

Li, Y., Ng, K.C., Häußler, A., Chow, V., and Muscatelli,
A. (1995) Macroeconomics modelling on UK GDP growth by neural
computing.In: IFAC/IFIP/IFORS/SEDC Symp. Modelling and Control of
National and Regional Economies, 2-5 July 1995, Gold Coast, Australia.

Copyright © 1995 The Authors

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

Content must not be changed in any way or reproduced in any format
or medium without the formal permission of the copyright holder(s)

When referring to this work, full bibliographic details must be given

http://eprints.gla.ac.uk/88958/

 Deposited on: 14 January 2014

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

MACROECONOMICS MODELLING ON UK GDP GROWTH
BY NEURAL COMPUTING

Y. Li, K.C. Ng, A. Häußler and V.C.W. Chow

Centre for Systems and Control &
Department of Electronics and Electrical Engineering

University of Glasgow, Glasgow G12 8LT, United Kingdom
E-Mail: Y.Li@elec.gla.ac.uk, Fax: +44 141 330 4907

V.A. Muscatelli

Department of Political Economy
University of Glasgow, Glasgow G12 8RT, United Kingdom

Abstract: This paper presents multilayer neural networks used in UK gross domestic
product estimation. These networks are trained by backpropagation and genetic
algorithm based methods. Different from backpropagation guided by gradients of the
performance, the genetic algorithm directly evaluates the performance of multiple sets of
neural networks in parallel and then uses the analysed results to breed new networks
that tend to be better suited to the problems in hand. It is shown that this guided
evolution leads to globally optimal networks and more accurate results, with less
adjustment of the algorithm needed.

Keywords: Economic systems, Modelling, Neural networks, Genetic algorithms, Gross
domestic product, Financial systems, Neural computing, Evolutionary computing

1. INTRODUCTION

Traditional models of economic systems are useful
in economics studies. These models are not,
however, general or adequate enough in explaining
many economic anomalies, although they are
massively assisted by modern computers. Events
such as the “Black Wednesday” of 1992, which
forced Britain out of the European exchange rate
mechanism, have highlighted concerns over the
accuracy in modelling macroeconomic structure and
in forecasting the economy. One of the most
important factors in macroeconomic modelling and
econometrics is the growth, in terms of gross
domestic product (GDP). Only when this is
accurately modelled and foreseen, can other
parameters of the economy, such as unemployment,

exports, imports and consumer spending, be
reasonably predicted and policies made. These, in
turn, affect the GDP, which makes the modelling
more complex. Studies show that the vast majority
of forecasts on the British economy substantially
underpredicted the strength of the economy in the
late 1980’s and also failed to foresee the depth of the
recession that followed (Pain and Britton, 1992).

Clearly, the economic system is not made from
mathematical equations and would not, therefore,
behave in a similar way to physical systems
encountered in engineering. In addition to a
stochastic, changing, delayed and nonlinear nature,
human involvement by millions of individuals plays
a significant role, which results in psychological,
fuzzy and learning characteristics inherent in this

system. This nature, together with the difficulties
encountered in conventional models, has promoted
fresh calls for a more “intelligent” modelling
methodology that better matches the inherent and
underlying characteristics of the economy.

In this paper, neural computing techniques have
been applied to modelling the GDP of the United
Kingdom. The following section presents artificial
neural networks (NNs) used for the modelling,
which are trained by “backpropagation (BP)” based
techniques. The results are compared with those of
a “genetic algorithm (GA)” trained network in
Section 3. The final section highlights conclusions
and further work.

2. BACKPROPAGATION BASED
NEURAL NETWORKS

The information processing system of human beings,
who are major players of the economy, is different
from conventional computers and mathematics. An
example of such a system is the eye-brain system,
which consists of many neurons that are processing
information and switching at a speed million times
slower than a digital computer. Yet, the human
system is much more effective and efficient than
computers at pattern recognition and at
“computationally” complex tasks.

Simulating this human inference and decision
making mechanism, the artificial neural network
incorporates a learning capability with a parallel
information processing structure. Such a network is
a physical cellular system that can acquire, store,
judge and utilise experimental knowledge and data,
which can be inaccurate and incomplete. It has been
widely reported its successful implementations and
applications to a very broad range of practical
problems and, in particular, to modelling of
complicated, irregular, irrational, stochastic,
nonlinear and time-varying systems (Haykin, 1994;
Rogers and Li, 1993). Compared with traditional
economic models, an NN features effective means
for adaptation and learning in the process of
information processing. Further, the smooth
nonlinear property of an NN permits the data to fit
the model and to generalise better. When realised in
software, such an information processing/modelling
network is often referred to as “neural computing”.
This systems behaves rather like a “grey-box” and
its use can bypass the step of theory formation that is
needed in a traditional economic modelling process.
These characteristics make an NN a promising
candidate for the GDP and general economic
modelling tasks (Hruschka, 1993; Refenes and
Azema-Barac 1994; Tafti and Nikbakht 1993).

In this paper, all quarterly data ranging from the
first quarter of 1965 to the third quarter of 1994 are
obtained from the HM Treasury’s Central Statistical
Office. These are seasonally-adjusted annualised
market prices in £billion. The expenditure based
GDP variable is the output of the NN and the
consumers’ expenditure, general government final
consumption, gross domestic fixed capital
formation, exports of goods and services and imports
of goods and services are used as the input variables
for training. In order that an NN can be used
correctly to calculate the estimated output, it must be
trained from the past data.

Before training takes place, the topology of the NN
must be specified. Optimal topologies of an NN,
however, vary with types of data and systems to be
modelled. They are also dependent upon the
associated activation rules and learning mechanism.
One of the most popular models is the multilayer
network based on the backpropagation training
mechanism, as shown in Fig. 1. This model suits
time-series tasks more and offers a more accurate
function estimation than models of other topologies.
It is thus adopted for the time series GDP estimation
in this paper.

Fig. 1. A multilayer NN with two hidden layers and
three input/output neurons.

A multilayer network is essentially a partitioned
complete graph which consists of several “layers” of
“neurons”, where all neurons within a layer can run
in parallel whilst all layers run in a pipeline. Every
neuron in one layer is not connected to one another
but is “completely” connected, with individual
“weights”, to every neuron in the next layer. A
weight can take either positive or negative values.
The weighted inputs to a neuron are summed up,
usually together with a threshold input, and then the
accumulated quantity, x, is filtered through a
nonlinear activation function denoted by A to form
the output of this neuron, as depicted in Fig. 1. The
activation function is usually selected either from a
sigmoid function, which outputs only positive

values, or from a hyperbolic tangent function, which
outputs both positive and negative values. The first
layer, to which the raw data are fed, is called the
“input layer” and the last layer, from which the final
estimated outputs are accessed, is called the “output
layer”. The layers between the input and output
layers are termed “hidden layers”.

The training of multilayer network can only be
carried out when the number of hidden layers and
the numbers of their respective neurons are
determined. The selection of the architecture is,
however, rather a heuristic process, which is mainly
dependent upon the size of the problem and the
mutual coupling between the variables. In the
training process, there are other two factors that also
need to be determined. One of them is the “training
momentum”, which acts as a low-pass filter and
allows the network to respond not only to the local
gradient, but also to the recent trends in the error
surface. The other is the “learning rate”, which
determines how much the weights should be
adjusted in their adaptation process. Details of other
network architectures and the backpropagation
algorithm can be found in, for example, Haykin
(1994). The following summarise the steps needed
for training the network.

1. Randomly generate the initial weights and
thresholds for the entire network;

2. Feedforward one input data set through the
network and calculate the output;

3. Compare the estimated the output with the true
data to form the error in the output layer;

4. Compute the error in the last hidden layer;
5. Adjust the weights between the last hidden

layer and the output layer based on the amount
of error, specified values of learning rate and
momentum;

6. Continue the backward error computation and
the weight adjustment until the first hidden
layer is completed;

7. Go to Step 2 to continue the training until
reaching the last training data set;

8. Repeat the training process until a sufficiently
small error is reached.

In this section, two different architectures are
studied, with comparisons given to the use of one
and two hidden layers. In the training phase, data
ranging from 1965 to 1992 are used. The estimated
GDP by an NN from the five inputs is compared
with the real GDP data and then the error is fed back
in the backpropagation manner to adjust the weights
and minimise the error. A momentum of 0.9 and a
learning rate of 0.001 are found to result in
relatively fast and effective training in this
modelling task. The “incremental method” is used
initially in training, which provides a rapid training

curve and when the average root mean square
(RMS) error falls below 2%, the “batch method” is
adaptively switched to, which is slow but fine tunes
the network. Once the training is complete, the
network is used to estimated the GDP growth for the
year 1993 and for the first three quarters of 1994.

2.1 Single hidden layer networks

In this example, an NN with one hidden layer of 10
neurons is tested. Random values of weights are
assigned to the two row of interconnections. Here
the activation functions used is are hyperbolic
tangent functions, whose threshold levels are also
trained. The trained and estimated GDP result is
depicted in Fig. 2. They are compared with the
other curve in the figure, which represents the true
GDP data. It can be seen those two curves are close.

Fig. 2. Comparison between the real GDP and the
estimated GDP by an NN with a single hidden
layer of 10 neurons.

The training process converges after 1000 iterations
(which are termed “epochs”) and the average RMS
error obtained at the end of 2000 epochs is about
1.38%. This takes about 30 minutes on an Intel
80486DX2 processor running at a clock rate of 66
MHz. Here a Turbo Pascal programme was used in
order to have a better flexibility in adaptive learning,
instead of using commercially available NN
packages.

To compare with this result, sigmoid activation
functions are used in another test. Such an NN with
the same topology results very similar results to that
depicted in Fig. 2. Other architectures of one hidden
layer have also been tested but are found not to
provide as good estimation as the one with 10
hidden neurons.

2.2 A double hidden layer network

In this example, it has been found a network with
two hidden layers of 5 neurons resulted in good
estimates. The activation functions used here are
the hyperbolic tangent functions. The training and
estimation results are depicted in Fig. 3. The RMS
error at the end of 3000 epochs is about 1.39%.
Other double hidden layer based architectures have
also been test in this work, but are found not as good
as the one reported here.

Fig. 3. Comparison between the real GDP and the
estimated GDP by an NN with two hidden layer
of 5 neurons.

Discussions: In the training tests, it has been found
that the BP algorithm lacks the capability of tackling
the following problems.

1. Different training processes may result in
different minimum average RMS errors for the
same large number of epochs. This is because
BP is a numerical optimisation method, which
is based on “gradient guidance”. The search
may thus be trapped in “local optima” and be
inadequate in finding the “globally optimal”
weights and threshold sets;

2. The BP algorithm is difficult to incorporate
emphasis on the more recent data and
gradually “forget” the more remotely past data.
This error-weighting approach is important in
time series training, such as the GDP
modelling;

3. Finding suitable learning rate and momentum
rate is rather a tedious trial-and-error process
in BP based training.

In the following section, a genetic algorithm will be
used to train the neural network. It will be shown
that these problems can easily be tackled by the GA.

3. GENETIC ALGORITHM TRAINED
NEURAL NETWORKS

Emulating Darwin’s evolutionary principle of
“survival-of-the-fittest” in natural selection and
genetics, “genetic algorithm” (Goldberg 1989) based
search techniques have been found very effective and
powerful in searching poorly understood, irregular
and complex spaces for optimisation and machine
learning. Such an algorithm can simultaneously
evaluate performance at multiple points in the
solution space and approach the global optima for
almost any type of objectives. This technique has
been successfully applied to neural network design
(Harp and Samad 1992; Yoon, et al 1994) and
related fuzzy system design (Ng and Li 1994).

In the design of a neural network, a candidate set of
all weights and thresholds can be encoded by a
binary string. Such a string is termed a
“chromosome” in the GA context and a bit of the
string is termed a “gene”. Initially, many such
chromosomes are randomly generated to form a
“population”. Then the GA uses three basic
operators termed reproduction, crossover and
mutation to evolve, as depicted in Fig. 4.
“Reproduction” is used once the initial population is
formed - There are 3 chromosomes in the initial
population of the example shown in Fig. 4. As a
result of reproduction, a new generation of
population is evolved based on their individual
“fitness”. Here the fitness is a measure of how well
a candidate set meets the accuracy specifications. In
the designs reported in this paper, the fitness
function is given by:

f
ei

i

= −
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟∑

exp
1

2 (1)

where e is the error between the estimated and true
GDP data and i the index data. The summation is
over the entire training data sets. Since a GA is
based on fitness evaluation, no differentiation of this
performance function is needed. Thus the formation
of this function can be rather relaxed and can
incorporate error-weighting factors against time.
The relative fitness of an individual in the
population is the criterion that determines the
probability of its reproduction and survival.

The “crossover” operation in the reproduction
process is used to produce some off-spring that
inherit a portion of the genetic material of their
parents. This is to direct a new search space for
further testing within existing domains and is
applied to 60% of the entire population in this paper.

In the mean time, “mutation” plays a secondary role
in the GA to alter the value of a gene at a random
position on the chromosome string, discovering new
or restoring lost genetic material. This serves to keep
the diversity in the population and searches the
neighbouring solution space. It is applied to 5% of
the chromosomes in the population. At this point, a
new generation is formed and then the process
repeats itself until converges to the “fittest” network.

Explanations Chromosomes Fitness
Example of coded
parameter sets forming
an initial population with
size 3. The performance
of each parameter set is
simulated and then
assigned a fitness.

C1: 1 1 0 1 0 1 1 0
C2: 1 0 0 1 0 1 1 1
C3: 0 1 0 0 1 0 0 1

f(C1) = 5 %
f(C2) = 60 %
f(C3) = 35 %
(NB. The
above fitness
values are
examples.)

Reproduction: A simple
scheme is to allow the
chromosomes to
reproduce off-spring
according to their
relative fitness. Thus
C1 has low probability of
producing children, C2
has a probability of
producing two and C3
one.

C2: 1 0 0 1 0 1 1 1
C2: 1 0 0 1 0 1 1 1

C3: 0 1 0 0 1 0 0 1

Evolution in
progress (No
need to re-
calculate
fitness here).

Crossover: Some
portion of a pair of
chromosomes is ex-
changed at the dotted
position randomly
specified.

C2: 1 0 0 1 0 1 1 1
C2’:1 0 0 1 0 0 0 1
C3’:0 1 0 0 1 1 1 1

No fitness
calculations
needed here.

Mutation: The binary
values of some genes of
some chromosomes are
inverted. The value
which has been
changed as an example
is highlighted by an un-
derline.

C2: 1 0 0 1 0 1 1 1
C2”: 1 0 1 1 0 0 0 1
C3’: 0 1 0 0 1 1 1 1

A new
generation is
now formed
and the
fitness needs
to be
evaluated for
the next
cycle.

Fig. 4. Typical operators of a genetic algorithm.

In this paper, the weights and thresholds of the
neural network are coded by decimal strings. This is
more direct in mapping the decimal numerals and
can smooth, in some degree, the “Hamming Cliff”
diversion that is usually encountered in genetic
algorithms based on binary coding. For each value
of weights and thresholds, three digits are used,
which means 1000 possible values of each parameter
will be tested in the evolution process. The
population size is selected as 100, in view of the size
of the network. Note that, however, this and the
tasks of selecting the crossover and mutation rates
are much easier than determining the learning and

momentum rates in BP. The values used here are
typical values used elsewhere and are robustly suited
to many other applications.

In order to compare with the results obtained from
BP, a neural network with one hidden layer of 10
neurons is trained by a genetic algorithm. Fig. 5
depicts the result at the end of 200 generations,
which takes about the same time as the BP based
training on the same machine running Pascal. The
RMS error is 1.47% at this stage, which is slightly
larger than the results obtained by BP for a similar
running time. Note that, however, the optimisation
by BP oscillated around this RMS value and could
not converge further. Using the GA, this error can
be further minimised by evolving more generations.
Fig. 6 shows the convergence curve of the RMS
error over 800 generations, at which stage the error
reaches 1.02849%.

Fig. 5. Comparison between the real GDP and the
estimated GDP by an NN with a single hidden
layer of 10 neurons trained by a GA.

Fig. 6. Convergence curve of the RMS error of the
NN trained by a GA.

4. CONCLUSIONS AND FURTHER WORK

This paper has presented backpropagation and
genetic algorithm trained neural networks for UK
gross domestic product estimation. The BP design
mechanism is a conventional optimisation technique
based on differentiating the performance index.
This imposes restrictions on the properties of the
index and could result in locally optimal set of
weights and thresholds. Although this may be
overcome at some degree by varying the control
parameters of the BP algorithm, such as the learning
and momentum rates, adaptation of theses
parameters is difficult and needs heuristic expertise
in setting them. Compared with the BP approach,
the GA based training method evaluates the
performance of multiple sets of neural networks in
parallel. Then the analysed results are used to guide
the random search. The survival-of-the-fittest
principle evolves globally near-optimal network with
better results than the BP based method.

Clearly, other suitable economic variables which
directly contribute to the GDP growth, such as the
oil price, unemployment rate, inflation rate, interest
rates, foreign exchange rates and the stock indices,
can be included in the input layer for a better
modelling and prediction. The interest rates and
foreign exchange rates, for example, may also be
used in the output layer for modelling and
prediction. This would, however, increase
complexity of the problem and the network size. For
a reasonable prediction time and for better accuracy,
parallel processing systems such as the Parsytec
SuperCluster consisting of 64 transputers can be
used. This forms part of the future work being
considered at Glasgow. Initial studies show that
mapping such NNs onto 4 transputers in the
SuperCluster will gain a speedup of 3 times (Ng
1992). Currently, incorporating the architecture
selections directly in the genetic algorithm is studied
at Glasgow. Incorporating new types of neurons,
such as those with delay element, is also being
considered. In order to reflect the inference nature
of human decision making, work on GA based fuzzy
systems design (Ng and Li 1994) is extended to
fuzzy function estimation to be used for economic
system modelling.

Acknowledgement: The authors would like to thank
their colleagues in the Evolutionary Computing
Group at Glasgow, for useful discussions, and Mr.
J. Harding and Mr. A. Hyde of the Databank,
Central Statistical Office, HM Treasury, for kindly
supplying all the data used in this work. Mr. K.C.
Ng is grateful to the University of Glasgow and
CVCP for their financial support in the form of a
Postgraduate Scholarship and an Overseas Research

Scheme Award. Mr. A. Häußler is grateful to
University of Darmstadt for offering him an
ERASMUS studentship.

REFERENCES

Goldberg, D. (1989). Genetic algorithms in
searching, optimisation and machine learning.
Addison-Wesley, Reading, MA.

Haykin, S. (1994). Neural Networks. Paramount
Communications Co.

Hruschka, H. (1993). Determining market response
functions by neural network modelling: A
comparison to econometric techniques.
European Journal of Operational Research, 66,
27-35.

Harp, S. A., and T. SAMAD (1992). Optimizing
neural networks with genetic algorithms, Proc.
American Power Conf., Chicago IL, 54, (263)
1138-1143.

Ng, K.C. (1992). Mapping artificial neural nets
onto transputer networks, Final Year Report,
Department of Electronics and Electrical
Engineering, University of Glasgow.

Ng, K.C., and Y. Li (1994). Design of sophisticated
fuzzy logic controllers using genetic algorithms.
Proc. 3rd IEEE Int. Conf. on Fuzzy Systems,
IEEE World Congress on Computational
Intelligence, Orlando, FL, 3, 1708-1712.

Pain, N., and A. Britton (1992). The recent
experience of economic forecasting in Britain:
Some lessons from National Institute Forecasts.
National Institute of Economic and Social
Research, 20, 1-15.

Refenes, A.N., and M. Azema-Barac (1994). Neural
network applications in financial asset
management. Neural Computing and
Applications, 2(1), 13-39.

Rogers, E., and Y. Li (Eds.) (1993). Parallel
Processing in a Control Systems Environment,
Prentice-Hall International (Series on Systems
and Control Engineering),.

Tafti, M.H.A., and E. Nikbakht (1993). Neural
networks and expert systems: New horizon in
business finance applications. Information
Management and Computer Security, 1(1), 22-
28.

Yoon, B., D.J. Holmes, G. Langholz and A. Kandel
(1994). Efficient genetic algorithms for training
layered feedforward neural networks.
Information Sciences, 76, 67-85.

