
 

 
 
 
 
Ballester-Beltrán, José, Lebourg, Myriam, Capella, Hector, Diaz Lantada, 
Andres, and Salmerón-Sánchez, Manuel (2014) Robust fabrication of 
electrospun-like polymer mats to direct cell behaviour. Biofabrication, 6 (3). 
035009. ISSN 1758-5082 
 
 
Copyright © 2014 IOP Publishing Ltd. 
 
 
 
http://eprints.gla.ac.uk/94164 
 
 
 
Deposited on:  03 June 2014 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/94164
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 130.209.6.42

This content was downloaded on 03/06/2014 at 08:58

Please note that terms and conditions apply.

Robust fabrication of electrospun-like polymer mats to direct cell behaviour

View the table of contents for this issue, or go to the journal homepage for more

2014 Biofabrication 6 035009

(http://iopscience.iop.org/1758-5090/6/3/035009)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1758-5090/6/3
http://iopscience.iop.org/1758-5090
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Robust fabrication of electrospun-like
polymer mats to direct cell behaviour

José Ballester-Beltrán1,4, Myriam Lebourg1,2, Hector Capella1,
Andres Diaz Lantada3 and Manuel Salmerón-Sánchez4

1Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia,
Spain
2 CIBER de Bioingeniería, Biomateriales y Nanomedicina, Valencia, 46022, Spain
3 Product Development Laboratory, Mechanical Engineering & Manufacturing Department, Universidad
Politécnica de Madrid, Spain
4Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT,
United Kingdom

E-mail: Manuel.Salmeron-Sanchez@glasgow.ac.uk

Received 18 February 2014, revised 11 April 2014
Accepted for publication 28 April 2014
Published 28 May 2014

Abstract
Currently, cell culture systems that include nanoscale topography are widely used in order to
provide cells additional cues closer to the in vivo environment, seeking to mimic the natural
extracellular matrix. Electrospinning is one of the most common techniques to produce nanofiber
mats. However, since many sensitive parameters play an important role in the process, a lack of
reproducibility is a major drawback. Here we present a simple and robust methodology to
prepare reproducible electrospun-like samples. It consists of a polydimethylsiloxane mold
reproducing the fiber pattern to solvent-cast a polymer solution and obtain the final sample. To
validate this methodology, poly(L-lactic) acid (PLLA) samples were obtained and, after
characterisation, bioactivity and ability to direct cell response were assessed. C2C12 myoblasts
developed focal adhesions on the electrospun-like fibers and, when cultured under myogenic
differentiation conditions, similar differentiation levels to electrospun PLLA fibers were
obtained.

S Online supplementary data available from stacks.iop.org/BF/6/035009/mmedia
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1. Introduction

Different applications of nanomedicine, tissue engineering
and drug development use cell culture systems to mimic the
in vivo extracellular matrix (ECM) environment with which
cells interact. Nanoscale topography therefore becomes a key
parameter since in vivo ECM possesses a complex mixture of
fibers with different nanometric sizes [1, 2]. Moreover cells

sense and respond to this nanotopography in terms of adhe-
sion, proliferation, differentiation, migration and gene
expression [3, 4]. Different biological systems have been used
for this purpose, such as decellularised tissues, but the lim-
itation of donors as well as the complexity and differences of
each tissue have encouraged bioengineers to develop simple
and more reproducible systems [5, 6]. As the ECM consists of
fibrillar proteins with diameters ranging from tens to hundreds
of nanometers, fibrous scaffolds have been engineered as
ECM substitutes. Different techniques such as melt-blown
multicomponent processes and mechanical fiber spinning
have been used, but electrospinning has emerged as the most
promising technique owing to its ability to generate fibers
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similar to the fibrous structures of native ECM and to its
flexibility in controlling fiber morphology [7, 8].

Electrospinning is based on the principle that at a certain
voltage, a charged polymer jet is ejected from a polymer
solution moving in the direction of the external electric field.
This jet is then randomly deposited on a substrate as a non-
woven mat of nanofibers with diameters ranging from a few
nanometers to several microns [9]. Over 200 synthetic and
natural polymers have been successfully processed into
nanofibers by electrospinning, as well as mixtures of poly-
mers with chromophores, nanoparticles, metals, ceramics and
even living microorganisms [10–17]. The dimensions and
morphology of the electrospun fibers depend on a large set of
parameters including the properties of the polymer itself (such
as molecular weight and distribution, glass-transition tem-
perature, solubility etc), the properties of the polymer solution
(such as viscosity, surface tension, viscoeleasticity, con-
centration, diffusion coefficient, vapor pressure, and dielectric
and electrical properties) and other external parameters (such
as feed rate, diameter of the needle, collector distance, tem-
perature and humidity). Thus, electrospinning becomes a
complex and poorly reproducible process that is usually lar-
gely controlled empirically [18–20]. Beading, branching and
undulation are the most common undesired phenomena
observed during electrospinning but other artefacts such as
ribbon-like (instead of circular) fibers have been also
observed [21]. This variability during electrospinning often
hampers comparisons in biological studies since it is difficult
to obtain similar fibers from different (or even the same)
polymer solutions. In addition, the adequate and reproducible
patterning of electrospun nanofiber scaffolds is a relevant
process towards engineering functional tissues and organs,
where ordered cellular organization is essential. New methods
to obtain reproducible electrospun-like samples are therefore
needed [17].

Here, we introduce a robust and simple method to
engineer reproducible aligned and random electrospun-like
polymer fibers. In brief, a single electrospun mat was used as
a master template to fabricate silicone (polydimethylsiloxane;
PDMS) molds. Afterwards, samples were obtained by solvent
casting a polymer solution in the mold. This novel metho-
dology was validated with poly(L-lactic) acid (PLLA).
Replication of molded PLLA samples was studied by atomic
force microscopy (AFM) and scanning electron microscopy
(SEM). Cell adhesion and differentiation were assessed using
immunofluorescence and SEM.

2. Materials and methods

2.1. Materials

Polymer sheets were obtained by bulk radical polymerization
of ethyl acrylate (EA) (99% pure, Sigma-Aldrich, Steinheim,
Germany) in anaerobic conditions by using 1 wt% benzoin
(98% pure, Scharlau, Barcelona, Spain) as the photoinitiator.
The polymerization was carried out up to limiting conversion
by UV exposure over night. After polymerization, low

molecular-mass substances were extracted from the material
by drying in vacuum at 60 °C to constant weight. PLLA was
obtained from NatureWorks (>99% pure, 144 g mol−1,
Netherlands).

2.2. Electrospinning

Poly(ethyl acrylate) (PEA) and PLLA solution were electro-
spun to produce master templates to manufacture the molds
and obtain control electrospun samples, respectively. Polymer
solutions were dissolved in hexafluoroisopropanol (HFIP;
>99% pure, Sigma) and electrospun as described elsewhere
[3, 4, 22]. Briefly, electrospinning was carried out using a
needle of 0.15 mm of internal diameter (EFD International)
and a constant feed rate of 900 μl h−1 with a programmable
syringe pump (New Era Pump Systems, Wantagh, NY, USA)
with a specific voltage (Glassman High Voltage, High Bride,
NJ, USA) and collector distance (table 1). Randomly elec-
trospun fibers were collected on glass coverslips placed on
aluminum foil, while aligned fibers were collected by elec-
trospinning the solution onto a rotating drum on which glass
coverslips were attached.

2.3. Mold making

The pre-polymer Neukasil RTV-20 and the cross-linker
Neukasil A2 (Altropol Kunststoff GmbH, Germany) were
mixed according to the manufacturer’s datasheets in a 10:1
proportion and introduced in a vacuum chamber for 20 min at
the beginning of the polymerization for adequate degasifica-
tion. Afterwards, the mixture was cast into a plastic cage were
the PEA electrospun samples had been adhered previously,
facing upward. Polymerization at room temperature (25 °C)
took approximately 24 h. Then, the PDMS mold was carefully
peeled off the cage and maintained at room temperature for
another hour to assure complete polymerization of the surface
in contact with the original PEA master templates. Finally, the
mold surface was cleaned using an air gun to eliminate fibers
that might have remained attached.

2.4. Solvent casting

Polymer solution was obtained by dissolving PLLA in
chloroform (stabilised with ethanol, >99% pure, Scharlau) to
produce a solution with a concentration of 20 mgml−1.
200 μL of PLLA solution was deposited in each silicone
(PDMS) mold and allowed to evaporate at room temperature
for 10 min. Drops of the same polymer solution were placed
on glass coverslips and allowed to evaporate under the same
conditions. The mold and coverslips were then heated at
200 °C for 5 min. Then, PLLA-coated coverslips were placed
on top of the mold and pressed gently to adhere both parts.
Subsequently, samples were further heated for 5 min at
200 °C and then the mold was quenched in cold water for a
few seconds. Finally, the samples were peeled off the mold
and dried in a vacuum (see figure 1).
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2.5. Scanning electron microscopy

Samples were characterised using SEM with a JEOL JSM
6300 system (JEOL Ltd, Tokyo, Japan) operating at 10 kV.
The electrospun and molded samples were sputtered with
gold and visualised to obtain qualitative data regarding the
fiber topography. When used for cell culture, the samples
were fixed in 2.5% glutaraldehyde (Panreac, Spain) for 1 h at
4 °C and after several washes in DPBS, the samples were
postfixed with 1% osmium tetroxide (>99% pure, Electron
Microscopy Science) for 1 h, dehydrated in graded ethanol
solutions (once in 30, 50, 70, 80, 90, 96% ethanol and three
times in 100% ethanol), chemically dried with hexam-
ethyldisilazane (>97% pure, Fluka, Switzerland) and finally
coated with gold prior to SEM observations.

2.6. Image analysis

Cell morphology was quantified by calculating the aspect
ratio (major axis/minor axis) and roundness (4 x area/π
x [major axis]2), which corresponds to a value of 1 for a
perfect circle, using ImageJ software. In order to obtain
quantitative data regarding cell anisotropy, a Fourier fast
transform (FFT) of the squared SEM pictures was performed,
and after a counter-clockwise rotation of 90° (in order to
recover the original cell orientation modified by the Fourier
transform) a radial projection of pixel intensity was
determined.

2.7. Atomic force microscopy

AFM was performed in a JPK Nanowizard 3 BioScience
AFM (JPK, Germany) operating in ac mode; the SPM and DP
4.2 software versions were used for image processing and
analysis. Si-cantilevers from Nanoworld AG (Switzerland)
were used with a force constant of 2.8 Nm−1 and resonance
frequency of 75 kHz. The phase signal was set to zero at a
frequency 5–10% lower than the resonance frequency. Drive
amplitude was 700 mV and the amplitude setpoint was
650 mV.

2.8. Fibronectin adsorption

Fibronectin (FN) from human plasma (Sigma-Aldrich) was
adsorbed from a solution with a concentration of 20 μg ml−1

in Dulbecco’s Phosphate Saline Buffer (DPBS) on the sam-
ples for 1 h. Afterwards, samples were rinsed with DPBS to
eliminate the non-adsorbed protein excess.

2.9. Cell culture

Murine C2C12 myoblasts obtained from ATCC were main-
tained in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 20% fetal bovine serum (FBS; Fisher) and
1% penicillin–streptomycin (Lonza). Prior to seeding, sam-
ples were sterilized by UV exposure for 30 min and coated
with FN as described previously. Then, 17 000 cells/cm2 were
seeded onto the different samples in serum-free conditions
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Figure 1. Molding process. (A) SEM images of electrospun PEA samples that were used as a template to fabricate the PDMS mold. (B)
Diagram showing the main steps of the molding process.

Table 1. Electrospinning conditions for each polymer.

Polymer Concentration (mg ml−1) Voltage (kV) Collector Distance (cm) Linear speed (cm s−1)

PEA 20 12.5 20 337.5
PLLA 80 30 12 1125



seeking to direct specific cell adhesion to the pre-adsor-
bed FN.

For cell adhesion experiments, the medium was changed
to DMEM with 10% fetal bovine serum (FBS) after 3 h of
culture. Once the culture was complete, the cells were fixed
with 10% formalin (Sigma) for 30 min at 4 °C. After fixation,
cells were permeabilised for 5 min at room temperature using
0.5% Triton X-100 (Sigma) in HEPES buffer 20 mM (Sigma)

supplemented with 0.3 M saccharose, 50 mM NaCl (Sigma)
and 3 mM MgCl2 hexahydrate (Scharlab), and then incubated
in blocking buffer (1% BSA in DPBS) for 30 min. Samples
were then incubated with an anti-vinculin antibody (Sigma)
diluted 1 : 400 for 1 h and then with anti-mouse Cy3-con-
jugated secondary antibody (Jackson Immunoresearch, UK)
and BODIPY FL phallacidin (Molecular probes). Finally, the
samples were washed before being mounted in Vectashield
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Figure 2. (A) Optical and (B) scanning electron microscopy of molded PLLA samples with aligned and random patterning (maPLLA and
mrPLLA respectively).

Table 2. Fiber geometrical characterisation using AFM. Original template, mold and molded PLLA samples. No statistically significant
differences between the mold and molded PLLA samples were observed. Statistically significant differences with the original template are
indicated by *, P < 0.001.

Random Aligned
PEAr Mold (random) mrPLLA PEAa Mold (aligned) maPLLA

Width (μm) 2.3 ± 0.6 3.4 ± 0.3 2.7 ± 0.5 2.7 ± 0.3 2.6 ± 0.4 2 ± 0.2
Height (nm) 1592 ± 337 534 ± 195* 673 ± 68* 675 ± 137 145 ± 51* 144 ± 20*



containing DAPI (Vector Laboratories, UK). A Nikon
microscope (Nikon Eclipse 80 i) was used.

For cell differentiation experiments, C2C12 cells were
cultured for 4 d under differentiation conditions (DMEM
supplemented with 1% penicillin–streptomycin and 1%
insulin-transferrin-selenium-X (Invitrogen)) and immunos-
tained for sarcomeric myosin (Developmental Studies
Hybridoma Bank). In brief, cells were fixed with 70%
ethanol, 37% formaldehyde glacial and acid acetic
solution (20:2:1) at 4 °C for 10 min. After fixation, samples
were rinsed with DPBS and blocked with 5% goat serum
in DPBS for 1 h at room temperature. Blocking buffer
excess was removed, and sequential incubations with
MF-20 mouse antibody (Developmental Studies Hybridoma
Bank, University of Iowa, USA) and anti-mouse Cy3-con-
jugated secondary antibody (Jackson Immunoresearch) were
carried out. Finally, samples were washed before being
mounted in Vectashield containing DAPI (Vector Labora-
tories, UK). Cultures were scored by the percentage of posi-
tive cells for myosin using CellC image analysis
software [23].

2.10. Statistical analysis

The results are shown as average ± standard deviation and
were analyzed by one-way ANOVA. If treatment level dif-
ferences were determined to be significant, pair-wise com-
parisons were performed using the Tukey post hoc test.

3. Results and discussion

3.1. Molding and characterization

We have developed a robust and simple technique to obtain
highly reproducible aligned and random polymer nanofibers
similar to those obtained using conventional electrospinning.
Following this methodology, a battery of topologically
identical samples can be fabricated for biological studies. As
different polymer solutions can be used, samples with dif-
ferent physico–chemical properties (e.g. chemistry and
mechanics) can be fabricated while maintaining identical fiber
topography. That is to say, we show a method capable of
preparing sets of topologically identical samples using
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Figure 3. Surface characterization. Transversal sections and 3D images of a 10 × 10 μm surface area of each sample are shown.



different polymers. We started by electrospinning PEA to
fabricate the PDMS mold. Figure 1 shows SEM images for
the original PEA template samples (aligned and random PEA
fibers; PEAa and PEAr, respectively) and illustrates the entire
fabrication process, from mold making to sample production.

As a result of electrospinning, smooth, circular PEA
fibers without beading were obtained. In the case of random
samples, there were some very thin fibers mixed up with the
main fiber population of greater diameter (∼2 μm, see table 2
for a summary of all fiber dimensions). Aligned fibers show a
similar diameter but reduced height (see table 2). A high
degree of alignment was obtained as a result of the manu-
facturing process.

Fiber topography from the original PEA electrospun
sample was replicated in the PDMS mold with minimal
defects (AFM in figure 3), which were formed in a few
samples most likely due to the difficulty in the PDMS getting
into the topography of the PEA fibers due to surface tension
effects. According to this, topographical features in the mold
reproduced the original template for both the random and the
aligned patterns, and could therefore be used to obtain elec-
trospun-like polymer fibers. As a proof-of-concept, we

selected PLLA as a gold standard biodegradable polymer with
an excellent track-record in tissue engineering [4, 24]. After
solvent casting the PLLA solution and cooling down in cold
water, molded samples were easily obtained. Fibers were
observed by optical microscopy and at higher magnifications
by SEM on both aligned and random molded samples
(maPLLA and mrPLLA respectively) (figure 2). The molding
process transfers the original fiber patterning from the elec-
trospun PEA samples to the final molded PLLA samples
using the mold as an intermediate step in the process.

AFM was performed on the molded fibers to quantify
topographical cues in three dimensions (height, width and real
shape of the fiber). As shown in figure 3 and table 2, solvent
casted samples reproduced the mold topography accurately.
In fact, the stretching of the original electrospun PEA fibers
during alignment (figure 1 and table 2) was also observed in
the molded samples, which supports excellent replication.

3.2. Cell adhesion

After assessing the quality of replication of the molded
samples, cell adhesion and cytoskeleton development were
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Figure 4. Cell orientation on elecrospun-like fibres. (A) Cell adhesion after 5 h of culture on the different FN-coated samples. Vinculin is
stained red and actin is seen in green. Nuclei were counterstained with DAPI and appear blue. (B) Evolution of cell morphology and
orientation on molded samples as observed by cytoskeleton (actin) detection. Dotted lines represent fibre orientation where necessary.



used as biological proof-of-concept for the novel methodol-
ogy introduced in this work. As the molded samples are made
of PLLA, PLLA fibers electrospun on glass were used as
positive controls (aPLLA and rPLLA will be used to identify
aligned and random electrospun PLLA fibers, respectively).
Note that the size of these electrospun PLLA fibers differs
from the molded fibers (supplementary figure 1, available at
stacks.iop.org/BF/6/035009/mmedia). Figure 4 shows cells
after 5 h of culture on the different substrates. Prominent actin
fibers inserted into well-developed focal adhesion complexes
containing vinculin were observed (white arrows) on both
molded and electrospun PLLA fibers. As expected, alignment
of filopodia and/or part of the actin cytoskeleton in the
direction of the underlying fibers was seen on the electrospun
aligned PLLA samples. Nevertheless, neither cell nor filo-
podia alignment was seen on the molded aligned samples
after 5 h; which is likely due to the lower height of the molded

fibers, which could delay cell alignment along the fibers [25].
We disregard any role of FN in the different cell responses
between the electrospun and molded samples since the
microfibers consist of PLLA on all samples and FN is con-
sequently expected to adsorb similarly on the different PLLA
fibers (electrospun or molded) in terms of quantity and con-
formation. We have previously characterised FN adsorption
on PLLA at ∼1800 μg m−2 and as adopting a globular con-
formation [26, 27]. To confirm this hypothesis and refute that
the molded samples are unable to direct cell alignment, cell
orientation was tracked over 3 d of culture. As shown in
figure 4(B), cells projected long pseudopodia in the direction
of the fibers after 24 h and aligned after 48 h of culture (most
of them) showing stressed actin fibers with the same orien-
tation as the fiber patterning. The same trend was observed by
SEM (figure 5) corroborating that, as the topology of the
molded samples was lower than on the electrospun samples,
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Figure 5. Cell adhesion on electrospun-like fibres at different time points as observed by SEM.
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cells needed more time to align on molded samples due to the
weaker topological stimulus. First, roundness and aspect ratio
were evaluated, corroborating the elongated morphology of
cells seeded on aligned patterned samples (aPLLA and
maPLLA in figure 6). Then, in order to assess cell alignment
in the direction of the fibers, the Fourier transform of each
image was calculated showing preferential alignment on
aligned electrospun and molded samples but not on ran-
dom ones.

As fiber topography has a key role in cell fate [25] and
electrospinning is an intrinsically unstable technique that
makes the manufacturing of reproducible fibers difficult, new
routes able to produce reliable samples are needed. The
technique shown here not only produces reliable samples but
may also be used to prepare samples made of different
polymers with the same topography, which is not possible
using electrospinning. This technique is therefore a robust
tool to investigate cell behaviour under well-controlled
stimuli.

3.3. Myogenic differentiation

Next, we examined the role of topological cues from the
electrospun and molded fibers on myogenic differentiation by
immunolabeling and quantifying positive sarcomeric myosin
cells. As shown in figure 7, similar differentiation levels were
found on the four substrates, with differences neither between
the aligned and random samples nor between the electrospun
and molded fibers [3, 4]. That is to say, molded samples

trigger cell differentiation to the same extent as the original
electrospun fibers.

4. Discussion

Microfibers have been extensively studied as a means to
mimic the fibrillar structure of the natural in vivo environment
in cell culture experiments. Electrospinning stands out among
the large variety of techniques used, but it presents major
drawbacks in terms of reproducibility of different batches of
samples. New techniques for easy production of reproducible
samples are therefore required. We have developed a PDMS
mold-based technology as a robust and rapid method to obtain
these micropatterned samples and overcome the limits of
electrospinning. Moreover, we have validated the technology
using a myoblast culture, showing that replicated samples
triggered a similar response as electrospun samples in terms
of focal adhesion formation, cell alignment and cell differ-
entiation. We suggest that this method could profitably
replace electrospinning for some specific experiments because
it avoids using electric fields (a hazard for the research staff)
and it is remarkably simple in terms of the technique, pro-
cedure and equipment required while allowing fast production
of reproducible samples. We have checked that the PDMS
molds can be reused approximately 15 times before they
begin to degrade. Moreover, reproducible topological fibers
can be obtained from a huge variety of polymer solutions,
even aqueous or conductive solutions which are normally
very difficult to electrospin. As no high electric fields are

Biofabrication 6 (2014) 035009 J Ballester-Beltrán et al

8

Figure 6. Cell morphology and alignment. (A) Roundness and aspect ratio of cells cultured on the different samples. (B) Cell alignment as
calculated by image analysis (FFT of the normalized pixel intensity).



used, biologically active molecules (such as drugs for con-
trolled release, growth factors) and even microorganisms
(such as bacteria and cells) might be encapsulated without
compromising their biological properties. Finally, polymeric
fibers obtained using this technique are laid on a plain surface
of the same polymer, whereas polymeric fibers obtained by
electrospinning lie on a support—commonly glass—which
makes comparison of results obtained from the fibers and the
plain substrate difficult (fibers cannot be electrospun on the
same polymer substrate as the residual solvent dissolves the
underlying polymer, burying the electrospun fibers in the
bulk). Solvent casting samples in a mold is therefore an easy

and reliable method to produce micropatterned substrates for
cell culture procedures in an easy way, therefore providing an
interesting alternative to electrospinning for some specific
studies.

5. Conclusions

Here, we have proposed a novel procedure that yields elec-
trospinning-like polymer fiber samples with high reproduci-
bility by solvent casting a polymer solution on a PDMS mold.
A solution of 2% PLLA in chloroform was used and the
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obtained samples replicated the master template in a highly
reproducible process. These electrospun-like molded samples
supported cell adhesion as shown by the developed vinculin
focal adhesions and provided topological cues to direct cell
orientation similarly to the control PLLA electrospun fibers.
In addition, similar levels of myogenic differentiation were
obtained for the molded samples and the PLLA electrospun
fiber samples (which were used as controls) supporting its
potential for cell behavior studies.
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