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SHORT TAKE

In vivo levels of mitochondrial hydrogen peroxide increase with
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Summary

InmtDNAmutatormice,mtDNAmutations accumulate leading to a

rapidly aging phenotype. However, there is little evidence of

oxidative damage to tissues, and when analyzed ex vivo, no

change in production of the reactive oxygen species (ROS) super-

oxide and hydrogen peroxide bymitochondria has been reported,

undermining themitochondrial oxidative damage theory of aging.

Paradoxically, interventions that decrease mitochondrial ROS

levels in vivo delay onset of aging. To reconcile these findings,

we used the mitochondria-targeted mass spectrometry probe

MitoB to measure hydrogen peroxide within mitochondria of

living mice. Mitochondrial hydrogen peroxide was the same in

young mutator and control mice, but as the mutator mice aged,

hydrogen peroxide increased. This suggests that the prolonged

presenceofmtDNAmutations in vivo increases hydrogenperoxide

that contributes to an accelerated aging phenotype, perhaps

through the activation of pro-apoptotic and pro-inflammatory

redox signaling pathways.

Key words: hydrogen peroxide; MitoB; mitochondria; mito-

chondrial DNA; mtDNA mutator mice.

In mtDNA mutator mice (Trifunovic et al., 2004; Kujoth et al., 2005), the

proof-reading domain of mitochondrial DNA polymerase c is disrupted

by a point mutation (D257A) and ‘knocked in’ to all tissues (Trifunovic

et al., 2004; Kujoth et al., 2005). This leads to the accumulation of

mtDNA mutations with age, giving rise to defective mitochondria and an

accelerated aging phenotype that is evident from ~5 months (Trifunovic

et al., 2004; Kujoth et al., 2005; Edgar et al., 2009; Hiona et al., 2010).

The mitochondrial free radical theory of aging suggested that superoxide

production by the respiratory chain leads to mtDNA damage, resulting

in the assembly of defective respiratory chains that produce more

superoxide, establishing a vicious cycle that underlies aging (Harman,

1972). However, most studies have reported negligible increases in

oxidative damage in mutator mice (with one exception of a modest,

~19%, increase in protein carbonyls (Dai et al., 2010)), or expression of

antioxidant enzymes, and the levels of ROS produced by mutator

mitochondria or embryonic fibroblasts have been reported to be the

same as controls when analyzed ex vivo, despite the accumulation of

mtDNA mutations (Kujoth et al., 2005; Trifunovic et al., 2005; Hiona

et al., 2010). These findings suggested that a vicious cycle of disruptive

mitochondrial oxidative damage does not underlie normal aging (Loeb

et al., 2005; Vermulst et al., 2007).

Recently, however, studies have shown that elevated mitochondrial

ROS may yet contribute to aging in mutator mice. Expression of catalase

within mitochondria (Dai et al., 2010), treatment with N-acetyl cysteine

(Ahlqvist et al., 2012), or endurance exercise (Safdar et al., 2011) all

delayed the onset of aging. All these interventions can decrease

mitochondrial superoxide (Murphy, 2009; Cochem�e et al., 2011), sug-

gesting that mitochondrial ROS may contribute to the aging of mutator

mice in vivo, but without changing ex vivomitochondrial ROS or markedly

increasing oxidative damage.

An insight that may reconcile these apparently contradictory findings

is that mitochondrial ROS production in vivo is determined by respiratory

chain redox state, substrate supply, ATP turnover, and membrane

potential, which are all dependent on the ever-changing physiological

conditions in vivo, compared to the stable environment in which isolated

mitochondria are analyzed (Murphy, 2009). Furthermore, mitochondrial

hydrogen peroxide is a redox signal that can alter cell function at levels

too low to cause oxidative damage (Finkel, 2011).

To test whether the accumulation of mtDNA mutations in mutator

mice increased ROS production, we measured hydrogen peroxide in vivo

using the mitochondria-targeted mass spectrometry probe MitoB (Co-

chem�e et al., 2011, 2012) (See Appendix S1). MitoB accumulates rapidly

and extensively within mitochondria in vivo following IV injection

(Porteous et al., 2013), where it reacts with hydrogen peroxide to form

the diagnostic exomarker MitoP [although a contribution from perox-

ynitrite cannot be excluded (Cochem�e et al., 2011, 2012)]. The mice are

maintained for 6 h after MitoB injection, allowing a MitoP/MitoB ratio to

develop that reflects the average mitochondrial hydrogen peroxide level

in vivo under normal conditions. The tissue MitoP/MitoB ratio is then

determined by liquid chromatography followed by tandem mass

spectrometry (Cochem�e et al., 2011, 2012; Chouchani et al., 2013).

There was no difference in MitoP/MitoB ratio between young mutator

mice and age-matched controls (Fig. 1A), even though mtDNA muta-

tions are ~5-fold greater in mutator mice at this age. Therefore, mtDNA

mutation in itself is not sufficient to increase mitochondrial ROS in vivo.

For mature (35–42 weeks) mutator mice, where accelerated aging is

evident, the MitoP/MitoB ratio increased in the heart and kidney

compared to age-matched controls (Fig. 1B). There was also an increase

in MitoP/MitoB ratio for heart, kidney, liver, and skeletal muscle when
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mature and young mutator mice were compared (Fig. 1C). (For the liver,

there was an unexplained bimodal distribution, but the difference

remained statistically significant (P < 0.05) when the upper four points

were excluded.) In contrast, the MitoP/MitoB ratio did not increase for

the same age change in control mice (Fig. 1D, young vs. mature). As

mature mutator mice are close to the end of their lives, we also assessed

the MitoP/MitoB ratio in old control mice (111 weeks) at a similar life

stage to mature mutator mice. The MitoP/MitoB ratio did not increase

with age, comparing mature and old control mice (Fig. 1D). Therefore,

the MitoP/MitoB ratio increases in mutator mice with age to a greater

extent than in control mice, when compared by either chronological age

or life stage.

Mitochondrial tissue content was similar for all the mice (Fig. S1A, B).

The MitoB uptake into tissues was not different between the young

mutator and control mice (Fig. S1C), but was lower for mature mutator

mice compared to mature control mice (Fig. S1D), perhaps reflecting a

decrease in mitochondrial membrane potential in mutator mice with

age. However, as MitoP formation is normalized to MitoB (Cochem�e

et al., 2011), this does not affect the MitoP/MitoB ratio, as was

confirmed for the experiments reported here (Fig. S1E). Therefore, these

changes in MitoP/MitoB ratio reflect an increase in mitochondrial

hydrogen peroxide within mutator mice as they age.

The increase in mitochondrial hydrogen peroxide with age in the

mutator mice in vivomay arise from disruption to mitochondrial function

due to mtDNA mutations increasing superoxide production, which is

suppressed in vitro by saturation with substrates and oxygen. As

oxidative damage does not accumulate markedly in mutator mice, the

mtDNA mutations may activate mitochondrial ROS production as part of

subtle redox signaling pathways that contribute to accelerated aging.

Increased apoptosis is associated with elevated mitochondrial ROS,
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Fig. 1 Hydrogen peroxide levels in mutator

and control mice. Mice were injected with

MitoB, and 6 h later, MitoB and MitoP

levels were analyzed. Each point represents

one mouse; data are means � SEM of 7–9
mice. Statistical significance was

determined using Student’s t-test:

*P < 0.05, **P < 0.01. (A) young (6–
20 weeks), (B) mature (35–42 weeks), (C)

young and mature mutator mice, (D)

young, mature or old (111 weeks) control

mice.
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consistent with greater cell death in mutator mice (Kujoth et al., 2005;

Hiona et al., 2010; Ahlqvist et al., 2012). A further possibility is that

mtDNA damage modifies the response of the immune system, perhaps

by triggering the NLRP3 inflammasome, which requires elevated

mitochondrial ROS (Green et al., 2011). To assess this possibility, we

measured the response to immune stimulation with lipopolysaccharide

(LPS) of young and mature mutator and control mice (Fig. 2). The

cytokine profiles of young control and mutator mice were similar

following LPS stimulation (Fig. 2). However, for mature mice, the

increase in some pro-inflammatory cytokines following LPS stimulation

was markedly higher in the mutator compared to control mice (Fig. 2),

notably for IFN-c, TNF-a, IL-1b, and IL-10. Similar enhanced inflamma-

tory activity in response to stimulation is seen with age in control animals

(Tateda et al., 1996; Bruunsgaard et al., 2001). Thus, one possibility is

that the activation of mitochondrial redox signaling in response to

exposure to chronic mtDNA damage generates a pro-inflammatory

environment that contributes to the aging phenotype in mutator mice.

Our findings show that the presence of mtDNA mutations in mutator

mice increases mitochondrial ROS levels with age in vivo, and suggest

that the ROS production contributes to the accelerated aging pheno-

type. Accelerated aging may occur through the activation of pro-

apoptotic and pro-inflammatory redox signaling pathways in response to

mtDNA damage. Whether these mechanisms drive aging in general, are

specific to the mtDNA mutator mouse model, or are merely secondary
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Fig. 2 Measurement of serum cytokines in

young (10–16 weeks) and mature (40–
48 weeks) mutator and age-matched

control mice following injection with LPS or

with saline carrier. Data are means � SEM

of 5–7 mice per treatment group. Statistical

significance was determined between the

LPS-treated young and mature groups for

the mutator and control mice using

Student’s t-test: **P < 0.01, ***P < 0.001.

IL, interleukin; IFN, interferon; TNF, tumor

necrosis factor; KC/GRO, keratinocyte-

derived cytokine.
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consequences of aging are important questions to be addressed in future

work.
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