, starting values for the parameters can be very 
important. A very good preliminary estimate can be obtained by minimizing over 
discrete sets of parameter values which cover the full range of interest. Specifically, 
(nx, ny) ranged over a systematically placed subset of half of the sensor locations, 
i over the values { , / , / , / }0 4 2 3 4r r r  and h over nine equally spaced values in the 
range 1 to 25 cm. This range of values for h covers all the realistic dipole sizes in 
relation to the physical area of the scalp. The separation distance parameter was set 
to 2h and h, with both of these values ensuring a characteristic dipole shape. The 
minimizing values of the parameters were then used as the starting point for a more 
general optimization algorithm to locate the final estimates on a continuous scale in 
the neighborhood of the initial values, using the Optim function in the R computing 
system (R Development Core Team, 2011).

4.2  Estimation of the quasi-periodic characteristics

Although the location and size of the dipole is of interest, there is particular value 
in characterizing dipole behaviour through the decomposition of the temporal 
weight function described in model (3.4), expressed in intercept di(t), amplitude 
ai(t) and phase zi(t) curves over time. The quasi-periodic behaviour which dipoles 
exhibit requires flexible descriptions of each of these components and smoothing 
techniques such as p-splines, described by Eilers and Marx (1996) and many other 
authors, again provide suitable modelling tools. Specifically, a basis of regression 
functions is constructed from a set of overlapping B-spline functions, expressed in 
linear model form as di = Bdi, ai =  Bai and zi = Bfi, where di, ai and zi represent 
the corresponding functions evaluated at the observed time points tk, k = 1, . . ., T  
and di, ai and fi are vectors of B-spline coefficients. Each column of B has length T and 
is constructed by evaluating each B-spline basis function at the observed time points. 
Smoothness is induced through the use of second-order difference penalties, with  
specified edf.
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The intercepts di, which are required to track shifts in the signal, can be estimated 
by applying a p-spline smoothing procedure with low degrees of freedom to the 
estimates of ict . Again, the expected form of the underlying signal offers guidance 
on suitable choices for the degree of smoothing. An a-band of 8–12 Hz will 
produce approximately 4 to 6 cycles during the pre-stimulus period of 0.5 seconds. 
An allocation of 1 edf for each cycle will ensure that the intercept term tracks the 
global movement in the mean signal rather than the individual cycles. In order 
to accommodate a small degree of further flexibility, a value of 7 edf was used, 
supported by some further sensitivity analysis.

The starting point for estimation of the phase and amplitude curves, ai(t) and zi(t), 
is the intercept-adjusted pole signal ( ) ( ) ( )p t t ti i ic d= - . As mentioned in Section 3.2, 
and following ideas discussed in Eilers (2010), the zero-crossings of pi(t) provide the 
crucial information on phase, because cos (z(t)) is 0, and so the phase must be an 
odd multiple of r/2, at these locations. In practice, the zero-crossings ci are identified  
by interpolation of i ic d-t t , where the vector ci has length 2P when there are P periods 
present. The phase curve zi(t) is then estimated by p-spline smoothing of the vector 
{ / , / , , ( ) / }P2 3 2 4 1 2fr r r-  against ci. Information on phase can easily by translated 
onto the frequency scale by computing the empirical derivative of the estimated 
phase curve, scaled by 2r, namely:

	 ( )
( )

.f t
t

2i
i

r

z
=

c lt � (4.3)

Here, the derivatives were estimated very effectively by simple differencing although 
the piecewise polynomial algebra of B-splines provide a relatively straightforward 
alternative, as discussed by Boor (1978).

In a similar manner, again following Eilers (2010), a parsimonious expression of 
amplitude information is available through the logarithm of the intercept-adjusted 
pole signal pi(t) at the time points which lie mid-way between the zero-crossings.  
If these vectors are denoted by li and mi respectively, then the amplitude curve ai(t) 
is estimated by p-spline smoothing of the vector li against mi.

Since the estimates ( )tict  from which the intercept-phase-amplitude decomposition 
is being derived are already smooth quantities, expression of the large-scale structure 
in this point-based manner loses relatively little information. It does provide a 
compact representation of the characteristics of a complex temporal structure 
through estimated intercept, phase and amplitude functions.

For the degree of smoothing, 3 edf were used for the point-based representations 
of both phase and amplitude. For phase, an exactly periodic pattern corresponds to 
linear phase and so an edf of 2. With the a-band signal over 0.5 seconds, we expect 
around 10 zero-crossings and so we allow a small degree of flexibility beyond linear. 
The amplitude was also estimated with 3 edf. In both cases we are interested in 
identifying large-scale changes, not in tracking small scale movement. A sensitivity 
analysis offers reassurance on the suitability of these choices.
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Note that it would in principle be feasible to refine the estimates of phase and 
amplitude by Gauss-Newton iteration within the non-linear model (3.4), following 
Eilers (2010). However, in the present setting, where estimation is based on smooth 
quantities ( )t1ct , ( )t2ct  rather than noisy data, we found the initial estimates to be 
perfectly adequate in characterizing the underlying quasi-periodic behaviour.

5  Simulation study

We have precise information about the nature of the dipole that we want to extract 
from noisy single trial pre-stimulus data of the experiment under study. The brain 
activity associated with visual attention (the brain awaiting for a visual stimulus) 
is a dipole, with a certain unknown location, oscillating over time at a frequency 
expected to be in the 8–12 Hz range, referred to as the a-band frequency. In the first 
stage of our model fitting procedure we need to choose a value for the edf which is 
appropriate to fit this sort of dipole. In Section 4 we argued the choice of 60 degrees 
of freedom seems reasonable for modelling smooth pole signals of an a-band dipole 
operating over an interval of half a second, corresponding to the pre-stimulus period. 
In order to investigate the effectiveness of this choice we conducted a simulation 
study and evaluated the mean squared error of estimation for both amplitude and 
frequency curves of an a-band dipole. Four scenarios were considered.

	 • � Scenario 1. A single a-band dipole is present, with topography as in panel a  
of Figure 1. The pole signals have constant amplitude and frequency over 
time. 

	 • � Scenario 2: A single a-band dipole is present, with topography as in panel a 
Figure 1, but the pole signals have amplitudes and frequencies which increase 
over time. 

	 • � Scenario 3: One dominant a-band dipole is present as described in Scenario 2,  
but another a-band dipole of lower amplitude is also present, with topography 
as in panel c of Figure 1. The minor dipole has constant amplitude and 
frequency. 

	 • � Scenario 4: One dominant a-dipole and one minor a-dipole are present, as 
described in Scenario 3, but in addition there is a trend in the mean over time, 
reflecting an artifact. 

These four scenarios present increasing challenges in estimating the phase and 
amplitude components of the dominant dipole. Scenarios 3 and 4 are the most 
challenging because of the presence of a minor dipole which may corrupt estimation 
of the temporal and spatial pattern of the dominant one. Even worse, the minor 
dipole oscillates in the same a-band frequency as the dominant one. However, this 
is a situation that can frequently be met in practice. In Figure 2, the panels in the 
first column display the true pole signals in each of the four scenarios as grey and 
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black lines. The panels in the second columns show the noisy meg data as grey lines, 
simulated by constructing the Kronecker product of the true dipole topography with 
the true pole signals and adding random noise at each sensor and time point to 
reflect model (4.1).

Model (3.1) was fitted to each of 500 realizations from each scenario, using several 
choices of effective degrees of freedom, edf = {30, 45, 60, 75, 90}. Our modelling 
aim is to identify the dominant dipole source in the data, unaffected by any minor 
source. In Figure 2, the panels in the third and fourth columns show boxplots of the 
mean squared errors (MSE) in estimation of the amplitude and frequency curves of 
the dominant dipole, using a variety of edf values. The level of smoothing, expressed 
in edf, has a strong impact on amplitude estimation, while frequency estimation is 
relatively unaffected. For amplitude, in Scenario 3 where a minor dipole is present 
the use of 60 edf produces a performance which is markedly superior to other degrees 
of smoothing. This remains the best choice in Scenario 4, while it is close to optimal  
in Scenarios 2 and 3. For frequency, the results are much less affected by the edf 
value. These results therefore provide strong empirical evidence of the suitability 
of 60 edf for identifying the size and nature of the evolution of an a-band dipole. 
Smaller values of edf are less effective in tracking the temporal pattern while larger 
values are subject to greater variability and may be more strongly influenced by 
subsidiary dipoles. The use of 60 edf is seen to provide an effective and stable choice.

Simulation was also used to check the robustness of the choice of edf for the 
estimation of the intercept, amplitude and phase curves in the second stage of the 
fitting procedure. In particular, the choice of the degree of smoothness for the intercept 
curve ( )tidt  is important in effective identification of zero-crossings and consequent 
estimation of the phase and frequency curves. The three panels of Figure 3 display 
mse for estimation of the frequency curve for Scenario 4, using edf = {5, 7, 9} in 
estimation of the intercept curve. Within each panel the boxplots report the mse in 

Figure 3  Simulation summary on the choice of the effective degrees of freedom for intercept phase and 
amplitude curves, focusing on scenario 4. Panels from left to right focus on edf = {5, 7, 9} for the smooth 
intercept ( )tidt . In each panel, boxplots from left to right focus on edf choice of 2, 3 and 4 for phase ( )tiz

c  and 
amplitude ( )tiat  smooth curves

Source:  Produced in the free software environment R (R Development Core Team, 2011).
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estimation of the frequency curve using edf = {2, 3, 4} for both phase and amplitude 
curves. The principal beneficial effect is in allowing the phase and amplitude curve 
to be more flexible than a simple linear pattern by ensuring that the edf is larger  
than 2. Beyond that, there is relatively little change in the use of higher values. 
This again provides empirical evidence to support the use of 7, 3 and 3 edf for the 
intercept, phase and amplitude curves.

6  Application

The dipole model and its associated fitting procedure were applied to the pre-stimulus 
data from the meg experiment described in Section 2. In order to assess the effectiveness 
of the approach, a model for a single trial on a single subject is first examined in detail. 
The model is then applied to all available trials for several individuals to gain insight 
into the nature of trial-to-trial variability, both within and across individuals.

6.1  Analysis of a single-trial

Results from a single trial are displayed in Figure 4. The spatial information in 
the top left hand panel has identified a dipole on the left side of the motor cortex.  
The estimates of c1(t) and c2(t) in the top right hand panel show the two parts  
of the dipole to be oscillating strongly out-of-phase, over the initial time period at 
least. The raw meg signals from sensors inside the poles (marked in the top left hand 
plot) are displayed in the top middle panel to confirm that the smoothing procedure 
has removed high frequency noise and summarized the temporal patterns effectively.

The four lower panels show the functions derived from c1(t), c2(t) which  
characterize the temporal nature of the dipole. The estimates of the intercept and (log) 
amplitude curves which are displayed in the first two panels show effectively constant 
means for each pole and only minor differences in amplitude in the early part of the 
pre-stimulus period. The second two panels show the information on phase, together 
with the instantaneous frequency curves. These confirm that we are indeed examining 
information from the a-band 8–12 Hz range with the two halves of the dipole oscil-
lating at the same rate until a small degree of divergence appears immediately before 
the stimulus is applied.

The physics of current flow determines that a genuine dipole is present when 
the two separate poles are completely out-of-phase and so the difference in phase 
provides the key information to assess this. More precisely, the quantity:

	 ( ) ( ( ), ( )),     ( ) | ( ) ( ) | ,min modt t t t t t2 2where 1 2b r z z rD D D= - = -c c � (6.1)

gives a curve which takes values over the interval [0, r] and which takes the value 
r when the two poles are exactly out-of-phase. With this particular trial, b(t) (not 
shown) lies close to r for the first 300ms and diminishes thereafter, giving a clear 
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indication of the presence of a transient dipole, indicating the alert state of the brain 
while a visual stimulus is awaited. The peak of b(t) is identified by the vertical line 
in the top right panel of Figure 4.

Further work would allow standard errors to be computed for the curves which 
characterize the behaviour of a dipole, along the lines of the analysis described by 
Ventrucci et al. (2011). However, the focus of the present article is the variability 
across trials and so the estimates which have been derived are used to examine and 
describe the random variation at trial level.

6.2  Functional data analysis of many trials

When viewing the results of fitted models for a large number of trials, a more 
systematic and quantitative method of identifying the presence of a dipole is 
required. Two conditions must be satisfied, namely that the poles oscillate at the 
same frequency and that they are fully out-of-phase. A simple empirical rule might 
identify a dipole if | ( ) ( ) |f t f t 2<1 2-t t  and ( )t 1<r b- . Of the 384 trials examined for 
instance for subject 1, this rule identifies a dipole within the a-band range at some 
time point in 307 cases. However, it is more appealing to quantify the strength of 
evidence for a dipole in a more continuous manner and this can be achieved by use 
of the weight function:

/ . },0 5. ( ( ))t0 5 r b-/ } {exp1 -( ( ) ( ))f t f t-.0 5 2 2{exp -( )w t i 2
2 2= t t

which decreases from 1 in a smooth manner as ( )f t1
t  and ( )f t2

t  move apart and as 
b(t) moves away from r. The ‘standard deviation’ parameters of the exponential 
components have been chosen to match the simple binary rule given above.

Figure 5 shows the spatial distribution of the dipoles detected in all the available 
trials for each of three subjects involved in the experiment. The lines connect the two 
poles of the dipole and their mid-points represent the estimated dipole locations. 

Figure 5  The variability in spatial location (mid-point of each line) and orientation (with current flow 
perpendicular to each line) for repeated trials with three different subjects. The density of each line is 
determined by the strength of evidence over time for the presence of a dipole.

Source:  Produced in the free software environment R (R Development Core Team, 2011).
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The density of each line is determined by the maximum of the weight function w(t) 
over time, so that lightly shaded lines indicate weaker evidence for the presence of a 
dipole. There is a striking dependence between the spatial location and orientation 
of the dipole in subjects 1 and 2. This is indicative of brain anatomy, as variation in 
the dipole location is constrained by the topography of the folds in brain tissue. The 
size of the spatial variation is similar across the subjects, although subject 3 shows a 
slightly more diffused pattern.

Figure 6 plots the frequency information for each trial, averaged over the two parts 
of the dipole, denoted by ( )f tj

r . Again, shading has been used to indicate the strength 

Figure 6  Functional data analysis of the average frequency of the pole signals. The shading indicates the 
strength of evidence for a dipole. Weighted average curves and their standard errors are superimposed.

Source:  Produced in the free software environment R (R Development Core Team, 2011).
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of evidence for a dipole, with the grey-scale of curve j at each time t determined by the 
corresponding value of wj(t). The large number of individual trials makes underlying 
patterns difficult to assess, so a mean curve across trials was computed by taking a 
weighted average of the ( )f tj

r , using the wj(t) as weights. The mean curves are at the 
expected 10 Hz for subjects 1 and 2 but at the lower end of the a–band for subject 3. 
In addition, there are clear differences in the size of the variation around these mean 
values, with subject 2 displaying high concentration of the individual trials, while 
subject 3 in particular has much greater variation. These characteristics of different 
subjects are missed by methods of analysis based on averaging over trials.

There is particular interest in the size of the variability in the frequency within 
each trial, and Figure 7 explores this by plotting the standard deviation over time  
of ( )f tj
r  against the mean over time of ( )f tj

r . Again, subjects 1 and 2 show high degrees of 
concentration at the characteristic a–band frequency of 10 Hz while subject 3 exhibits 
greater variability. Within this subject, variability is smaller within the a–band frequency 
range 8–12 Hz than outside it.

Overall, these results demonstrate significant variability of frequency of brain 
oscillations within and between participants and they question the validity of the 
conventional averaging approach across trials and participants. Instead, it has been 
demonstrated that model-based analysis allows single-trial estimation of time-varying 
amplitude, phase and frequency and makes it possible to relate the trial-by-trial 
variation of these measures to trial-by-trial variations in behavioural performance, 
such as perceptual accuracy or reaction time.

7  Discussion

Traditionally, oscillations in meg signals are analyzed by means of temporal band-
pass filters or Fourier transforms. Both techniques rely on an assumption of 

Figure 7  Variability of frequency within trials.

Source:  Produced in the free software environment R (R Development Core Team, 2011).
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stationarity of the underlying signal. However, brain activity is highly dynamic and 
non-stationary, with brain oscillations typically showing variation in both amplitude 
and frequency over time, and across trials. The methods proposed in this article 
aim to adapt to these features and, importantly, to allow the robust estimation of 
amplitude, frequency and phase dynamics on single trial data. Recent research has 
demonstrated that amplitude, phase and frequency contain important information 
about the state of the human brain that correlates with behavioural performance. 
Investigation of this requires models and methods that are adapted to the complex 
dynamic nature of single trial signals.

The nature of the variation across trials and across individuals provides valuable 
insight which is not available from analysis based on averaged data. In addition to 
the direct interpretation about the nature of brain signals, this random variation 
also provides the building blocks from which random effect models involving the 
comparison of treatment groups, and more complex designs, may be constructed.

The simulation study showed that estimation of a dominant dipole is not 
adversely affected by the presence of other minor dipoles. However, there is interest 
in simultaneously identifying multiple dipoles, especially in the post-stimulus period 
when there may be multiple simultaneously activated brain areas of interest. In 
future work, this will be addressed by building in more explicit representations of 
the mapping from a dipole source at a three-dimensional position within the human 
brain to the corresponding spatial field pattern on the sensor surface. This mapping 
can be constructed by considering the underlying physics and it could be the basis of 
disambiguating contributions from different activated brain areas.
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