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ABSTRACT 

This paper investigates orbits and transfer trajectories for continuous polar Earth observation in the Earth-Moon 

system. The motivation behind this work is to complement the services offered by polar-orbiting spacecraft, which 

offer high resolution imaging but poor temporal resolution, due to the fact that they can only capture one narrow 

swath at each polar passage. Conversely, a platform for high-temporal resolution imaging can enable a number of 

applications, from accurate polar weather forecasting to Aurora study, as well as direct-link telecommunications with 

high-latitude regions. Such a platform would complement polar orbiters. In this work, we make use of resonant 

gravity swing-by manoeuvres at the Moon in order to design trajectories that are suitable for quasi-continuous polar 

observation. In particular, it is shown that the Moon can flip the line of apsides of a highly eccentric, highly inclined 

orbit from north to south, without the need for thrust. In this way, a spacecraft can alternatively loiter for an extended 

period of time above the two poles. In addition, at the lunar encounter it is possible to change the period of time 

spent on each pole. In addition, we also show that the lunar swing-by can be exploited for transfer to a so-called 

pole-sitter orbit, i.e. a spacecraft that constantly hovers above one of the Earth’s poles using continuous thrust. It is 

shown that, by using the Moon’s gravity to change the inclination of the transfer trajectory, the total Δv is less than 

using a trajectory solely relying on high-thrust or low-thrust, therefore enabling the launchers to inject more mass 

into the target pole-sitter position. 

 

Keywords: Continuous polar coverage, Earth-Moon system, Gravity assist, Pole-sitter transfer design, Trajectory 

design 
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MANUSCRIPT 

1. INTRODUCTION 

It is widely known that the polar regions of the Earth cannot be monitored from space in the same way as the low-

latitude and equatorial regions. Due to the Earth’s spin around its polar axis, the equatorial plane offers a useful 

vantage-point: a spacecraft in geostationary orbit (GEO) is stationary with respect to an observer on the surface of 

the Earth, thus providing a means for data relay and hemispheric imaging in one single frame. 

However, the coverage of GEO spacecraft degrades at higher latitudes, because the spacecraft’s elevation angle 

becomes very low. Therefore, other platforms are currently being used for polar coverage: they include highly 

eccentric orbits (like Molniya [1]), which use the oblateness of the Earth to maintain the argument of the pericentre 

constant in time [2]. Their inclination is fixed at a value of 63.4°, which is still relatively low to obtain a satisfactory 

coverage of the high-latitude regions [3]. Low- and medium-altitude polar orbits (such as Sun-synchronous orbits) 

are also widely used for polar imaging, due to the high spatial resolution that they can provide; however only a 

narrow swath is imaged at each polar passage, relying on multiple passages for complete coverage. This results in 

poor temporal resolution for the entire polar region, as different areas are imaged at different times, hence missing 

the opportunity to have a simultaneous and continuous real-time view of the pole. In other words, spatial resolution 

is traded off for temporal resolution. 

In this paper, instead, we are interested in studying a platform that offers high temporal resolution, offering a service 

that is complementing low and medium Earth orbit spacecraft. The reason for this interest originates in a number of 

potential applications that could be enabled by a platform that can continuously cover the poles. Although high-

bandwidth telecommunications and high-resolution imagery are difficult due to the large Earth-spacecraft distance, a 

number of novel potential applications are enabled, both in the fields of observation and telecommunications. It was 

shown that spatial resolution in the visible wavelength in the range 10-40 km should be sufficient for real-time, 

continuous views of dynamic phenomena and large-scale polar weather systems [4]. The creation of atmospheric 

motion vectors (AMV) would also make use of the stationary location of the platform, avoiding gap problems related 

to geo-location and inter-calibration that composite images introduce [5]. Glaciology and ice-pack monitoring would 

also benefit from continuous, but low resolution polar observation [5]. Ultraviolet imagery of the polar night regions 

at 100 km resolution or better would enable real-time monitoring of rapidly-changing hot spots in the aurora that can 

affect high frequency communications and radar [4]. The platform could also be used as a continuous data-relay for 

key Antarctic research activities, in particular for scientific experiments, links to automated weather stations, 

emergency airfields and telemedicine. Ship tracking was also proposed, to support future high-latitude oil and gas 

exploration [3]. 

It is clear that the only platform that can offer the same coverage conditions for the poles as a GEO spacecraft would 

be a stationary spacecraft aligned with the polar axis. This is known in the literature as a “pole-sitter” or “pole-

squatter”, and has been investigated since 1980, starting from Driver’s analysis [6] up to an end-to-end to end, 

optimised mission and systems design performed by the authors [7]. The main disadvantages of this type of 

spacecraft is the considerable distance from the Earth, as well as the need for continuous low-thrust in order to 
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maintain its vantage position, and therefore the mission lifetime is seriously affected by the availability of propellant 

mass on-board. 

To overcome these limits, other concepts were investigated the literature, including the use of solar sailing [8, 9]. 

Recently, work performed by the authors investigated alternative mission scenarios in the Sun-Earth system, 

including optimisedpole-sitters and periodic high-amplitude vertical Lyapunov orbits [10]. 

The aim of this paper is to explore possible mission scenarios for continuous polar coverage using periodic 

trajectories in the Earth-Moon system. Past studies in the literature showed the possibility of using a gravity assist at 

the Moon to change the orbital plane of a spacecraft with respect to the lunar orbital plane [11], without the need of 

expensive thrusting manoeuvres. This idea can be exploited for reaching orbits that pass over the Earth’s poles at 

little cost, or indeed used for the transfer to the pole-sitter position. The so-called lunar backflip orbits were also 

studied in the literature [12, 13], however while one leg of the orbit hovers over a pole of the Earth, the second one 

has a very low inclination, therefore not offering any possibility of polar coverage. In this work, we use a patched-

conic approximation to design Earth-centred orbits that exploit the swing-by of the Moon to achieve the desired 

orbital elements. 

The paper is organised as follows. Initially, the dynamics of the lunar swing-by is explained in Section 2, together 

with the two methods that will be used, throughout the work, to solve the resulting velocity triangles. Section 3 then 

describes the orbits for polar observation, including a strategy to flip the line of the nodes and therefore observe the 

North Pole and the South Pole alternatively, and also change the period of observation of each pole. Section 4 

investigates the use of the lunar swing-by to design a transfer to the pole-sitter position, and it includes a preliminary 

assessment of the mass that can be injected into the poles-sitter position using Ariane 5 and Soyuz. 

2. LUNAR SWING-BY 

This section shows the methodology followed to solve the ballistic swing-by at the Moon [14]. We approximate the 

Moon’s orbit as a perfectly circular orbit around the Earth, at radius 384,401 kmMr  , with velocity M Mv r , 

with 5 3 23.9860 10  km s     the planetary gravitational parameter of the Earth. 

Let us call v  the absolute velocity vector at the Moon, and denote with a superscript “-” the incoming conditions just 

before the swing-by manoeuvre, and with “+” the outgoing ones, just after the manoeuvre. 

One assumption that is being made, and that will be used throughout the paper, is that in the outgoing orbit, the 

anomaly of the pericentre is 2   or 3 2   and the swing-by is at a true anomaly 2   or 3 2  . 

Some of these orbits are represented in Fig. 4, for a specific inclination. This also implies that the line of the nodes of 

the outgoing orbit coincides with the semi-latus rectum direction, and that the anomaly of the pericentre is either 

2  or 3 2 . This translates into the following relation between the outgoing velocity v  and the flight path angle 

  : 

 
 

2
2 cosM

M

r vh
p r



 

 

    (1) 
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where p is the semi-latus rectum length. 

Note that this relationship introduces a constraint on v  such that    exists; it must be 
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Let us consider a reference frame centred in the Moon, aligned with the radial, transversal and out-of-plane 

directions of the Moon’s orbit. In this frame, the velocity of the Moon, purely transversal, is: 

  0, ,0
T

M Mvv  

where M Mv r  

The incoming relative velocity, at infinity of the swing-by hyperbola, is: 

 
M

 

  v v v  (3) 

As well known in the literature, a ballistic swing-by does not change the magnitude of the velocity at infinity, but 

only its direction. Therefore it is possible to define a constantv   sphere around 
Mv , which represents all 

hyperbolas with the same energy around the Moon. The outgoing absolute velocity vector shall stay on this spherical 

surface (represented in grey in Fig. 1 and Fig. 2). However, the exact position on the surface is yet to be determined. 

Two procedures will be used, depending on whether the outgoing orbit inclination is given, or the semi-major axis. 

2.1. Outgoing inclination given 

In this case, the inclination of the outgoing orbit is known, therefore the outgoing velocity vector must lie on a plane 

that is inclined at i  around the radial direction, measured from the Moon’s orbit plane. This plane is in red in Fig. 1. 

When an intersection exists, this is a circumference, whose radius is  
2

2 sinMCD v v i  , and 
v  is on this 

circumference (see Fig. 1 for defining points and segments). Instead, if the plane does not intersect the sphere (i.e. 

sinMv v i  ), then no solution is possible, i.e. either the incoming velocity vector or the outgoing inclination shall 

be changed. 

In order to define the position of 
v  on the circumference, we introduce a parameterisation through an angle  , that 

is the angle between the radius defining the vector 
v  and a radius aligned on the radial direction. With this choice, 

we have the following outgoing velocity and flight path angle: 

  
2 2

2 2 cos
2

v CD AC CD AC


   
    

 
 (4) 
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However, the flight path angle can also be expressed through Eq. (2). The value of   can then be found numerically, 

through a line search, by equating Eq. (2) to Eq. (5). Once   is known, Eq. (4) and (5) can be used to determine    

and v . 

 

 
Fig. 1. Velocity vectors of the swing-by with outgoing inclination given. Only solution with    is represented. 

Bold segments are velocity vectors. Dashed segments are velocities relative to the Moon. Blue refers to 

incoming vectors, red refers to outgoing vectors. Black vectors refer to the Moon orbit. 

2.2. Outgoing semi-major axis given 

In this second case, we assume that the semi-major axis of the outgoing orbit is given. Note that, since the semi-latus 

rectum of the orbit is fixed, see Eq. (1), equivalently any other in-plane parameter could be provided. 

The outgoing absolute velocity magnitude can immediately be computed through the orbital energy: 

 
2

M

v
r a

 


   

Now Eq. (2) can be used to find the flight path angle   . All possible outgoing orbits will differ in inclination, but 

have the same    and v . This means that all possible 
v  define two conical surfaces around the radial direction (in 

red in Fig. 2): each cone spans all possible inclinations of outgoing orbit, and the two cones refer to the two cases 

0, 0    . Since the vector 
v  shall also lie on the sphere, then the problem is to find the intersection between 

the circumference defining the base of the cone and the sphere. The vector 
v  can be parameterised as a function of 

the unknown inclination: 
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This can be used to compute the magnitude of the outgoing relative velocity as: 

     Mv i i  

  v v  (7) 

The magnitude of v  can also be expressed through Eq. (3), therefore analogously to the previous case, the value of 

i  can then be found through a line search, by equating Eq. (3) to Eq. (7). Once i  is known, Eq. (6) can be used to 

determine 
v . 

 

 
Fig. 2. Velocity vectors of the swing-by with outgoing semi-major axis given. Only solutions with    are 

represented. Bold segments are velocity vectors. Dashed segments are velocities relative to the Moon. Blue 

refers to incoming vectors, red refers to outgoing vectors. Black vectors refer to the Moon orbit. 

2.3. Swing-by hyperbola 

For both cases presented before, the outgoing relative velocity is computed as: 

 M

 

  v v v  

and it can be used to compute the pericentre of the swing-by hyperbola, as: 
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The swing-by if feasible if: 
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,p sb Mr R  (8) 

where 1738 kmMR   is the radius of the Moon, and the gravitational parameter of the Moon is 3 -24902.8 kg sM  . 

3. POLAR OBSERVATION ORBITS 

In this section, we will devise a strategy for covering both North and South Poles, involving a sequence of lunar 

swing-bys to change the orbital parameters. 

The lunar orbit is inclined 5.145° to the ecliptic, and due to the precession of the nodes (one revolution every 18.6 

years), and the obliquity of the Earth’s equator with respect to the ecliptic of 23.44°, the inclination with respect to 

the Earth’s equator varies between 18.29° and 28.58°. For sake of simplicity, in this work it is assumed that this 

inclination fixed to 23eqi   . 

These trajectories are based on the work of Uphoff [15] and Uphoff et al. [11], following a suggestion of Edwin 

“Buzz” Aldrin. In that work, the concept of a lunar cycler was described, in which a 180° Moon-to-Moon “backflip” 

transfer is used to generate a “lunar cycler” (see Fig. 3, taken from Uphoff et al. [11]): a spacecraft is injected from 

Earth into an eccentric orbit targeting the Moon; a lunar swing-by modifies the orbital elements to achieve an orbit 

that is inclined (~45°) and encounters the Moon again after half a lunar period; finally, a second lunar swing-by 

directs the spacecraft into a planar, eccentric orbit passing close to the Earth. 

 

 
Fig. 3. 180° Moon-to-Moon backflip transfer, as described by Uphoff et al.[11] [Image taken from the same 

source] 

 

In that work, the inclined orbit of the cycler is chosen in order to re-encounter the Moon with some relative velocity. 

However, it is interesting to see that such orbits offer polar coverage for a certain amount of time. This time could be 

extended by considering orbits with greater semi-major axis, but still such that they re-encounter the Moon at the line 

of the nodes. Since the orbit of the Moon is almost circular (and assumed exactly circular in this paper), the two 

encounters shall happen at the two points in which the orbit has the same distance from the focus, i.e. the semi-latus 

rectum. This also justifies the assumption made in the previous section, where the outgoing orbit anomaly of 

pericentre had to be 2  or 3 2 . 

In addition, in order to encounter the Moon with the right timing at the node, it is necessary that the following 

relationship holds: 

      2 3 2 0.5 MP t t n P          
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P  represents the time between two lunar encounters, or between the ascending node and the descending node of the 

orbit, passing from the apocentre.  t    is the time at true anomaly  , which can be found through the eccentric 

anomaly and Kepler’s equation: 

  
1

2arctan tan
1 2

e
E

e




 
    

 

     
2

sin
M

t E e E
P


    

27.45 dMP   is the period of the Moon, and n 0  is an integer that defines the number of resonances with the 

Moon, i.e. the number of full revolutions of the Moon between the two lunar encounters. 

Table 1 shows the in-plane Keplerian elements for a number of these orbits. 

 

Table 1. Period between lunar passages and in-plane Keplerian elements for orbits resonant with the Moon. 

Period between 

lunar passages, P  

Semi-major 

axis, a, 
610  km  

Eccentricity, 

e 

0.5  13.726 dMP   0.3844 0 

1.5  41.178 dMP   0.5657 0.5662 

2.5  68.630 dMP   0.7560 0.7011 

3.5  96.082 dMP   0.9273 0.7652 

4.5  123.534 dMP   1.0847 0.8035 

 

If coverage of the North and South Pole is needed, then the swing-by of the Moon can be used to rotate the line of 

the nodes by 90°, without changing the inclination of the orbit. This means that if the pericentre of the incoming orbit 

is on the north side, the outgoing orbit will have its pericentre in the south side. In other words, the pericentre and 

apocentre directions are inverted, as illustrated in Fig. 4. In particular, the figure plots, for the orbits in Table 1, 

flipped orbits with the same period. 

We note that, in the particular case when the incoming and outgoing orbits have the same in-plane orbital elements 

and the same inclination, the velocity change required at the lunar swing-by corresponds to a change in sign of the 

radial component of the velocity. 

Flipping the line of apsides is not always possible with a swing-by of the Moon. Depending on the incoming and 

outgoing velocity vectors, the required deflection might be too high, and therefore the constraint (8) is not satisfied. 

In order to understand when such a manoeuvre can be done, Fig. 5 shows contours of constant radius of pericentre 

,p sbr   that is required for such manoeuvre at the Moon, depending on the inclination and the semi-major axis (equal 

for both incoming and outgoing orbits). The vertical dashed lines, plotted for convenience, show the semi-major axis 

of the orbits with the resonance indicated by the number on the line ( 0.5n ). The black contour line, corresponding 

to , 1p sbr   represents the bound of the feasible solutions, and shows that a higher inclination is necessary as the 

period increases. For example, it is possible to flip the line of apsides of an orbit inclined 40° if 2n  , but not if 

3n   or more. 
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Fig. 4. Effect of rotation of the line of apsides without changing the other orbital elements, for the orbits in 

Table 1, and arbitrary inclination of 67°. 

 

 
Fig. 5. Pericentre of the swing-by hyperbola (normalised on the lunar radius) necessary to rotate the line of 

nodes 90°, depending on the semi-major axis and the inclination of the orbit. 

 

Because of the same incoming and outgoing orbital periods, both the orbits will encounter the Moon each time they 

reach the line of the nodes. However, a more general case exists, in which the outgoing orbit does not have the same 

period as the incoming one, but just one of the periods listed in Table 1: in this way, there will be again a lunar 

encounter at each nodal crossing. Assuming that the incoming orbit has an inclination of 67° (i.e. aligned with polar 

axis), and applying the swing-by solution method in Section 2.2, it is possible to find the data in Table 2. For 

different periods of the incoming and outgoing orbits, the table shows the inclination of the outgoing orbit. It is worth 

noting that, for small changes in inclination, that do not affect the coverage of the pole, it is possible to achieve 

substantial changes of the period of the orbit. For example, for an incoming orbit of 2n  , the outgoing orbit can 

have 4n   with just approximately 10° of inclination loss. 
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Table 2. Outgoing inclination (in deg) for different incoming and outgoing orbital periods between lunar 

encounters. Incoming inclination is 67° (aligned with polar axis). 

Incoming P  
Outgoing P  

1.5 MP  2.5 MP  3.5 MP  4.5 MP  

1.5 MP  67 61.56 58.45 56.40 

2.5 MP  72.23 67 64.04 62.11 

3.5 MP  75.03 69.89* 67 65.11 

4.5 MP  76.81 71.71 68.86 67 

 

These results open the way for different strategies for monitoring the North Pole and the South Pole alternatively. In 

fact, at the lunar swing-by, it is possible to decide the period of the next orbit, and therefore the time spent covering 

one pole, before switching to the other one. 

The natural choice of the north and south orbits would be 6.5 MP P . This corresponds approximately to half a year, 

and with the proper synchronisation with the Sun, it would be possible to cover both the North Pole and the South 

Pole when illuminated by the Sun, in a similar fashion to what proposed by Heiligers et al. [16] Observing the pole 

when lit is particularly important, as it enables the acquisition of imagery in the visible band of the spectrum, which 

in turn provides essential data for meteorology and glaciology [3]. Unfortunately, the choice of 6.5 MP P  is not 

advisable, for two reasons: the first is that, for this orbit, no feasible swing-by exists to rotate the line of apsides; the 

second is that, due to its semi-major axis length, the orbit goes far away from the Earth, and the two-body 

approximation would start to become incorrect. 

Fig. 6 and Fig. 7 and show one combination of north-south orbits, which is the one with an asterisk in Table 2 (in 

inertial and synodic frames respectively). The figure shows the trajectory in an inertial frame and in an Earth-Moon 

synodic frame. The translucent conical surface in Fig. 7 is the one described by the apparent rotation of the polar axis 

(which is inertially fixed) in the synodic reference. Both plots allow appreciate the difference in semi/major axis (and 

thus period) between the north and the south orbit, despite the inclination is very similar. 
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Fig. 6. Plot of trajectory (in Earth-centred inertial frame) with north orbit at 67°, 3.5 MP P , and south orbit 

at to 69.89°, 2.5 MP P . The lunar swing-by provides the manoeuvre to change the orbital elements. 

 

b)  

Fig. 7. Same as Fig. 6, in Earth-Moon synodic frame. 

3.1. Continuous coverage analysis 

With the aim of showing the coverage offered by the orbits, and in particular to show the continuous coverage of the 

polar regions, we consider the same figure of merit introduced in Ceriotti et al. [3] Referring to the geometry in Fig. 

8, we define a minimum elevation angle of the spacecraft, min . The spacecraft, at latitude  , is in sight of a point 

on the Earth’s surface only if its elevation angle is min  . This angle defines a circular area centred in the sub-

satellite point, such that any observer in this area is in sight of the spacecraft, at a given instant of time (yellow 

shaded area in Fig. 8). However, assuming that the motion of the spacecraft is much slower than the Earth’s rotation 

around its axis, then it might happen that, due to the Earth’s rotation, some points that at some time during the day 

are accessible, become inaccessible at some other time. Therefore the green area in Fig. 8 is defined by the latitude Λ 

above which any point on the Earth is in sight of the spacecraft, at any time of the day (i.e. for any angular position 
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of the Earth). The lower the value of Λ, the wider the area that is continuously covered (hence not just the polar caps, 

but also lower-latitude regions). 

Clearly, one spacecraft is not sufficient to guarantee continuous coverage of one pole, despite that it can hover above 

it for a considerable amount of time. It was proposed to consider a constellation of three spacecraft (phased 120°) for 

the coverage of both poles [10]. 

Considering again the sample mission defined before (shown in Fig. 7 and marked with an asterisk in Table 2), Fig. 9 

shows the latitude of the spacecraft φ and the minimum latitude of continuous coverage, Λ. It can be seen that, for 

the North Pole, combining the three spacecraft, the value of Λ does not go above 55° of latitude: this means that, 

above 55°N, any point on the Earth at any time of the day has at least one spacecraft in sight. The worst-case 

scenario for continuous coverage happens at the switching point between one spacecraft and the next one. In 

between, continuous coverage is available for latitudes well lower than 55°. 

Moreover, it is important to underline that, for the orbit selected and for the North Pole, the switch between 

spacecraft happens every 55 days. This is a considerable amount of time, in which the same spacecraft can provide 

continuous coverage, as opposed to high-elliptical orbits around the Earth, in which the orbital period is about 12 

hours. It was highlighted in the literature [4] the importance of an extended time window for monitoring the Earth’s 

poles: it allows imaging at different times from the same point of view, and this allows the creation of the so-called 

atmospheric motion vectors, that are essential for weather forecasting. It is more complicated, and less precise, to 

compare images that are taken from different points of view, hence the necessity of a static (or almost static) 

platform. 

In addition, the Moon provides the necessary v  for flipping the apsides, and therefore similar coverage is available 

for the South Pole. If the same orbits were chosen for the north and the south, then the same coverage figures of 

merit would have been found. 

 

 
Fig. 8. Geometry of the spacecraft coverage. 

ε 

P
o
la

r 
a
x
is

 

Equator 

Spacecraft 

Continuous 
access 

φ Λ 

Instant 
access 



Page 14 of 23 

 

 
Fig. 9. Coverage figures for three spacecraft on trajectory represented in Fig. 7. (a) Latitude φ; (b) Angle Λ. 

Both functions of time during the mission. 

4. TRANSFER TO POLE-SITTER ORBIT 

Breakwell et al. [17] presented a low-thrust transfer to a pole-sitter (in that work, named “pole-squatter”), which 

basically consisted in a transfer to a highly inclined, highly eccentric Earth orbit. The same idea is used in this work, 

where a preliminary approximation of the transfer to the pole-sitter position can be done by considering a highly 

eccentric orbit, the apocentre of which coincides with the pole-sitter position. However, we will also consider a 

breaking manoeuvre at the apocentre. This is due to the fact that this manoeuvre can have a non-negligible effect on 

the overall v  of the transfer. Consequently, the inclination of this orbit over the Earth’s equator shall be 90°. 

In previous studies, this inclination was achieved either through a set of impulsive manoeuvres performed by the 

launcher main stage and/or upper stage [18], or (partly) by the low-thrust propulsion system of the spacecraft [17, 

18]. However, it is well known that launcher performances are higher when the target orbit is equatorial (assuming 

the availability of an equatorial launch site). Therefore, it is worth investigating whether a gravity assist at the Moon 

can provide the necessary inclination change, in a way that the total cost of the transfer is less, and therefore more 

mass can be injected into the pole-sitter orbit, for the same mass injected into a LEO parking orbit by the launcher. 

4.1. Transfer design 

We consider a transfer strategy that relies on a single gravity assist of the Moon. Referring to Fig. 10, we assume a 

launcher with the capability of injecting a spacecraft and an upper stage into a circular equatorial LEO around the 

Earth. The upper stage then provides an impulsive manoeuvre LEOv  that transfers the spacecraft into a coplanar 

orbit (named incoming orbit) that encounters the Moon. Parameters of this orbit will be denoted with a superscript (-) 

because they refer to the orbit before the swing-by manoeuvre. The manoeuvre is: 

 
 

2

1
LEO

LEO LEOLEO

v
r rr e

  


   


 

where 200 kmLEOr   is set arbitrarily and the eccentricity of the incoming orbit e  is to be determined. Note that 

the minimum eccentricity to reach the Moon is: 
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M LEO
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when the Moon is at the apocentre of the incoming orbit. 

At the Moon, the swing-by is resolved using the method in Section 2.1. Figure 11 shows contour lines of constant 

outgoing inclination, function of the incoming orbit eccentricity and outgoing orbit apocentre. The graph is limited in 

the upper-left region by the feasibility condition of the swing-by (Eq. (8)). 

 

 
Fig. 10. Illustration of the transfer to the pole-sitter. 

 

 
Fig. 11. Contours of constant inclination of outgoing orbit (in deg), function of incoming eccentricity and 

outgoing apocentre radius. 

 

For the transfer under consideration, the inclination of the outgoing orbit is known: 90 67eqi i     , such that the 
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of pericentre is 270°, and 0   . The spacecraft orbit after the swing-by, or outgoing orbit, is therefore determined 

in terms of ,a e   (function of e ). This corresponds to the bold contour line in Fig. 11. 

The apocentre of the outgoing orbit, 
ar
  , is chosen to match the pole-sitter position. However, it is necessary to 

consider a final braking manoeuvre 
av  at the apocentre 

ar
 : 

 
2

a

a

v
r a

 
 

    

Due to the geometry of the orbits considered, and in particular the eccentricity being less than unity, the magnitude 

of this manoeuvre can be sensible. Conversely, in other types of transfers not involving the lunar swing-by [17], the 

eccentricity reaches values of approximately 1, and therefore this manoeuvre is negligible. 

Note that, following this manoeuvre, a constant thrust is necessary to maintain the position, as discussed in previous 

work [19]. However, this is not part of the transfer, and therefore it will not be discussed here. 

The total v  for the transfer from LEO is therefore: 

 
LEO av v v     (9) 

Fig. 12 shows contour lines for the total v , parameterised as in the previous Fig. 11. The black transversal contour 

line represents solutions in which 67i   . 

Fig. 13 shows the total v , as well as the two contributions as in Eq. (9), for the specific case under consideration of 

67i   . This figure can be imagined as a section of Fig. 11 along the contour line. Note that the manoeuvre at LEO 

increases very slowly with the apocentre of the target orbit, instead the magnitude of the manoeuvre at the apoapsis 

decreases rapidly. This makes it more economical to reach a steady pole-sitter position that is farther from the Earth, 

within the considered range of apocentre distances. 

 

 
Fig. 12. Total Δv (as from Eq. (9)) function of function of incoming eccentricity and outgoing apocentre radius. 
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Fig. 13. Total Δv for reaching a stationary pole-sitter position, starting from a 200 km altitude circular 

equatorial orbit at the Earth. 

 

We consider two pole-sitter mission profiles, corresponding to two different altitudes of the spacecraft. The first one, 

injects the satellite to 0.01 AU, that is 61.496 10  km , the second to 62.5 10  km . These two values are taken from 

the description of the poles-sitter mission [19], and the first is the distance of a constant-altitude reference mission, 

while the second is the average distance of a minimum-propellant hybrid or SEP pole-sitter mission. 

By fixing the apogee 
ar
 , the incoming eccentricity e  can also be found, and the transfer is fully determined. Plots 

of the orbits used in the transfer are in Fig. 14 for the two different distances. Note that although the full orbit is 

plotted, the spacecraft would only follow part of it during the transfer. Table 3 summarises the results for the two 

transfers. 

Note that we assumed that the LEO is equatorial, and so is the incoming orbit. However, no launcher option of those 

considered here are equatorial, but their inclination is up to about 8° over the equator. It can be shown that small 

inclination changes do not change the results considerably. An inclination change in the incoming orbit corresponds 

to a rotation of the incoming velocity vector 
v  around the radial direction. Since the transversal and out-of-plane 

components of the vector are small compared to the radial one, it results that a change in inclination does not affect 

the lunar swing-by considerably, and consequently the total v  of the transfer. 
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a)    b)  

Fig. 14. The two orbits used in the transfer, patched by the lunar swing-by: incoming (blue) and outgoing 

(red) orbits. The dashed black line shows the polar axis of the Earth. (a) 61.496 10  kmar
   ; 

(b) 62.5 10  kmar
   . 

 

Table 3. Details of transfers from LEO to two different distances of the pole-sitter. 

Distance 

ar
 , km 

Swing-by pericentre 

,p sbr , km 
Total v , 

km/s 
61.496 10  km  4040 km 3.4441 km/s 

62.5 10  km  4020 km 3.3467 km/s 

 

4.2. Launcher performance 

Given the trajectory and total velocity change required to transfer from LEO to the pole-sitter, in this section we 

provide an estimation of the mass that can be injected into the pole-sitter, considering two launcher options: Ariane 5 

ECA and Soyuz CSG (launching from Kourou, French Guyana). The same launchers were considered in previous 

work, although the launch strategy was based on a sequence of impulses and/or low-thrust arcs in order to achieve 

the pole-sitter position, instead of a lunar swing-by. This will allow to compare the mass injected into pole-sitter 

orbit with that work, as a reference. 

For both launchers, the manuals do not provide information for injection in the exact orbit computed in the previous 

section, therefore we will estimate the required data assuming impulsive manoeuvres of the upper stage, that join a 

circular LEO around the Earth to the target orbit. 

In particular, the manual provides the total injected mass m  into a given orbit ,a e 
. We now assume that the 

injection into this orbit is performed from a circular LEO orbit, and therefore the impulsive velocity change can be 

computed as: 

 
2

LEO LEO

v
r r a

  


     
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This velocity change is provided by the upper stage of the launcher platform. The total mass that can be injected into 

LEO by the launcher (which includes propellant, upper stage, adapter and payload): 

   0 sp

v

g I

LEO usm m m e



   

where 
usm  is the mass of the upper stage and its adapter, and 

spI   its specific impulse, as provided in Table 4. 

Since the total v  for the transfer to the pole-sitter is known, and assuming again that the upper stage is providing 

the entire velocity change, then we can compute the injected mass into the pole-sitter position: 

 0 sp

v

g I

ps LEO usm m e m




   

 

Table 4. Upper stage characteristics. 

Launcher Sp. impulse 
spI , s Mass 

usm , kg 

Soyuz 330 1100 

Ariane 5 446 4700 

4.2.1. Soyuz CSG 

For computing the deliverable mass by the Soyuz, we refer to the manual [20] where the performance (kg) is shown 

as a function of the altitude of the perigee of the target orbit. The perigee is at 250 km, and the inclination to 6°. 

Since the inclination is low, and as noted  before does not affect considerably the v , inclination changes are 

neglected here. The plot, taken from the manual, is reproduced in Fig. 15. It can be seen that the graph does not 

include altitude of apocentre above 80,000 km. Therefore, we take the GTO reference, where we have: 

 
42.4753 10  km

0.7322

a

e





 


 

Applying the previous formulas it is found that Soyuz can inject 2101 kg at 0.01 AU and 2199 kg at 62.5 10  km . 

 

 
Fig. 15. Performance of Soyuz (kg of payload) for elliptic orbits (function of apogee altitude) with low 

inclination. [Figure from Soyuz User’s Manual [20]] 

4.2.2. Ariane 5 

The Ariane 5 manual does not provide a plot similar to that in Fig. 15 for Soyuz. Instead, some reference target orbits 

are listed as typical mission profiles [21]. The most similar profile is the “injection towards the Moon”, for which 
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7000 kg can be inserted into an orbit with  apogee and perigee altitude of 385,600 km and 300 km respectively. This 

corresponds to: 

 
51.9933 10  km

0.9665

a

e





 


 

The orbit is also inclined 12°, but again this does not affect the arrival velocity at the Moon considerably. In fact, an 

equatorial launch could possibly improve the performance of the launcher. 

Using these values, it results that 6135 kg and 6379 kg can be injected in the near and far pole-sitter positions, 

respectively. 

4.2.3. Summary 

Table 5 shows a summary of the results in terms of mass that can be injected into two different pole-sitter positions. 

As a reference, it was found in previous work [18] that, by using the same launchers in combination with solar 

electric propulsion, the mass that can be injected into pole-sitter is about 1450 kg with Soyuz and 4450 kg with 

Ariane 5, with very small variations for different altitude of the injection point. 

It shall be underlined that, although these results provide an indication of the mass that can be injected into the pole-

sitter orbit, they cannot be directly compared to what is found in Heiligers et al. [18], because in that work, in the last 

part of the transfer the effect of the gravitational attraction of the Sun was taken into account. On the other hand, if 

SEP were employed for these types of transfer, it could be that the v  for braking at the apogee would be distributed 

in a low-thrust arc that starts just after the lunar swing-by. The gravity losses of a distributed thrust arc would 

presumably increase the necessary v , but the higher specific impulse of the solar electric propulsion (of the order 

of 3000 s, one order of magnitude bigger than what offered by the upper stages) could indeed compensate, possibly 

allowing overall propellant saving. 

In addition, the lunar swing-by increases considerably the complexity of the transfer, in terms of spacecraft 

operations, mainly due to the accuracy that is necessary for targeting the Moon, and due to the intrinsic risk of the 

swing-by manoeuvre (missing the correct hyperbola would almost certainly bring the spacecraft on a non-

recoverable path). 

All these issues shall be taken in a trade-off with the additional spacecraft mass that the lunar swing-by makes 

potentially available. 

 

Table 5. Mass injected into pole-sitter position, mps, kg. 

Distance, 
ar
  Ariane 5 Soyuz 

61.496 10  km  6135 2101 
62.5 10  km  6379 2199 

5. CONCLUSION 

This work has shown the capabilities offered by the lunar swing-by manoeuvre for generating trajectories for polar 

Earth observation, resonant with the Moon. It was shown that the Moon can be used to flip the line of apsides of an 

eccentric, highly-inclined orbit, enabling the possibility to switch between north and south coverage at no cost. With 
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small changes in inclination, it is also possible to modify the resonances with the Moon, therefore changing the time 

spent on each pole. 

The swing-by of the Moon was also used to generate transfers to the pole-sitter orbit, and it was shown that, at the 

cost of additional complexity due to the swing-by, more mass could be injected into pole-sitter position. 

Third body effects were not considered in this work, however some of the proposed orbits reach significant distances 

from the Earth, and therefore is it expected that the perturbation of the Sun would become important. Additional, 

future studies are necessary to quantify the corrections necessary to keep the spacecraft on-track, both in the case of 

elliptic orbits for Earth observation, and transfers to pole-sitter. 
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