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1. Introduction  

1.1 Light Detection and Ranging (LiDAR) 

LiDAR derived Digital Elevation data are used widely in the Geosciences to model 

topographically dependent environmental processes. Common applications include 

modelling coastal inundation vulnerability (Gornitz et al. 2002, Leatherman et al. 2003, 

Webster et al. 2004) assessment of coastal erosion risk (Woolard & Colby, 2002, Brown 

et al., 2006) and managing river flood risk (Gomes-Pereira & Wicherson, 1999; 

Brasington et al. 2000; Cobby et al., 2001). 

All of these applications require base data that represent the ground surface accurately. 

LiDAR data do generally provide the highest accuracies relative to other Digital 

Elevation Model (DEM) acquisition techniques. However, the manner in which LiDAR 

data are acquired can make it exceptionally difficult to define ground level in areas where 

ground vegetation prevents laser penetration to the ground surface (ASPRS, 2004). 

Critically, these conditions often predominate in coastal areas and can seriously affect the 

reliability of coastal inundation prediction models. This question is sometimes not full 

recognised by data users. This paper highlights the degree to which vegetation-derived 

DSM can affect the spatial prediction of coastal inundation risk. 

 

1.2 Removal of vegetation during DSM generation 

The classification of first and last pulse laser returns provides a mechanism by which 

objects close to a LiDAR sensor can be segregated from objects that are more distant 

from it. This typically corresponds to the segregation of laser-translucent objects that 

protrude from the surface (trees for example) and the ground surface itself (Lim et al., 

2003, Hall et al., 2005; Webster, 2006). The method is particularly effective when laser 

penetration of vegetation cover is achievable, but it does require the ground surface to be 

identifiable across a reasonable proportion of the area surveyed. This tends to limit its 

applicability to relatively sparsely vegetated areas, where laser penetration to the ground 

surface is viable across a reasonable proportion of the area surveyed. 

The advent of LiDAR waveform scanners provides a more refined method for the 

segregation of laser-translucent objects and the ground surface (Nayegandhi et al., 2006, 

Wagner et al., 2008). However, this method also relies on laser penetration to the ground 

surface. The identification of a reasonable number (and geographical spread) of ground 



surface laser return points is often difficult in naturally vegetated areas, and may be 

totally impossible where dense ground vegetation cover occurs. This issue is quite 

common in natural coastal environments, and is often overlooked when LiDAR DSM 

data are used to model the spatial extent of risk from coastal inundation. This oversight is 

easy to understand, due t the manner in which DSM elevation error is commonly 

reported. 

 

1.3 Residual vegetation error in DSM datasets 

Typical error ranges quoted by LiDAR data providers fall within the general 

magnitude range of ±0.2m. However, the manner in which LiDAR accuracy standards 

are framed (FGDC, 1998, ASPRS, 2004, Höhle & Potuckova, 2006) means that quoted 

elevation errors for natural areas are more likely to be classified relative to ‘compiled to 

meet’ accuracy statements (ASPRS, 2004) rather than by direct ground validation. 

Therefore, elevation errors in densely vegetated natural or cropland areas will typically 

be larger than quoted DSM elevation error for an entire DSM dataset. Vegetation-derived 

elevation errors of the order of 1m have been noted in a number of studies (Paine et al., 

2005, Rosso et al., 2006, Coveney et al. 2006). Errors of this magnitude are sufficient to 

adversely affect the spatial prediction of short-term flood risk, and maximum sea-level 

rise risk over the next 100 years. The extent to which LiDAR accuracy statements may 

understate elevation errors in natural areas is often not considered by end users. 

 

1.4 Principal objectives of this paper 

The presentation accompanying this abstract will focus on two principal issues. The 

problem of persistent vegetation error in LiDAR DSM data will be elucidated, and the 

magnitude of this error will be quantified across a range land-cover types using three 

separate LiDAR DSM data sources captured in three overlapping survey areas. 

 

2. Approach 

2.1 Selection of datasets 

LiDAR DSM data are used by three separate agencies in Ireland, namely; the national 

mapping agency, the Office of Public Works, and the INFOMAR (Integrated Mapping 

for the Sustainable Development of Ireland’s Marine Resources) project. The national 

mapping agency coverage is growing, the OPW coverage is limited to river course and 

limited coastal areas, and the INFOMAR data is a bathymetric LiDAR dataset (with a 

relatively substantial onshore component). Three overlap areas are used to evaluate DSM 

error across a range of natural and manmade land cover types (table X.X) and to consider 

the implications of these errors on the reliability for the spatial prediction of coastal 

inundation risk. Elevation errors are highlighted by external validation with high-

accuracy Global Positioning System (GPS) survey data. 

 



2.2 External validation data source 

Dual frequency (DF) GPS survey is capable of exceptionally high accuracies, and is used 

widely as a source of external validation data for the assessment of DEM (REFS) and 

DSM error (REFS). Elevation errors within DF GPS data are corrected using one of two 

methods. Realtime Kinematic (RTK) GPS achieves accuracies in the region of 2-4cm for 

elevation measurements (Pitri, 2007; Ahn et al., 2006; Grejner-Brzezinska, 2005; 

Mitasova et al., 2004). Even higher accuracies can be achieved with dual-frequency GPS 

by applying corrections from a local GPS reference station using post-processing 

(Featherstone & Stewart, 2001). 

GPS data are captured within a range of broadly representative natural, semi-natural and 

human-constructed land cover classes (table X.X) using a Trimble R8 DF GPS receiver. 

Validation data are captured using RTK survey (for densely vegetated areas) and using 

limited FastStatic survey (for paved and thinly vegetated areas). Five land cover types are 

evaluated (table X.X). 

 

 

Generic class Land cover type 

Natural Open terrain (sand, rock, soil, ploughed 

fields, lawns, golf courses). 

Natural Brush lands and low trees. 

Natural / semi-natural Tall weeds and crops. 

Semi-natural Forested areas fully covered by trees. 

Anthropogenic Urban areas with dense man-made structures. 

Table X. Land-cover classes evaluated (source ASPRS, 2004). 

 

 

2.3 External validation approach 

External validation is carried out using ArcGIS Geostatistical Analyst. The test land 

cover types are segregated prior to validation to avoid using a single global kriging model 

for all land cover types. The external validation process applied involves the following 

steps for each land cover type: 

 Isolation of the spatially autocorrelated trends (Universal kriging) 

 Fitting a suitable semi-variogram model for each individual land cover type 

 Cross-validation of the optimised interpolations (to isolate interpolation error) 

 External validation using DF GPS data captured with the chosen land cover types 

 

3. Preliminary results 

Initial tests of the methods outlined here revealed elevation errors of up to 1m in open 

coastal terrain 

 

2. Equations, Figures and Tables  

 



 

 

Equations should be centred on the page and numbered consecutively in the right-hand 

margin as (1), (2), etc.  They should be referred to in the text as, for example, equation 1.  

 

 

 

Table 1. Venues of Geocomputation conferences 1996-2000. 

 

 

 

 

 

Figure 1. The logo of the University of New South Wales. 

 

3. References and Citations  

IN text citations using Harvard system (Authority 1973, Learned and Expert 1982), 

although the work by Fudgit et al. (1997) is an exception.  

The reference list should be formatted as in this example, using 10pt font and 1cm 

hanging paragraphs for each reference. 

4. File format  

Abstracts should be submitted as files compatible with Microsoft Word (e.g. Word 

document, Rich Text format) or Acrobat (pdf). Files larger than 1MB should be sent as 

zipped archives. Abstracts should be submitted as email attachments and sent to: 

geocomputation@unsw.edu.au (note that there is a 10MB attachment limit on this 

server). The email should contain the following contact information for the corresponding 

author: name, institution, postal address, telephone number, email address. 

5. Deadline 

The submission deadline is 30th of June 2009. Authors will be notified whether they 

have been accepted for paper presentation or poster presentation by the end of August 

2009. Those accepted as poster presentations may be given the opportunity, at a later 

date, of presenting in a paper should some presenters withdraw.  

Any questions regarding the submission and publication process should be addressed 

to geocomputation@unsw.edu.au. 
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