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Abstract 7 

The present work examines analytically the forced convection in a channel partially filled with a porous 8 

material and subjected to constant wall heat flux. The Darcy-Brikman-Forchheimer model is used to 9 

represent the fluid transport through the porous material. The local thermal non-equilibrium, two-equation 10 

model is further employed as the solid and fluid energy equations. Two fundamental models (models A 11 

and B) represent the thermal boundary conditions at the interface between the porous medium and the 12 

clear region. The governing equations of the problem are manipulated and for each interface model exact 13 

solutions, for the solid and fluid temperature fields, are developed. These solutions incorporate the porous 14 

material thickness, Biot number, fluid to solid thermal conductivity ratio and Darcy number as 15 

parameters. The results can be readily used to validate numerical simulations. They are, further, 16 

applicable to the analysis of enhanced heat transfer, using porous materials, in heat exchangers.  17 

 18 
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 21 

1. Introduction 22 

The problem of heat transfer enhancement is of rapidly increasing significance [1]. There exist a great 23 

number of examples for the heat transfer enhancement by porous materials in natural and manmade 24 
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systems [2]. There is also a significant interest in understanding, modelling and simulation of heat and 1 

fluid flow in porous media [2]. This is, in part, to improve the predictive tools used in the design of 2 

engineering devices in which porous materials are employed to boost the performance. For instance, 3 

porous media are widely used in heat exchangers to enhance the heat transfer rate. Although this usually 4 

results in a significant increase in the heat transfer rate, it also causes large pressure drops. To avoid such 5 

excessive pressure losses sometimes the fluid conduits are filled only partially with porous materials. Due 6 

to the existence of a porous-fluid interface in these partially filled systems, their analysis could be more 7 

involved compared to the fully filled ones. Further, the recent technological interests in highly efficient 8 

energy systems has intensified the need for more accurate heat transfer analyses [3-5]. Accurate 9 

prediction of the flow and temperature fields in the partially filled  systems heavily depends upon the 10 

proper implementation of the boundary conditions on the porous-fluid interface [6]. These include both 11 

hydrodynamic and thermal boundary conditions.  12 

      In general, two different approaches can be undertaken to apply the conservation of energy in flows 13 

through porous media. These include the Local Thermal Equilibrium (LTE) and the Local Thermal Non-14 

Equilibrium (LTNE). LTE model assumes the temperature of the fluid and solid phases are locally the 15 

same [6-8]. However, LTNE recognises a finite temperature difference between the two phases. When 16 

LTE model is in use, the continuity of temperature and heat flux can be utilised as the boundary 17 

conditions at the porous-fluid interface. LTNE model, however, requires implementation of an additional 18 

thermal boundary condition at the porous-fluid interface [3, 5-7]. A precise description of the thermal 19 

boundary conditions at the porous-fluid interface is yet to be given and the research in this area is ongoing 20 

[5, 8]. In the meantime, a number of models have been reported in the literature, which account for the 21 

dominant behaviour of the boundary conditions [7]. While these models have been validated against 22 

experiments, their applicability is strongly problem dependent and varies with changes in the parameters 23 

[7]. The numerical simulations of the partial-porous systems should be, therefore, capable of handling 24 

these subtleties. This calls for the comprehensive validation of these tools which, in turn, generates a need 25 

for the development of exact solutions of the flow and temperature fields. 26 
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      Analysis of convective heat transfer, in general, includes solution of nonlinear partial differential 1 

equations governing the transport of momentum and energy [2]. Hence, it is predominantly feasible 2 

through numerical methods. Heat transfer in porous media, however, features certain characteristics that, 3 

under some conditions, turn the analysis amenable to the analytical approaches. Utilising these 4 

characteristics, this paper reports an analytical analysis of the solid and fluid temperature fields in a 5 

system partially filled with a porous insert. This takes into account two different, existing models of the 6 

thermal boundary conditions at the porous-fluid interface [7]. Local thermal non-equilibrium model is 7 

applied through considering two energy equations for both the fluid phase and the solid matrix. This 8 

results in the determination of the temperature fields within the solid and fluid phases. One of the primary 9 

aims of the current analysis is to produce a means of validation for the numerical simulations of heat 10 

transfer in partially filled systems. The exact solutions, developed in this work, are also of physical 11 

significance and can be further employed to evaluate the validity of LTE assumption under varying 12 

operating and design parameters.  13 

     Figure 1 shows the schematic of the problem under investigation. Fluid flows into a channel in which a 14 

porous material has been inserted at the core. Constant heat flux boundary condition is applied on the 15 

channel walls. Due to the symmetry of this configuration only half of the domain is considered in the 16 

analysis. The flow is laminar, steady, thermally and hydrodynamically fully developed, and 17 

incompressible. Natural convection, viscous heat generation and radiation heat transfer are ignored. 18 

Further, the thermo-physical properties of the fluid and solid are assumed constant. 19 

 20 

 

Flow in 
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Fig. 1. Schematic of the problem. 

 1 

2. Results and discussions 2 

2.1. Governing equations and the boundary conditions 3 

Momentum equation and energy equation in the clear region are respectively expressed by 4 
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Previous investigations [4] have shown that within the porous medium and for Da<10
-3

, the inertia term 5 

of the momentum equation within the porous medium is negligible. Thus, fluid flow through the porous 6 

medium is represented by the Darcian flow model. Momentum equation in the porous region reduces to  7 
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Fluid and solid phases energy equations in the porous region are represented by the following coupled 8 

partial differential equations  9 
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 The following boundary conditions are applied to the momentum equations, 10 
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The boundary conditions applied to the energy equations are 11 
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In the present work, two models (referred to as A and B in the literature) are utilised to describe the 12 

temperature at the interface between the clear and porous regions. Model A was proposed by Vafai and 13 

co-workers [8, 9] and is based upon the division of heat flux between the solid and fluid phases and states  14 
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In model B, however, each of the individual phases at the interface receives an equal amount of the heat 1 

flux [8, 9], thus 2 

.
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In the above equations 
ph1interface )(  yff yTkq and Tinterface represents the heat flux and the temperature 3 

at the porous-fluid interface. eff is the effective viscosity of the porous medium which is considered equal 4 

to f  [10]. The average velocity in the channel is }{h/1
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Adding Eqs. (3a) to (3b), integrating the sum from 0 to hp and applying the boundary conditions given by 7 

Eqs. (6a) and (6b) reveal the following equation for model A 8 
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Adding Eq. (8) to Eq. (9) and using the definition of the average velocity yield 9 
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Substituting Eq. (10) into Eq. (9) renders model A prediction of heat flux at the porous medium-fluid 10 

interface as, 11 
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Through adding Eqs. (3a) to (3b), integrating the sum from 0 to hp and applying boundary condition (7) 12 

(model B) the following equation is obtained, 13 
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Adding Eq. (8) to Eq. (12) and using the definition of average velocity result in  14 
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An explanation can be given for Eq. (12). The heat flux qinterface from the outer surface is transferred to the 1 

porous medium in two different ways. First, conduction in the fluid phase, qf, and second, conduction in 2 

the solid phase, qs. Model B states that each phase receives the same amount of heat flux, which is equal 3 

to qinterface. Thus qf = qinterface and qs = qinterface .This is in keeping with the second approach of Amiri et. al 4 

[9]. The heat transferred to the solid phase is ultimately delivered to the fluid through an internal heat 5 

exchange. This heat exchange is, therefore, equal to the heat transferred from the wall to the solid phase 6 

via solid conduction, qexchange = qs [11]. It follows that the overall heat transfer to the fluid phase in the 7 

porous region is by direct fluid conduction plus the solid conduction and the subsequent internal heat 8 

exchange between the solid and fluid. Thus, qtotal,fluid,porous = qinterface + qinterface =2 qinterface. 9 

     Substituting Eq. (13) into Eq. (12) reveals model B prediction of the heat flux at the porous medium-10 

fluid interface, 11 
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To normalise the governing equations and boundary conditions the following dimensionless variables are 12 

introduced. 13 
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where ur is a characteristic velocity defined as ))(h(
2

0 xpur   . The solutions for the momentum 14 

Eqs. (1a) and (1b) and the corresponding boundary conditions (4a), (4b), and (4c) are as follows. For the 15 

clear region 16 
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By using Eqs. (16a, b, c) and (17a, b) and dimensionless parameters in relation (15a-h) the dimensionless 2 

average velocity becomes  3 
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where DaZ /1 , S is the ratio of the porous medium thickness to the channel height. 4 

Equation (11) is converted to non-dimensional form and is combined with Eqs. (17a, b) and (18) 5 

revealing 6 
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Similar to that explained in the derivation of Eq. (19b), an expression for the heat flux at the porous 7 

medium-fluid interface for model B, is obtained as 8 

(20) .
2

0

0

BModel








s

p

s

p

dYUU

dYU


 

Once again, by using Eqs. (16a, b, c) and (17a, b) it can be shown that  9 
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 10 

2.2. Temperature profile for model A 11 

The energy equations and the associated boundary conditions are derived through substitution of the 12 

dimensionless variables presented in Eqs. (15a-d) into Eqs. (2), (3a) and (3b). Dimensionless energy 13 

equation for the fluid in the clear and porous regions become 14 
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The solid phase energy equation in the porous region can be written as 1 
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Differentiation of Eqs. (22b) and (23) with respect to Y and evaluating the results at Y=0 yield  5 
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Differentiating Eqs. (22b) and (23) with respect to Y for two times gives 7 
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Adding Eq. (22b) to Eq. (23) results in the following second order differential equation  8 
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By writing )(Ys  as )(2 Yf   and substituting the result into Eq. (28a) we arrive at 9 
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Equations (30) and (31) are two decoupled ordinary differential energy equations representing the 1 

transport of energy in the porous region. Integrating the ordinary differential Eq. (22a) results in the 2 

following expression for the temperature distribution of the flow in the clear region under model A 3 
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where A and B are given by Eqs. (16b) and (16c). The temperature distribution in the porous region is 4 

found by solving Eqs. (30) and (31) and applying the boundary conditions given by Eqs. (24) and (27). 5 

This reveals 6 
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 8 

2.3. Temperature profile for model B 9 

Substation of Eq. (15a) into Eqs. (2), (3a) and (3b) reveals the different forms of the energy equation for 10 

the two phases based on model B. Energy equation for the fluid in the clear region then becomes 11 
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Further, fluid and solid phase energy equations in the porous region take respectively the forms of  12 

(36a, b)  ,)()()(
1

22 YYBiY
kU

U
fsf

p
 

 
)).()(()(0 2 YYBiY fss    

The associated boundary conditions are 13 
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Following the same procedure explained for model A, and taking the second derivative of Eqs. (36a) and 1 

(36b) with respect to Y, yield  2 
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Evaluating the second and third derivatives of 
s and 

2f  at the symmetry plane (Y=0) by applying Eq. 3 

(37c) reveals 4 

,0
)0(

)0(2 


 
U

U
k

p

f
 .0)0(  

s
 (39a, b) 

Solving the ordinary differential Eq. (35) results in the following expressions for the temperature 5 

distribution for the flow in the clear region 6 
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where )11)((   Uk  and, A and B are respectively given by Eqs. (16b) and (16c). The temperature 7 

distribution in the porous region is found by solving Eqs. (38a) and (38b) and applying Eqs. (37) and (39). 8 
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2.4. Validation 2 

To validate the present exact solutions, temperature distributions in the solid and fluid phases are 3 

evaluated for a channel fully filled with a porous material. In Eqs. (33) and (34) for model A and Eqs. 4 

(41) and (42) for model B, S is set equal to one. The obtained results are compared against the exact 5 

solutions derived by  Marafie and Vafai [12] and Yang and Vafai [7]. The excellent agreement between 6 

these solutions, shown in Fig. 2, confirms the validity of the presented analysis.  7 
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Fig. 2. Temperature distributions in the fluid and solid phases for S=1, k=0.01, Bi=10 and Da=10
-4

. Solid 

lines: present solutions, symbols: exact solutions in [7, 12], (a) model A, Eqs. (33) and (34) and, (b) 

model B, Eqs. (41) and (42). 

 1 

3. Conclusions 2 

Temperature fields of the solid and fluid phases in a channel partially filled with a porous medium under 3 

local thermal non-equilibrium condition were investigated analytically. The coupled partial differential 4 

equations for the transport of momentum and energy in a fluid flow through a porous medium, along with 5 

the energy balance of the solid matrix were considered. These were first converted to a set of decoupled 6 

ordinary differential equations and were subsequently solved analytically. Further, two distinctive thermal 7 

boundary conditions (the so-called models A and B) were applied to the interface between the porous 8 

medium. Model A assumes that heat is divided between the two phases on the basis of their effective 9 

conductivities and their corresponding temperature gradients. Model B, however, assumes that both 10 

phases at the interface receive the same amount of heat flux. Exact solutions were developed for the solid 11 

and fluid phases. These solutions are of direct use in the analysis of heat transfer enhancement as well as 12 

the validation of numerical simulations under varying parameters. In addition, the present set of results 13 

can be used as a supplement in the numerical simulations of the more involved problems. This is to 14 

reduce the computational burden of solving the momentum and energy equations. An example of such 15 

problems is the analysis of reactive flows in porous media. 16 

 17 

Nomenclature 18 

asf Interfacial area per unit volume of porous 

media (m
-1

) 

x  Longitudinal coordinate (m) 

A, B Constant parameter defined by Eq. (16b, c) y  Transverse coordinate (m) 

Bi Biot number,  Y  Dimensionless y coordinate, y/h0 
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C Constant parameter defined by Eq. (17b) Z  Constant parameter, Da/1  

Cp Specific heat of the fluid, (J Kg
-1

k
-1

) Greek 

symbols 

 

Da Darcy number, K/ho
2
 γ Ratio of wall heat flux to the 

heat flux at the interface, 

qw/qinterface 

hsf Fluid to solid heat transfer coefficient (W m
-

2
k

-1
) 

 Constant parameter defined by 

Eq. (43d) 

h0  Height of the channel (m) ε  Porosity of the porous medium 

hp  Porous substrate thickness (m) Θ  Dimensionless temperature 

K  Permeability of the porous medium (m
2
) μ  Viscosity (Kg m

-1
s

1
) 

k  The ratio of solid effective thermal 

conductivity to that of the fluid, (1-ε)ks/(εkf)  

ρ  Density, (kg/m
3
) 

kf  Thermal conductivity of the fluid (W m
-1

k
-1

) ξ Constant parameter used in Eq. 

(34) 

kf,eff Effective thermal conductivity of the fluid, εkf ψ Constant parameter defined by 

Eq. (43d) 

ks  Thermal conductivity of the solid (W m
-1

k
-1

) 1,2,3 Constant parameter defined by 

Eq. (43a, b, c) 

ks,eff Effective thermal conductivity of the solid, (1-

ε)ks 

Subscripts  

O1,O2 Constant parameter defined by Eq. (40b, c) eff Effective property 

p  Pressure (Pa) f  Fluid 

q  Heat flux (W m
-2

) f1 Fluid in the clear region 

S  Ratio of the porous medium thickness to the f2 Fluid in the porous medium 
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channel height, hp/h0 

T  Temperature (K) Superscripts  

u  Longitudinal velocity (m/s) − Mean value 

U 
Dimensionless velocity, 

ruu  ´,´´,´´´,´´´´ First, second, third, and forth 

derivatives 

 1 

References 2 

[1] Webb, R.L., Kim,  N. Principles Of Enhanced Heat Transfer, 2nd edition, New York, Taylor & 

Francis, 2005. 

[2] Vafai, K.,  Handbook of porous media, 2nd edition, New York, Marcel Dekker, 2000. 

[3] Mahmoudi, Y., Maerefat M. Analytical investigation of heat transfer enhancement in a channel 

partially filled with a porous material under local thermal non-equilibrium condition. Int. J. 

Thermal Sciences 2011; 50: 2386-2401. 

[4] Maerefat, M., Mahmoudi, S.Y., Mazaheri, K.,  Numerical simulation of forced convection 

enhancement in a pipe by porous inserts. Int. J. Heat Transfer Engineering 2011; 32: 45-56. 

[5] Yang, K., Vafai, K. Restrictions on the validity of the thermal conditions at the porous-fluid 

interface: an exact solution. ASME J. Heat Transfer 2011c; 133: 112601-12. 

[6] Yang, K., Vafai, K. Analysis of heat flux bifurcation inside porous media incorporating inertial 

and dispersion effects – an exact solution. Int. J. Heat Mass Transfer 2011b;  54: 5286–5297. 

[7] Yang, K., Vafai, K. Analysis of temperature gradient bifurcation in porous media – an exact 

solution. Int. J. Heat Mass Transfer 2010; 53: 4316–4325. 

[8] Alazmi, B., Vafai, K. Constant wall heat flux boundary conditions in porous media under local 

thermal non-equilibrium conditions. Int. J. Heat Mass Transfer 2002; 45: 3071-3087. 

[9] Amiri, A., Vafai, K., Kuzay, T.M. Effect of Boundary Conditions on Non-Darcian Heat Transfer 

Through Porous Media and Experimental Comparisons. Numerical Heat Transfer Journal 1995, 



15 
 

Part A; 27: 651-664. 

[10] Alazmi, B., Vafai K. Analysis of fluid flow and heat transfer interfacial conditions between a 

porous medium and a fluid layer. Int. J. Heat and Mass Transfer 2001; 44: 1735-1749. 

[11] Lee, D.Y., Vafai K. Analytical characterization and conceptual assessment of solid and fluid 

temperature differentials in porous media. Int. J. Heat Mass Transfer 1999; 42: 423–435. 

[12] Marafie, A., Vafai, K. Analysis of non-Darcian effects on temperature differentials in porous 

media. Int. J. Heat Mass Transfer 2001; 44: 4401-4411. 

 1 


