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In this paper we consider a fluid whose viscosity depends on both the mean normal
stress and the shear rate flowing down an inclined plane. Such flows have relevance to
geophysical flows. In order to make the problem amenable to analysis, we consider a
generalization of the lubrication approximation for the flows of such fluids based on
the development of the generalization of the Reynolds equation for such flows. This
allows us to obtain analytical solutions to the problem of propagation of waves in a
fluid flowing down an inclined plane. We find that the dependence of the viscosity on
the pressure can increase the breaking time by an order of magnitude or more than
that for the classical Newtonian fluid. In the viscous regime, we find both upslope
and downslope travelling wave solutions, and these solutions are quantitatively and
qualitatively different from the classical Newtonian solutions.
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1. Introduction
The flow of fluids down an inclined plane has relevance to common occurrences

such as the flow of rain water down the roofs and window panes of structures, to
geophysical flows such as that of lava and that of rivers and seas due to the inclination
of their beds, and to numerous industrial applications. Thus, it is not surprising that
such flows and their stability have been studied in great detail, going back to the early
studies by Nusselt (1916) and Jeffreys (1925) of the flow along a vertical wall. These
pioneering studies have been followed by both theoretical and experimental works
too numerous to cite, and thus we are content to mention some of the early works
(Kirkbride 1934a,b; Keulegan & Patterson 1940; Friedman & Miller 1941; Grimley
1945; Dukler & Berkelin 1952; Yih 1955, 1963, 1965; Benjamin 1957; Binnie 1957;
Ivanilov 1962; Gupta & Rai 1967) and some recent works that have a bearing on
our study (Huppert 1982a,b; Silvi & Dussan 1985; Kondic & Diez 2001; Perazzo
& Gratton 2003). Most of the studies concerning the flow down an inclined plane
consider the fluid to be the classical Newtonian fluid. Recently, there have been a
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few studies wherein the fluid in question is a non-Newtonian power-law fluid (see
for example Perazzo & Gratton 2003). An interesting observation concerning flows
down inclined planes is the formation of waves and the breaking time associated with
the waves. If the angle of inclination is small, it is found that the flow is stable to
small disturbances, while if the angle of inclination is sufficiently large one observes
the development of ‘roll waves’, wherein the flow is made up of waves interspersed
with regions of laminar flow or ‘slug flow’, where the flow tends to be more chaotic
(see Mayer 1959). There have been numerous studies concerning the stability of flows
down an inclined plane and references to such studies can be found in the paper by
Kondic & Diez (2001). There have also been several rigorous mathematical studies
concerning the flows of fluids down an inclined plane (see for example Dressler 1949;
Carasso & Shen 1977).

It has been well known ever since the seminal paper of Stokes (1845) that the
viscosity of fluids depends on the mean normal stress. While the pressure dependence
of the viscosity may be ignored in simple channel and pipe flows, when it comes to
flows such as those encountered in elastohydrodynamics, or for that matter in flows
wherein the range of pressures is large, one cannot ignore the effect of pressure on the
viscosity. The manner in which the viscosity varies with pressure has been recorded in
numerous experimental studies. The authoritative book by Bridgman (1931) documents
most of the works until 1931 that attest to the fact that the viscosity can change by
as much as 108 %! A paper by Barus (1893) proposed an exponential dependence of
the viscosity on pressure. Later, the paper by Andrade (1934) suggested an explicit
formula for how the viscosity changes with the density, temperature and pressure.
However, the change in the density over a very large pressure range is of the order
of 3–5 % (see Dowson & Higginson 1966; Rajagopal 2006) while the change in
the viscosity is of the order of 108 %. Thus, it would be reasonable to consider
most organic fluids as incompressible fluids with pressure-dependent viscosity. (An
up-to-date list of the relevant experimental papers can be found in Bulicek, Malek &
Rajagopal 2009.) Rajagopal and co-workers have studied issues concerning existence
and uniqueness of flows as well as special flows of fluids with pressure-dependent
viscosity. Of specific relevance is the paper by Rajagopal & Szeri (2003), who obtain
the appropriate lubrication approximation, in the spirit of the early works by Reynolds,
for the flows of such fluids, previous approximations being incorrect.

The mean normal stress in an incompressible nonlinear fluid need not be the
‘pressure’ in the fluid, if by ‘pressure’ we mean the reaction stress due to the
constraint of incompressibility. It is worth noting that the popular theory of constraints
that appeals to the notion, which can be traced back to the work of D’Alembert,
Bernoulli and Lagrange, that constraint forces do no work does not allow the viscosity
to depend on the Lagrange multiplier that enforces the constraint of incompressibility,
namely the pressure. Such an assumption is not a necessity, as shown by Gauss
(1829) in particle mechanics and Rajagopal & Srinivasa (2005) for continua. See
also the discussion in Rajagopal & Saccomandi (2006). In this paper we consider a
non-Newtonian fluid whose viscosity depends on both the mean normal stress (in the
case of the model being considered, the pressure) and the shear rate (the fluid can
shear-thin or shear-thicken). In a recent paper, Saccomandi & Vergori (2010), using
the lubrication approximation appropriate to such fluids as developed by Rajagopal
& Szeri (2003), studied in great detail the flow down an inclined plane of an
incompressible fluid whose viscosity depends on pressure. They considered various
flow regimes, namely flows wherein viscous effects, surface tension effects, etc, are
predominant. They showed that in quasi-steady flow, due to the dependence of the
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viscosity on the pressure, the breaking time of the waves is delayed in comparison to
the classical Newtonian fluid. In the viscous regime, in which the effect of the pressure
gradient is balanced by the stresses due to the viscosity within the bulk, they found
that if the fluid viscosity is affected by the pressure changes, then the travelling waves
could be both qualitatively and quantitatively different from those occurring in a fluid
with constant viscosity.

However, the work of Saccomandi & Vergori (2010) lacks an accurate investigation
of other non-Newtonian effects on the fluid flow. For this reason, in the present study,
we carry out an analysis of the flow of a fluid with pressure- and shear-rate-dependent
viscosity down an inclined plane within the context of the lubrication approximation.
It is legitimate to ask where the pressure dependence of viscosity could become
important within the context of the approximation that is carried out in this paper,
namely the lubrication approximation. Thin film flows are ubiquitous in engineering,
geophysics, biology and elsewhere, and low aspect ratios are often the basis for
simplified fluid dynamical models. An important relevant application in geophysics is
the flow of glaciers and ice sheets as well as rock glaciers. For instance, while the
ice sheet covering Antarctica is several kilometres thick, it has a horizontal extent of
several thousand kilometres, yielding a length-scale ratio ε of order 10−3 (see Schoof
& Hindmarsh 2010). These glaciers clearly exhibit non-Newtonian characteristics in
that their viscosities depend on the shear rate so that their flows are modelled
using a shallow-ice approximation and Glen’s flow law (Paterson 1994): in other
words, as gravity currents with non-Newtonian (power-law) rheology. On the other
hand, there are several papers that investigate the possibility of normal stress effects
in the creep of polycrystalline ice (see e.g. McTigue, Passman & Jones 1985 and
Man & Sun 1987). In particular, Jones & Chew (1983) have shown that hydrostatic
pressure decreases the creep of polycrystalline ice slightly and, then, above 15 MPa,
a minimum creep rate is reached followed by an increase in rate with increasing
hydrostatic pressure. Therefore, in view of the depths of glaciers we would expect that
the pressure would also influence the viscosity. As the viscosity depends on both the
shear rate as well as the pressure, it is possible that these two effects could either
compete against each other, thereby mitigating their effects, or join forces to enhance
the qualitative and quantitative differences. As the fluid can shear-thin or shear-thicken,
both possibilities may come to pass.

The organization of the paper is as follows. In § 2, we introduce the constitutive
model for the fluid as well as the lubrication approximation that we shall employ.
We consider two models for the way in which the viscosity depends on the pressure,
an exponential form and a polynomial form. We then proceed to derive the non-
dimensional equation that is appropriate for such flows and we delineate two flow
regimes, the nearly uniform steady flow regime and the viscous regime. In § 3 we
study the nearly uniform steady flow regime, and show that due to the dependence
of viscosity on the pressure the breaking time could be increased by an order of
magnitude. In fact, depending on the shear-thinning and piezo-viscous coefficients, the
breaking time can increase by even larger values. In the final section we consider the
viscous regime and, as the main result, we show how the pressure dependence of the
viscosity might cause the occurrence of compressive shock waves.

2. Basic equations
We consider a fluid moving on an inclined plane, whose angle of inclination is α.

Let Oxyz be a Cartesian frame of reference with fundamental unit vectors i, j and k,
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where the coordinate z is perpendicular to the plane, the x and y coordinates lie in the
plane, y is horizontal and x increasing downward. We denote the components of the
velocity v of the fluid in the directions x, y and z as u, v and w, respectively. The
constraint of incompressibility and the equation of balance of linear momentum can be
written as

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
= 0,

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v ∂u

∂y
+ w

∂u

∂z

)
=−∂p

∂x
+ ∂σxx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
+ ρg sinα,

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v ∂v

∂y
+ w

∂v

∂z

)
=−∂p

∂y
+ ∂σyx

∂x
+ ∂σyy

∂y
+ ∂σyz

∂z
,

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v ∂w

∂y
+ w

∂w

∂z

)
=−∂p

∂z
+ ∂σzx

∂x
+ ∂σzy

∂y
+ ∂σzz

∂z
− ρg cosα,

(2.1)

where ρ is the density of the fluid, p is the pressure or, to be more precise, the
mean normal stress, and g is the acceleration due to gravity. We shall assume that the
Cauchy stress in the fluid is given by

T =−pI + σ =−pI + 2µ(p, ‖D‖)D, (2.2)

where D = 1/2[∇v + (∇v)T] is the symmetric part of the velocity gradient and ‖D‖
denotes its norm. The modulus µ occurring in (2.2) is the viscosity of the fluid and, in
this paper, we shall assume it to be of the form

µ(p, ‖D‖)= γ (p− p0) ‖D‖(1−λ)/λ, (2.3)

with λ > 0, p0 the reference pressure and, as is reasonable to expect since the fluid
viscosity increases as the pressure increases, γ is a positive function whose value
increases with increasing pressure. Model (2.2), with a viscosity of the type (2.3),
allows for a fluid that is capable of shear-thinning, when λ > 1, or shear-thickening,
when λ ∈ (0, 1). Here, for the sake of definiteness, we shall consider the following
explicit forms for γ :

(dependence of viscosity on pressure, type 1) γ (p− p0)= γ0eβ(p−p0), (2.4)
(dependence of viscosity on pressure, type 2) γ (p− p0)= γ0 + β (p− p0)

n, (2.5)

where γ0 > 0, β > 0 and n > 0 are constants. In general, the material parameters that
appear in (2.4) and (2.5) can be obtained by corroboration with experimental data.
Here, in order to illustrate the effects due to the pressure dependence of viscosity, we
merely carry out a parametric study.

We prescribe the following boundary conditions for the velocity and pressure fields:{
u= v = w= 0 on z= 0,
Tn=−p0n on z= h(x, y, t),

(2.6)

where

n= 1√
1+

(
∂h

∂x

)2

+
(
∂h

∂y

)2

(
−∂h

∂x
i− ∂h

∂y
j + k

)
(2.7)

is the unit normal to the free surface of the current z= h(x, y, t).
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Let H and L denote the characteristic thickness and characteristic length along the
plane of the current-free surface h = h(x, y, t), respectively. The main assumption in
lubrication approximation (see Szeri 1998) is that the length-scale ratio H/L is small.
Here, as we are interested in fluids whose viscosity depends on the pressure, we
assume that the ratio H/L is small, though H is large enough to have a significant
dependence of the viscosity on the pressure.

As a consequence of the smallness of the length-scale ratio H/L, the component of
the velocity parallel to the plane is much larger than the normal component, so that√

u2 + v2� |w|. (2.8)

We call U, V and W the characteristic velocities along the x, y and z directions,
respectively. Hence, U‖ =

√
U2 + V2 and W are the characteristic velocities parallel

and perpendicular to the inclined plane, respectively. From (2.1)1 and (2.8) we find
that W = HU‖/L.

There are many ways of transforming the governing equations (2.1) and boundary
conditions (2.6) into dimensionless expressions. Here we introduce a scaling which is
similar to that introduced by Ancey (2007):

x∗ = 1
L
(xi+ yj)+ z

H
k, v∗ = 1

U‖
(ui+ vj)+ w

W
k, h∗ = h

H
,

W = H

L
U‖, t∗ = U‖

L
t, p∗ = p− p0

ρg cosαH
, γ ∗ = γ

γ0
,

(2.9)

where γ0 is the value of γ at the reference pressure p0.
Substituting the dimensionless quantities (2.9) into (2.1), (2.2) and (2.7) and into the

boundary conditions (2.6) leads to (omitting all asterisks)

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
= 0,

εRe

(
∂u

∂t
+ u

∂u

∂x
+ v ∂u

∂y
+ w

∂u

∂z

)
= ε Re

Fr2

(
tanα
ε
− ∂p

∂x

)
+ ε ∂σxx

∂x

+ ε ∂σxy

∂y
+ ∂σxz

∂z
,

εRe

(
∂v

∂t
+ u

∂v

∂x
+ v ∂v

∂y
+ w

∂v

∂z

)
=−ε Re

Fr2

∂p

∂y
+ ε ∂σyx

∂x
+ ε ∂σyy

∂y
+ ∂σyz

∂z
,

ε2Re

(
∂w

∂t
+ u

∂w

∂x
+ v ∂w

∂y
+ w

∂w

∂z

)
=− Re

Fr2

(
1+ ∂p

∂z

)
+ ε ∂σzx

∂x
+ ε ∂σzy

∂y
+ ∂σzz

∂z
,

(2.10)


u= v = w= 0 on z= 0,

(−pI + σ )

(
−ε ∂h

∂x
i− ε ∂h

∂y
j + k

)
= 0 on z= h(x, y, t),

(2.11)

where

ε = H

L
� 1, (2.12)
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σ = γ (p)
[
ε2

(
∂u

∂x

)2

+ ε2

(
∂v

∂y

)2

+ ε2

(
∂w

∂z

)2

+ ε
2

2

(
∂u

∂y
+ ∂v
∂x

)2

+ 1
2

(
∂u

∂z
+ ε2 ∂w

∂x

)2

+ 1
2

(
∂v

∂z
+ ε2 ∂w

∂y

)2
](1−λ)/2λ

×
[

2ε
(
∂u

∂x
i⊗ i+ ∂v

∂y
j ⊗ j + ∂w

∂z
k⊗ k

)
+ ε

(
∂u

∂y
+ ∂v
∂x

)
(i⊗ j + j ⊗ i)

+
(
∂u

∂z
+ ε2 ∂w

∂x

)
(i⊗ k+ k⊗ i)+

(
∂v

∂z
+ ε2 ∂w

∂y

)
(j ⊗ k+ k⊗ j)

]
, (2.13)

where the symbol ‘⊗’ denotes the tensor product. In this framework the dimensionless
version of γ is an increasing function such that γ (0)= 1. In particular, (2.4) and (2.5)
become, respectively,

γ (p)= eωp with ω = βρg cosαH, (2.14)

and

γ (p)= 1+ ωpn with ω = β (ρg cosαH)n . (2.15)

The dimensionless quantities

Re= ρU(2λ−1)/λ
‖ H1/λ

γ0
and Fr = U‖√

g cosαH
(2.16)

are the Reynolds and Froude numbers, respectively.
Depending on the values considered for the characteristic scales, different types of

flow regime occur. In this paper we shall focus on the following two types of flow
regimes.

(i) The nearly steady uniform regime, where the viscous contribution is comparable
to the gravitational effect. In this case, we have

U‖ =
[
ρg sinαH(λ+1)/λ

γ0

]λ
(2.17)

and Fr2 = O(Re). Inertial terms and pressure gradient terms must be negligible,
which means εRe � 1. Therefore, from (2.10) and (2.13) the approximate
equations are found to be given by

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
= 0,

∂

∂z

γ (p)
[(

∂u

∂z

)2

+
(
∂v

∂z

)2
](1−λ)/2λ

∂u

∂z

+ 2(1−λ)/2λ = 0,

∂

∂z

γ (p)
[(

∂u

∂z

)2

+
(
∂v

∂z

)2
](1−λ)/2λ

∂v

∂z

= 0,

∂p

∂z
+ 1= 0.

(2.18)
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(ii) The viscous regime, where the effect of the pressure gradient is balanced by
stresses induced due to the viscosity within the bulk. In this case, we have

U‖ =
[
ρg cosαH(2λ+1)/λ

γ0L

]λ
(2.19)

and consequently Fr2 = εRe. Inertial terms must be small compared to the effect
of the pressure gradient and the slope must be gentle (tanα = O(ε)). This
imposes the following constraint: εRe� 1. From (2.10) and (2.13) we deduce
the approximate equations

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
= 0,

∂

∂z

γ (p)
[(

∂u

∂z

)2

+
(
∂v

∂z

)2
](1−λ)/2λ

∂u

∂z

+ 2(1−λ)/2λ
(

tanα
ε
− ∂p

∂x

)
= 0,

∂

∂z

γ (p)
[(

∂u

∂z

)2

+
(
∂v

∂z

)2
](1−λ)/2λ

∂v

∂z

− 2(1−λ)/2λ
∂p

∂y
= 0,

∂p

∂z
+ 1= 0.

(2.20)

Moreover, from (2.11) and (2.13), by virtue of the smallness of ε, the boundary
conditions (2.6) approximate to

u= v = w= 0 on z= 0,
p= 0 on z= h(x, y, t),
∂u

∂z
= ∂v
∂z
= 0 on z= h(x, y, t).

(2.21)

Finally, we derive the evolution equation for the free surface z = h(x, y, t). We first
integrate the constraint of incompressibility over the flow depth to obtain, by means of
boundary condition (2.21)1,∫ h

0

(
∂u

∂x
+ ∂v
∂y
+ ∂w

∂z

)
dz= ∂

∂x

∫ h

0
u dz+ ∂

∂y

∫ h

0
v dz

− u|z=h
∂h

∂x
− v|z=h

∂h

∂y
− w|z=h. (2.22)

But, obviously,

w|z=h = dh

dt
= ∂h

∂t
+ u|z=h

∂h

∂x
+ v|z=h

∂h

∂y
. (2.23)

Therefore, combining (2.22) and (2.23) gives the required equation for h,

ht + ∂(hū)

∂x
+ ∂(hv̄)

∂y
= 0, (2.24)

where we have introduced the depth-averaged variables defined as

ϕ̄(x, y, t)= 1
h(x, y, t)

∫ h(x,y,t)

0
ϕ(x, y, z, t) dz. (2.25)
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3. Nearly steady uniform regime
It is easy to verify that system (2.18) with boundary conditions (2.21) admits the

solution 

u= 2(1−λ)/2
∫ z

0

[
h− ζ

γ (h− ζ )
]λ

dζ,

v = 0,

w=−2(1−λ)/2
∂

∂x

∫ z

0

{∫ ζ1

0

[
h− ζ
γ (h− ζ )

]λ
dζ2

}
dζ1,

p= h− z.

(3.1)

Therefore

hū= 2(1−λ)/2
∫ h

0
ξ

[
ξ

γ (ξ)

]λ
dξ =: F(h), (3.2)

and (2.24) becomes

∂h

∂t
+ F′(h)

∂h

∂x
= 0, (3.3)

where the prime denotes differentiation with respect to h.
Equation (3.3) is a quasilinear first-order partial differential equation whose general

solution can be found by the method of characteristics. If f (ξ) is an initial profile, then
the corresponding solution is given by

h= f (x− F′(h)t). (3.4)

The wave (3.4) could break, i.e. its profile could become multivalued, at time
tB = − [F′′(f (ξB)) df /dξ(ξB)]−1 at the point xB = ξB + F′(f (ξB))tB, where ξB has to
be determined by means of the conditions

F′′(f (ξB))
df

dξ
(ξB) < 0,

|F′′(f (ξB))f
′(ξB)| =max

∣∣∣∣d F′(f (ξ))
dξ

∣∣∣∣ . (3.5)

Since γ is a positive increasing function, from (3.5) we deduce that the pressure
dependence of the viscosity has the effect of delaying the time at which the wave
could break. To quantify this delaying effect we consider γ of the form (2.14) and
assume that h(x, 0)= f (x)= 1 − x2. If the fluid is Newtonian with a constant viscosity
µ0 (i.e. λ = 1 and γ (p − p0) = µ0 in (2.3)), it is easy to show that the wave breaks
at time tBN = 3

√
3/8. In order to make the differences between the non-Newtonian

case that is being considered and the classical Newtonian case more evident, we have
plotted the ratio between the breaking time tB in the non-Newtonian case and tBN as
a function of λ and as a function of the non-dimensional piezo-viscous coefficient
ω (see figure 1). Furthermore, the solutions to the wave equation (3.3) with λ = 0.5
and λ = 1.5 (figure 2) are plotted at different times together with the profiles of the
free surface z = h(x, t) in the classical Newtonian case. We find that the solutions are
qualitatively similar, though quantitatively different.
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FIGURE 1. Ratio tB/tBN as a function of (a) λ and (b) the piezo-viscous coefficient ω. γ is
assumed to be of the form (2.14) and the initial profile considered is h(x, 0)= 1− x2.
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FIGURE 2. Solutions of (3.3) with an initial profile f (x) = (1 − x2) at t = 0, t = 0.5, t = 1.
The dashed line represents the solution in the classical Newtonian case, whereas the solid line
represents the solution in the case in which γ depends on the pressure according to the law
γ (p)= e0.1p and (a) λ= 0.5 and (b) λ= 1.5.

Finally, in order to look for self-similar solutions of (3.3), we need to know whether
F′ is invertible. The invertibility of F′ is linked with the equation

λhγ ′(h)− (λ+ 1)γ (h)= 0. (3.6)

Indeed, if (3.6) admits positive roots, the least of which we denote by ĥ, then F′ is
invertible in [0, ĥ[. On the contrary, if (3.6) does not admit positive roots, then F′ is
invertible in [0,+∞[. In any case F′−1 is continuous and increasing. It is interesting to
show that some time after the initiation of the flow, no matter what the initial shape,
the solution tends to the unique self-similar solution of (3.3), i.e.

h(x, t)→ F′−1
(x

t

)
as t→+∞. (3.7)

In order to prove (3.7), from (3.3) we deduce that h is constant along the
characteristics given by

dx

dt
= F′(h). (3.8)

Thus, if initially h(x, 0)= f (x), the characteristics are straight lines

x= x0 + F′[f (x0)]t, (3.9)
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x0 being the initial value of the characteristic. The solution of (3.3) is then

h(x, t)= F′−1
(

x− x0

t

)
→ F′−1

(x

t

)
as t→+∞. (3.10)

If the viscosity does not depend on the pressure, (3.7) reduces to the self-similar
solution found by Perazzo & Gratton (2003), which in turn is the non-Newtonian
counterpart of the self-similar solution derived by Huppert (1982a) for Newtonian
fluids.

4. Viscous regime
A lengthy but straightforward algebraic manipulation allows us to obtain the solution

to the boundary-value problem (2.20)–(2.21):

u= 2(1−λ)/2
(

tanα
ε
− ∂h

∂x

)[(
∂h

∂x
− tanα

ε

)2

+
(
∂h

∂y

)2
](λ−1)/2 ∫ z

0

[
h− ζ

γ (h− ζ )
]λ

dζ,

v =−2(1−λ)/2
∂h

∂y

[(
∂h

∂x
− tanα

ε

)2

+
(
∂h

∂y

)2
](λ−1)/2 ∫ z

0

[
h− ζ

γ (h− ζ )
]λ

dζ,

w=−2(1−λ)/2∇s ·

{∣∣∣∣ tanα
ε

i−∇sh

∣∣∣∣λ−1( tanα
ε

i−∇sh

)
×
∫ z

0

[∫ ζ1

0

(
h− ζ2

γ (h− ζ2)

)λ
dζ2

]
dζ1

}
,

p= h− z,

(4.1)

where ∇s is the two-dimensional gradient

∇sϕ = ∂ϕ
∂x

i+ ∂ϕ
∂y

j. (4.2)

Then

hū= F(h)

(
tanα
ε
− ∂h

∂x

)[(
∂h

∂x
− tanα

ε

)2

+
(
∂h

∂y

)2
](λ−1)/2

, (4.3)

hv̄ =−F(h)
∂h

∂y

[(
∂h

∂x
− tanα

ε

)2

+
(
∂h

∂y

)2
](λ−1)/2

, (4.4)

so that (2.24) becomes

∂h

∂t
+∇s ·

{
F(h)

∣∣∣∣ tanα
ε

i−∇sh

∣∣∣∣λ−1( tanα
ε

i−∇sh

)}
= 0. (4.5)

Now let us make the further assumption that the flow depends only on the x
coordinate. Then ∂h/∂y= 0 (so that v = 0) and (4.5) reduces to

∂h

∂t
+ ∂

∂x

{
F(h)

∣∣∣∣ tanα
ε
− ∂h

∂x

∣∣∣∣λ−1( tanα
ε
− ∂h

∂x

)}
= 0. (4.6)

To find travelling wave solutions we assume that h depends on the single variable
s ≡ x − ct, where c is a constant which represents the wave speed. Then (4.6) can be
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FIGURE 3. Profiles of upslope travelling waves. The solid line represents the travelling
wave solution when λ = 1.5 and γ (p) = 1 + 0.2p, whereas the dashed line represents the
travelling wave solution in the classical Newtonian case. We have assumed tanα/ε = 1 and
c = −1. Observe that the solutions tend to be parallel to the horizontal plane (dotted line)
as s→ +∞. Since h′ → +∞ as s→ 0, the upslope travelling waves do not satisfy the
lubrication approximation near the front.

integrated once to obtain∣∣∣∣ tanα
ε
− dh

ds

∣∣∣∣λ−1( tanα
ε
− dh

ds

)
= c1 + ch

F(h)
, (4.7)

c1 being an integration constant. Let c1 = 0 in (4.7). Then, (4.7) may be written as

dh

ds
= tanα

ε
− sign(c)

{ |c|h
F(h)

}1/λ

. (4.8)

If c< 0, the right-hand side of (4.8) never vanishes, and hence (4.7) may be integrated
numerically over the range (0, h̄) for any h̄ > 0. In this case the general solution
is an increasing function defined over the interval (c2,+∞), c2 being an integration
constant, and tends to +∞ as s→+∞. Therefore, these solutions do not satisfy the
lubrication approximation as the length-scale ratio fails to be small as s→+∞.

Assume now that the incline is not infinite, and in the valley the plane is horizontal.
Furthermore, since we are considering upslope travelling waves, we suppose that the
fluid flows from the horizontal to the incline. From (4.8) it follows that the fluid
free surface tends to the horizontal as s→+∞ if and only if there exist ω > 0 and
n ∈ [0, 1 + 1/λ[ such that γ (p) ' 1 + ωpn for large pressure p. In such a case the
travelling waves meet the lubrication approximation, as the dimensionless thickness of
the fluid remains finite as s→+∞ (figure 3).

In order to discuss the integrability of (4.8) with c> 0, we have to find the positive
roots of the equation (

tanα
ε

)λ
F(h)− ch= 0. (4.9)

The roots of (4.9) may be found numerically. Nevertheless, we can deduce the number
of positive roots of (4.9) by studying the function F (h) := (tanα/ε)λ F(h)/h. F is a
continuous differentiable function that tends to zero as h→ 0, whose derivative may
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be written as

F ′(h)=
(

tanα
ε

)λ 1
h2

∫ h

0
ξF′′(ξ) dξ

= 2(1−λ)/2
(

tanα
ε

)λ 1
h2

∫ h

0

(
ξ

γ (ξ)

)λ+1

[(λ+ 1)γ (ξ)− λξγ ′(ξ)] dξ. (4.10)

From (4.10) it follows that F ′ is positive in a neighbourhood of h = 0, but it might
change sign away from zero if (3.6) admits positive roots. Here, for the sake of
simplicity, we shall limit our analysis to the constitutive functions γ for which (3.6)
admits at most one positive root. It is easy to recognize that models (2.14) and (2.15)
meet this requirement.

We are now able to say how many positive roots (4.9) admits. In fact:

(i) if [γ (h)/h]λ has linear growth as h→+∞, then F is increasing and tends
to l > 0 as h→+∞ so that (4.9) with c ∈]0, l[ admits only one positive root,
whereas it does not admit a positive root for c > l;

(ii) if [γ (h)/h]λ has sublinear growth as h→+∞, then F is increasing and tends
to +∞ as h→+∞ so that, for any c> 0, (4.9) admits a unique positive root;

(iii) if [γ (h)/h]λ has superlinear growth as h→+∞, then F attains its absolute
maximum at h = h∗ > 0 and tends to zero as h→+∞ so that (4.9) admits
two positive root if c ∈]0,F (h∗)[, only one positive root if c =F (h∗), and no
positive root for c>F (h∗).

According to the number of positive roots of (4.9), one, two or three families of
solutions to (4.7) may arise.

If (4.9) does not admit a positive root, then (4.7) may be numerically integrated over
the range (0, h̄) for all h̄> 0. In this case the general solution is a decreasing function
defined over the interval (−∞, c2), c2 being an integration constant, and tends to +∞
as s→−∞. Therefore, we do not consider these solutions as they do not satisfy the
lubrication approximation.

If (4.9) admits only one positive root hm, then two families of solutions to (4.7)
arise. The first is formed by bounded decreasing functions defined over the range
(−∞, c2) satisfying the inequality 0 6 h 6 hm. For these solutions we have h→ hm

as s→−∞. Then they represent travelling waves behind a front running downslope
that, far behind the front (s→−∞), tends to the steady downslope flow h = hm (see
figure 4). The other family is formed by increasing functions bounded from below for
which h > hm. These solutions represents downslope travelling waves with no front, for
which h→ hm as s→−∞ and h→+∞ as s→+∞. Therefore, they do not satisfy
the lubrication approximation.

As before, assume that the incline is not infinite, and in the valley the plane is
horizontal. But, since we are now considering downslope travelling waves, we suppose
that the fluid flows from the incline to the horizontal. In such a case the downslope
travelling waves with no front meet the lubrication approximation if and only if, for
large pressure, γ is of the form (2.15) with n ∈ [0, 1+ 1/λ[ (figure 5).

If (4.7) admits two positive roots, hm < hM, then, as well as the downslope travelling
waves behind a front, two other families of solutions to (4.7) arise, representing
downslope travelling waves with no front (see figure 5). The former is constituted by
bounded increasing functions satisfying the inequality hm < h < hM and for which we
have h→ hm as s→−∞ and h→ hM as s→+∞. The latter is formed by decreasing
functions that are bounded from below as they satisfy the inequality h > hM and for
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FIGURE 4. Profiles of downslope travelling waves behind a front. The solid line represents
the travelling wave solution when λ = 1.5 and γ (p) = 1 + 0.2p, whereas the dashed line
represents the travelling wave solution in the classical Newtonian case. We have considered
tanα/ε = 1 and c = 1. Since h′→−∞ as s→ 0, the downslope travelling waves behind a
front do not satisfy the lubrication approximation near the front.
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FIGURE 5. Profiles of downslope travelling waves with no front. The solid line represents
the travelling wave solution when λ = 1.5 and γ (p) = 1 + 0.2p, whereas the dashed line
represents the travelling wave solution in the classical Newtonian case. We have considered
tanα/ε = 1 and c = 1. Observe that the solutions tend to be parallel to the horizontal plane
(dotted line) as s→+∞.

which we have h→+∞ as s→−∞ and h→ hM as s→+∞. We disregard the
travelling wave solutions belonging to this family as the length-scale ratio fails to
be small as s→−∞. On the contrary, we discuss in detail the class of downslope
travelling waves with no front that satisfies the lubrication approximation.

From (4.6), it is easy to recognize that, for |x| large enough, these downslope
travelling waves behave like the solutions of the one-dimensional wave equation

∂h

∂t
+
(

tanα
ε

)λ
∂F(h)

∂x
= 0, (4.11)

with characteristic speed

dx

dt
=
(

tanα
ε

)λ
F′(h). (4.12)

Since F attains its maximum at h∗ ∈]hm, hM[, we deduce that F ′(hM) < 0 <F ′(hm),
by which (

tanα
ε

)λ
F′(hM) < c<

(
tanα
ε

)λ
F′(hm). (4.13)
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FIGURE 6. Profiles of downslope travelling wave solutions for λ = 1.1, γ (p) = 1 + 0.05p3,
tanα/ε = 0.5 and c = 1. In the case we are considering two families of downslope travelling
wave solutions that satisfy the lubrication approximation arise (see the text): downslope
travelling waves behind a front (solid line) and compressive shock waves (dashed line).

Furthermore, in virtue of the conditions satisfied by h as s→−∞,

lim
s→−∞

h= hm and lim
h→−∞

dh

ds
= 0, (4.14)

the integration constant c1 in (4.7) may be calculated to obtain

dh

ds
= tanα

ε
−


(

tanα
ε

)λ
F(hm)+ c(h− hm)

F(h)


1/λ

. (4.15)

In the limit as s→+∞, (4.15) yields(
tanα
ε

)λ
[F(hM)− F(hm)] = c(hM − hm). (4.16)

Therefore, in view of (4.16) and (4.13), the travelling waves at issue satisfy both the
Rankine–Hugoniot condition, and the Lax entropy condition and hence they represent
compressive shock waves (Bertozzi & Shearer 2000).

On taking into account (4.16), we linearize (4.15) around its equilibria h = he,
e= m,M, and obtain

dh

ds
= 1
λ

(
tanα
ε

)1−λ

(
tanα
ε

)λ
F′(he)− c

F(he)
(h− he) e= m,M, (4.17)

by means of which, with the aid of (4.13), we deduce that h= hm is unstable whereas
h= hM is stable. We may conclude that the compressive shock waves we have derived
may be viewed as heteroclinic orbits connecting the two equilibria of (4.8) (see
figure 6).

Finally, observe that

F(h)' 2(λ−1)/2 hλ+2

λ+ 2
as h→ 0. (4.18)

Therefore, near the wave front, where the effects of pressure can be neglected,
the solution to (4.7) is approximated by that found by Perazzo & Gratton (2003),
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namely
tanα
ε
(s− c2)

= h− h 2F1

[
λ

λ+ 1
, 1,

2λ+ 1
λ+ 1

, sign(c)
tanα
ε

( |c|(λ+ 2)
2(1−λ)/2

)−1/λ

h1+1/λ

]
. (4.19)

Here 2F1(a, b, c, d) is the hypergeometric function. From (4.19) we deduce that h′

tends to infinity as s→ c2. Hence, near the wave front, the component of the fluid
velocity normal to the incline is not small with respect to the parallel component and
thus the solution does not satisfy the lubrication approximation.

5. Concluding remarks
In this paper the flow of a fluid with pressure- and shear-dependent viscosity over

an inclined plane has been studied. In particular, two different flow regimes are
investigated: the nearly steady uniform regime in which the viscous and gravitational
effects are of the same order of magnitude, and the viscous regime in which the
pressure gradient is balanced by the viscous stresses within the bulk. In the former
case we have derived a quasilinear first-order partial differential equation that governs
the flow of the current-free surface. Integrating this equation under a prescribed initial
datum gets a wave that breaks whenever the initial profile satisfies suitable conditions.
The breaking time, if a break in the wave occurs, delays both as the piezo-viscous
coefficient increases and as the parameter that determines the shear-thickening or
shear-thinning behaviour of the fluid increases. It is worth noting that the pressure
dependence of the viscosity always delays the occurrence of a break but this effect
is more evident in fluids that are capable of shear-thinning than in those that are
capable of shear-thickening. In the viscous regime we have derived travelling wave
solutions of the evolution equation for the current-free surface. It is interesting to note
that in this case the pressure dependence of the viscosity influences the solutions not
only quantitatively but also qualitatively, as the particular type of dependence of the
viscosity on the pressure determines the number of families of downslope travelling
wave solutions. In Newtonian and power-law non-Newtonian liquids, two families of
downslope travelling wave solutions satisfying the lubrication approximation always
occur (see Perazzo & Gratton 2003); in non-Newtonian fluids with pressure- and
shear-dependent viscosity one, two or three families of downslope travelling waves
may occur according to the values of the material parameters of the fluid, but not
all the solutions satisfy the lubrication approximation. Moreover, the dependence of
viscosity on the pressure may cause the occurrence of downslope compressive shock
waves connecting two constant equilibrium profiles of the current-free surface. To be
more precise, downslope compressive shock waves may occur only if the constitutive
function accounting for the pressure dependence of the fluid viscosity has growth
exponent greater than 1 + 1/λ as the pressure tends to infinity, λ being the parameter
that determines the shear-thinning or shear-thickening behaviour of the non-Newtonian
fluid.
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