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Abstract

The conjecturally perfect Kirillov–Reshetikhin (KR) crystals are known to be isomorphic as classical
crystals to certain Demazure subcrystals of crystal graphs of irreducible highest weight modules over affine
algebras. Under some assumptions we show that the classical isomorphism from the Demazure crystal to
the KR crystal, sends zero arrows to zero arrows. This implies that the affine crystal structure on these KR
crystals is unique.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The irreducible finite-dimensional modules over a quantized affine algebra U ′
q(g) were clas-

sified by Chari and Pressley [3,4] in terms of Drinfeld polynomials. We are interested in the
subfamily of such modules which possess a global crystal basis. Kirillov–Reshetikhin (KR) mod-
ules are finite-dimensional U ′

q(g)-modules Wr,s that were introduced in [7,8]. It is expected that
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each KR module has a crystal basis Br,s , and that every irreducible finite-dimensional U ′
q(g)-

module with crystal basis, is a tensor product of the crystal bases of KR modules.
The KR modules Wr,s are indexed by a Dynkin node r of the classical subalgebra (that is, the

distinguished simple Lie subalgebra) g0 of g and a positive integer s. In general the existence
of Br,s remains an open question. For type A

(1)
n the crystal Br,s is known to exist [18] and

its combinatorial structure has been studied [24]. In many cases, the crystals B1,s and Br,1 for
nonexceptional types are also known to exist and their combinatorics has been worked out in
[16,18] and [9,14], respectively.

Viewed as a Uq(g0)-module by restriction, Wr,s is generally reducible; its decomposition into
Uq(g0)-irreducibles was conjectured in [7,8]. This was verified by Chari [1] for the nontwisted
cases.

Kashiwara [13] conjectured that as classical crystals, many of the KR crystals (the ones con-
jectured to be perfect in [7,8]) are isomorphic to certain Demazure subcrystals of affine highest
weight crystals. Kashiwara’s conjecture was confirmed by Fourier and Littelmann [5] in the un-
twisted cases and Naito and Sagaki [22] in the twisted cases.

In this paper we prove that the classical isomorphism from the Demazure crystals to KR crys-
tals sends zero arrows to zero arrows (see Theorem 4.4). It is not an affine crystal isomorphism
but becomes an isomorphism after tensoring with an appropriate affine highest weight crystal.
This recovers some of the isomorphisms given by the Kyoto path model. We emphasize this is
accomplished without the assumption of perfectness of the KR crystals. The automorphisms on
the crystals that are used in the definition of the ground state path in the Kyoto path model, come
from affine Dynkin diagram automorphisms which can be calculated using the factorization of a
translation element in the extended affine Weyl group in our setting. For the proof of our results
we require the assumptions of regularity of KR crystals, the existence and uniqueness of a certain
special element u in a KR crystal, and the existence of automorphisms on KR crystals coming
from certain Dynkin automorphisms (see Assumption 1). We show that under these assumptions,
the KR crystals admit a unique affine crystal structure (see Corollary 4.6), and we give an algo-
rithm which shows that twofold tensor products of KR crystals are connected (see Corollary 6.1).
We expect that Assumption 1 holds, that is, if the existence of the KR crystals were established
these hypotheses could be removed.

In Section 2 we establish notation and review some results about the extended affine Weyl
group. The definition of Demazure crystals and KR crystals is given in Section 3. Section 4 con-
tains our main result stated in Theorem 4.4 showing that all zero arrows of the Demazure crystal
are present in the KR crystal. In Section 5 we provide explicit sequences of lowering operators
leading from the special element u of a KR crystal to all classical highest weight elements of the
KR crystal. The connectedness of tensor products of KR crystals and an application regarding
the algorithmic calculation of the combinatorial R-matrix can be found in Section 6.

2. Notation and basics

2.1. Affine Kac–Moody algebras

Let g be an affine Kac–Moody algebra with Cartan subalgebra h, Dynkin node set I =
{0,1, . . . , n}, Cartan matrix A = (aij )i,j∈I , realized by the set of linearly independent simple
roots {αi | i ∈ I } ⊂ h∗ and simple coroots {α∨

i | i ∈ I } ⊂ h, such that 〈α∨
i , αj 〉 = aij [10]. Let

d ∈ h be the scaling element, which is any element such that 〈d,αi〉 = 0 for i ∈ I \ {0} and
〈d,α0〉 = 1. Let (ai | i ∈ I ) be the unique tuple of relatively prime positive integers that give
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a linear dependence relation among the columns of A, and let (a∨
i | i ∈ I ) be the tuple for

the rows of A. Let δ = ∑
i∈I aiαi be the null root, θ = ∑

i∈I\{0} aiαi , and c = ∑
i∈I a∨

i α∨
i

the canonical central element. We have 〈d, δ〉 = a0. Let {Λi | i ∈ I } ⊂ h∗ be the fundamental
weights, which, together with δ/a0, are defined to the dual basis to the basis {α∨

i | i ∈ I } ∪ {d}
of h. In particular 〈α∨

i ,Λj 〉 = δij . Let P = ⊕
i∈I ZΛi ⊕ Z(δ/a0) ⊂ h∗ be the weight lattice,

P + = ⊕
i∈I Z�0Λi ⊕ Z(δ/a0) = {λ ∈ P | 〈α∨

i , λ〉 � 0 for all i ∈ I} the set of dominant weights
and Q = ⊕

i∈I Zαi ⊂ h∗ the root lattice. The level of a weight λ ∈ P is defined by 〈c,λ〉. Let
W be the affine Weyl group, generated by the simple reflections {si | i ∈ I }. W acts on P by
siλ = λ − 〈α∨

i , λ〉αi .
Let (· | ·) be the nondegenerate W -invariant symmetric form on h∗; it is defined by (αi | αj ) =

a∨
i a−1

i aij for i, j ∈ I , (αi | Λ0) = 0 for i ∈ I \{0}, (α0 | Λ0) = a−1
0 , and (Λ0 | Λ0) = 0. One may

check that [10, (6.4.1)]

(θ | θ) = 2a0 =
{

4 for A
(2)
2n ,

2 otherwise.
(2.1)

The pairing (· | ·) induces an isomorphism ν :h → h∗ given by 〈ν(h),h′〉 = (h | h′) for all
h,h′ ∈ h. So ν(α∨

i ) = ai(a
∨
i )−1αi for i ∈ I , ν(d) = a0Λ0, and ν(c) = δ. Define θ∨ ∈ h by

ν(θ∨) = 2θ/(θ | θ) = θ/a0.
Let g0 ⊂ g be the simple Lie subalgebra whose Dynkin node set is I \ {0}, with Weyl group

W0 ⊂ W , root lattice Q0, weight lattice P0, and fundamental weights {ωi | i ∈ I \ {0}} ⊂ P0.
Let P ′ = P/Z(δ/a0). The natural projection P ′ → P0 has a section P0 → P ′ defined by

ωi �→ Λi − a∨
i Λ0 for i ∈ I \ {0}. The image of this section is the set of elements in P ′ of level

zero.

2.2. Dynkin automorphisms

Let X denote the affine Dynkin diagram and Aut(X) denote the group of automorphisms of X.
By definition an element of Aut(X) is a permutation of the Dynkin node set I which preserves
the kind of bonds between nodes. Observe that

aτ(i) = ai,

a∨
τ(i) = a∨

i ,
for all i ∈ I and τ ∈ Aut(X). (2.2)

There is an action of Aut(X) on P given by

σ(Λi) = Λσ(i), for i ∈ I,

σ (δ) = δ,

for σ ∈ Aut(X). By (2.2) this action restricts to an action of Aut(X) on P0 called the level zero
action.

2.3. Translations

For α ∈ P0, define the element tα ∈ Aut(P ) by [10, (6.5.2)]
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tα(λ) = λ + 〈c,λ〉α −
(

(λ | α) + 1

2
(α | α)〈c,λ〉

)
δ. (2.3)

The map α �→ tα defines an injective group homomorphism P0 → Aut(P ) whose image shall be
denoted T (P0). For any w ∈ W0,

wtαw−1 = tw(α). (2.4)

Therefore, W0 �T (P0) acts on P . There is an induced action of W0 �T (P0) on P ′ that preserves
the level of a weight. For every m ∈ Z there is an action of W0 � T (P0) on P0 called the level
m action, given by w ∗m μ = w(mΛ0 + μ) − mΛ0 for μ ∈ P0. Under the level one action, the
element tα is precisely translation by α.

2.4. Extended affine Weyl group

For each i ∈ I \ {0}, define ci = max(1, ai/a
∨
i ); these constants were introduced in [7]. Using

the Kac indexing of the affine Dynkin diagrams [10, Table Fin, Aff1 and Aff2], we have ci = 1
except for ci = 2 for g = B

(1)
n and i = n, g = C

(1)
n and 1 � i � n − 1, g = F

(1)
4 and i = 3,4, and

c2 = 3 for g = G
(1)
2 . Consider the sublattices of P0 given by

M =
⊕

i∈I\{0}
Zciαi = ZW0 · θ/a0,

M̃ =
⊕

i∈I\{0}
Zciωi.

It is easy to check that M ⊂ M̃ and that the action of W0 on P0 restricts to actions on M and M̃ .
Let T (M̃) (respectively T (M)) be the subgroup of T (P0) generated by tλ for λ ∈ M̃ (respectively
λ ∈ M).

There is an isomorphism [10, Proposition 6.5]

W ∼= W0 � T (M) (2.5)

as subgroups of Aut(P ). Under this isomorphism we have

s0 = tθ/a0sθ . (2.6)

Define the extended affine Weyl group to be the subgroup of Aut(P ) given by

W̃ = W0 � T (M̃). (2.7)

When g is of untwisted type, M ∼= Q∨, M̃ ∼= P ∨, ciωi = ν(ω∨
i ), and ciαi = ν(α∨

i ) for i ∈ I \{0}.
Let C ⊂ P ⊗Z R be the fundamental chamber, the set of elements λ such that 〈α∨

i , λ〉 � 0 for
all i ∈ I . Define the subgroup Σ ⊂ W̃ to be the set of elements that send C into itself.

It follows from (2.4) and (2.5) that W is a normal subgroup of W̃ . Thus Σ acts on W by
conjugation. Since the Weyl chambers adjacent to C are precisely those of the form si(C) for
i ∈ I , the element τ ∈ Σ induces a permutation (also denoted τ ) of the set I given by
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τsiτ
−1 = sτ(i) for i ∈ I. (2.8)

Since the braid relations in W are preserved, Σ is a subgroup of Aut(X).

2.5. Special automorphisms

We identify the subgroup Σ explicitly. Say that an affine Dynkin node i ∈ I is special if there
is an automorphism τ ∈ Aut(X) of the affine Dynkin diagram such that τ(i) = 0. In the untwisted
case, i is special if and only if ω∨

i is a minuscule coweight. Let I 0 ⊂ I denote the set of special
vertices. Explicitly, using the Kac labeling [10]:

I 0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0,1, . . . , n} for A
(1)
n ,

{0,1} for B
(1)
n , A

(2)
2n−1,

{0, n} for C
(1)
n , D

(2)
n+1,

{0,1, n − 1, n} for D
(1)
n ,

{0,1,5} for E
(1)
6 ,

{0,6} for E
(1)
7 ,

{0} otherwise.

Proposition 2.1. For each i ∈ I 0 there is a unique element τi ∈ Σ such that τi(i) = 0. Moreover,
Σ = {τi | i ∈ I 0}.

We call τi the special automorphism associated with i ∈ I 0.
Note that every Dynkin automorphism is determined by its action on I 0. We describe the

special automorphisms explicitly. τ0 is the identity automorphism. If g is of untwisted affine type
and i ∈ I 0 then for all j ∈ I 0, τi(j) = k ∈ I 0 where −ωi + ωj

∼= ωk mod Q0 and ω0 = 0 by
convention. For g of twisted type the only nonidentity (special) automorphisms are the elements
of Aut(X) which on I 0 are given by τ1 = (0,1) in type A

(2)
2n−1 and τn = (0, n) in type D

(2)
n+1.

We now specify Σ explicitly as a subgroup of permutations of I 0. In all cases but D
(1)
n and n

even, Σ is a cyclic group. This determines τi and Σ completely except for types A
(1)
n and D

(1)
n .

For A
(1)
n , Σ ∼= Z/(n + 1)Z where τi(j) = j − i mod (n + 1) for all i, j ∈ I 0. For D

(1)
n and n

odd, Σ is cyclic with τn−1 = (0, n,1, n − 1), τ1 = (0,1)(n − 1, n) and τn = (0, n − 1,1, n) in
cycle notation acting on I 0. For n even, Σ ∼= Z/2Z × Z/2Z with τ1 = (0,1)(n − 1, n), τn−1 =
(0, n − 1)(1, n) and τn = (0, n)(1, n − 1).

Proposition 2.2. Σ ∼= M̃/M via τi �→ ωi + M for i ∈ I 0 and

W̃ ∼= W � Σ (2.9)

as subgroups of Aut(P0).

If i ∈ I 0 then ci = 1 and we have

τi = w
ωi t−ωi

(2.10)
0
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where, for λ ∈ P +
0 ,

wλ
0 ∈ W0 is the shortest element such that wλ

0λ is antidominant. (2.11)

2.6. Dynkin automorphisms revisited

Let X0 be the Dynkin diagram for the classical subalgebra g0 of g.

Lemma 2.3. There is a group homomorphism

Aut(X) → Aut(X0),

σ �→ σ ′ (2.12)

where σ ′(i) = j if and only if σ(ωi) ∈ W0ωj .

Proof. We first claim that there is a group action of Aut(X) on W0 \ P0 defined by σ(W0λ) =
W0σλ where Aut(X) acts on P0 via the level zero action. The level zero action of s0 on P0
is the same as that of sθ ∈ W0, by (2.6) and (2.3). Thus for the level zero action, Wλ = W0λ

for λ ∈ P0. By (2.8), σW0σ
−1 ⊂ W as it is generated by sσ(i) for i ∈ I \ {0}. Thus we have

W0σW0τλ = W0(σW0σ
−1)στλ = W0στλ. Therefore, Aut(X) acts on W0 \ P0.

Next we show that this action restricts to an action on F ⊂ W0 \ P0 where F is the set of
W0-orbits of fundamental weights ωi for i ∈ I \ {0}. Due to the above group action we need only
that σF ⊂ F for generators σ of Aut(X). By (2.2) we have σ(ωr) = ωσ(r) − a∨

r ωσ(0) where we
write ωi = Λi − a∨

i Λ0 for all i ∈ I . Using this one may straightforwardly check the lemma for
each affine root system. �

Aut(X0) is trivial except in the following cases, where the homomorphism is described ex-
plicitly. The elements of Aut(X) and Aut(X0) are given by their action as permutations of I 0

and I 0 \ {0}, respectively.

(1) Aut(An) is generated by the involution i �→ n + 1 − i for i ∈ I \ {0}. In this case Aut(A(1)
n )

is the dihedral group D2(n+1). For σ ∈ Aut(A(1)
n ), σ ′ is the nontrivial element in Aut(An) if

and only if σ reverses orientation.
(2) Aut(Dn) is generated by (n−1, n) when n > 4. In this case Aut(D(1)

n ) is generated by (0,1),
(n − 1, n) and (0, n)(1, n − 1). All these map to the nontrivial element of Aut(Dn) except in
the case that n is even, when (0, n)(1, n − 1) maps to the identity.

(3) Aut(D4) is the symmetric group on the three “satellite” vertices {1,3,4}. Aut(D(1)
4 ) is the

symmetric group on the vertices {0,1,3,4} and is generated by (0, i) for i ∈ {1,3,4}. The
generator (0, i) is sent to the element (j, k) in Aut(D4) where {0, i, j, k} = {0,1,3,4} as
sets.

(4) Aut(E6) is generated by (1,5). Aut(E(1)
6 ) is isomorphic to the S3 that permutes the special

vertices {0,1,5}. Then each of the elements of order two in Aut(E(1)
6 ) is sent to the nontrivial

element of Aut(E6).

Remark 1. In all cases, for all τ ∈ Σ , τ ′ is the identity in Aut(X0). However for σ = (0,1) ∈
Aut(D(1)

n ) we have σ ′ = (n − 1, n) ∈ Aut(Dn).
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3. Crystals

3.1. Definition of crystals

A P -weighted I -crystal is a set B , equipped with Kashiwara operators ei, fi :B → B � {∅},
and weight function wt :B → P such that ei(fi(b)) = b if fi(b) �= ∅, fi(ei(b)) = b if ei(b) �= ∅,
wt(fi(b)) = wt(b) − αi if fi(b) �= ∅, wt(ei(b)) = wt(b) + αi if ei(b) �= ∅, and 〈α∨

i ,wt(b)〉 =
ϕi(b) − εi(b) where ϕi(b) = min{m | f m

i (b) �= ∅} and εi(b) = min{m | em
i (b) �= ∅} are assumed

to be finite for all b ∈ B and i ∈ I . If fi(b) �= ∅ we draw an arrow colored i from b to fi(b). The
connected components of the graph obtained by removing all arrows from B except the arrows
colored i, are called the i-strings of B . We write ε(b) = ∑

i∈I εi(b)Λi and ϕ(b) = ∑
i∈I ϕi(b)Λi .

An I -crystal B is regular if, for each subset K ⊂ I with |K| = 2, each K-component of B is
isomorphic to the crystal basis of an irreducible integrable highest weight U ′

q(gK)-module where
gK is the subalgebra of g with simple roots αi for i ∈ K .

The crystal reflection operator Si :B → B is defined by the property that Si(b) is the unique
element in the i-string of b such that εi(Si(b)) = ϕi(b) or equivalently ϕi(Si(b)) = εi(b). This
defines an action of the Weyl group W on B if B is regular [12].

If B and B ′ are P -weighted I -crystals, their tensor product B ⊗ B ′ is a P -weighted I -crystal
as follows (we use the opposite of Kashiwara’s convention). As a set B ⊗B ′ is just the Cartesian
product B ×B ′ where traditionally one writes b ⊗ b′ instead of (b, b′). The Kashiwara operators
are given by

fi(b ⊗ b′) =
{

fi(b) ⊗ b′ if εi(b) � ϕi(b
′),

b ⊗ fi(b
′) if εi(b) < ϕi(b

′),

ei(b ⊗ b′) =
{

ei(b) ⊗ b′ if εi(b) > ϕi(b
′),

b ⊗ ei(b
′) if εi(b) � ϕi(b

′).

Given any P -weighted I -crystal B and Dynkin automorphism σ , there is a P -weighted
I -crystal Bσ whose vertex set is written {bσ | b ∈ B} and whose edges are given by fi(b) = b′
in B if and only if fσ(i)(b

σ ) = (b′)σ . The weight function satisfies wt(bσ ) = σ(wt(b)) where
the second σ is the automorphism of P defined by σ . A similar statement holds for P0-weighted
I -crystals, using the level zero action of σ on P0 defined in Section 2.2.

Given any P -weighted I -crystal B , define the contragradient dual crystal B∨ = {b∨ | b ∈ B}
with wt(b∨) = −wt(b) and fi(b) = b′ if and only if ei(b

∨) = b′∨.

3.2. Branching

The following ideas have been applied extensively (in [18,25], for example) to identify the
0-arrows in KR crystals. We shall use them here for the same purpose.

Let B be the crystal graph of a U ′
q(g)-module and K ⊂ I . A K-component of B is a connected

component of the graph obtained from B by removing all i-edges for i /∈ K . A K-highest weight
vector is an element b ∈ B such that εi(b) = 0 for all i ∈ K . Suppose K is a proper subset
of I . Since the subalgebra of g with simple roots {αi | i ∈ K} is semisimple, each K-component
of B has a unique K-highest weight vector. When K = I \ {0} we call the K-components and
K-highest weight vectors classical components and highest weight vectors.

Suppose σ is a Dynkin automorphism that fixes K and induces an automorphism (also de-
noted σ ) on B that sends i-arrows to σ(i)-arrows for all i ∈ I . Then by definition σ preserves
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i-arrows for all i ∈ K . There is a projection from the classical weight lattice to that of the subal-
gebra with simple roots αi for i ∈ K ; we refer to the latter as the K-weight lattice. In particular
σ permutes the collection of K-components, sending K-highest weight vectors to those with the
same K-weight (that is, ϕi ◦ σ = ϕi for i ∈ K).

3.3. Demazure modules and crystals

Let g be a symmetrizable Kac–Moody algebra and Uq(g) its quantized universal enveloping
algebra. For a dominant weight Λ denote by V (Λ) the irreducible integrable highest weight
Uq(g)-module with highest weight Λ. Write B(Λ) for its crystal basis. Let b be a Borel Lie
subalgebra of g. For μ ∈ W · Λ let uμ be a generator of the line of weight μ in V (Λ). Write
μ = wΛ where w is shortest in its coset wWΛ and WΛ = {w ∈ W | wΛ = Λ}. When writing
an element wΛ ∈ W · Λ we shall always assume w is of minimum length. Define the Demazure
module

Vw(Λ) := Uq(b) · uw(Λ).

It is known that Vw(Λ) has a crystal base Bw(Λ) [11]; it is the full subgraph of B(Λ) whose
vertex set consists of the elements in B(Λ) that are reachable by raising operators, from the
unique element uwΛ ∈ B(Λ) of weight wΛ. We shall make use of the following result. By abuse
of notation let

fw(b) = {
f

mN

iN
· · ·f m1

i1
(b) | mk ∈ Z�0

}
(3.1)

where w = siN · · · si1 is any fixed reduced decomposition of w. It is known [15,20,21] that as
sets,

Bw(Λ) = fw(uΛ). (3.2)

For g affine, let w ∈ W̃ . By (2.9) we may express it uniquely as w = zτ where z ∈ W and τ ∈ Σ .
We define the Demazure module to be

Vw(Λ) := Vz

(
τ(Λ)

)
.

Its crystal graph is denoted Bw(Λ) = Bz(τΛ). For a dominant λ ∈ M̃ , let λ∗ = −w0(λ), where
w0 is the longest element in W0. Define D(λ, s) = Vt−λ∗ (sΛ0) and by abuse of notation,
D(λ, s) = Bt−λ∗ (sΛ0). For any σ ∈ Aut(X) let Dσ (λ, s) = Bt−σ(λ)∗ (sΛσ(0)); it is obtained from
D(λ, s) by changing every i arrow into a σ(i) arrow.

3.4. KR crystals

Kirillov–Reshetikhin (KR) modules Wr,s , labeled by (r, s) ∈ I \ {0} × Z>0, are finite-
dimensional U ′

q(g)-modules. See [7] for the precise definition. It is conjectured that Wr,s has
a global crystal basis Br,s .

In [7] a conjecture is given for the decomposition of each Kirillov–Reshetikhin (KR) module
Wr,cr s into its g0-components. Chari [1] proved this conjecture for the nonexceptional untwisted
algebras and for the exceptional cases for the nodes r such that either r ∈ I 0 or ωr is the highest
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root. Recently the G2 case was treated in full [2]. In [5], the g0-structure of the Demazure mod-
ules was calculated for the same cases as in [1], and it was verified that the Demazure and KR
modules agree as g0-modules. In addition, it was shown in [6] that no matter what the precise
g0-structure is, the Demazure and the KR modules agree as g0-modules for all untwisted alge-
bras. Naito and Sagaki [22] proved the conjectures of [7] on the level of crystals for the twisted
cases under the assumption that the KR crystals for the untwisted algebras exist. In unpublished
work, Naito and Sagaki did the same construction for the twisted cases on the Demazure mod-
ules.

Remark 2. Assuming that Br,cr s exists, the Demazure crystal D(crωr, s) and the KR crystal
Br,cr s have the same classical crystal structure.

In this paper we assume that the KR crystal Br,cr s has the properties of Assumption 1, which
we expect to hold if the KR crystals exist. In the next section we will see that with these assump-
tions the Demazure crystal sits inside the KR crystal (see Theorem 4.4) and that the KR crystal is
unique (see Corollary 4.6). For types B

(1)
n , D

(1)
n , and A

(2)
2n−1 let σ be the Dynkin automorphism

exchanging the Dynkin nodes 0 and 1 and fixing all others. For types C
(1)
n and D

(2)
n+1 let σ be

the Dynkin automorphism defined by i �→ n − i for all i ∈ I . We also write σ for the induced
automorphism of P .

Assumption 1. The KR crystal Br,cr s has the following properties:

(1) Br,cr s is regular.
(2) There is a unique element u ∈ Br,cr s such that

ε(u) = sΛ0 and ϕ(u) = sΛτ(0),

where t−crωr = wτ with w ∈ W and τ ∈ Σ .
(3) For all types different from A

(2)
2n , Br,cr s admits the automorphism corresponding to σ (also

denoted σ ) such that

ε ◦ σ = σ ◦ ε, ϕ ◦ σ = σ ◦ ϕ. (3.3)

For type A
(2)
2n we assume that Br,cr s is given explicitly by the virtual crystal construction

in [23].

4. Relation between Demazure and KR crystals

In this section we show that the Demazure crystal sits inside the KR crystals in Theorem 4.4
and, assuming their existence, that the KR crystals are unique in Corollary 4.6.

The main technique that we use in the proof is a decomposition of the translation elements
t−crωr that ends in a word for the subalgebra associated to the nodes {0,1, . . . , r − 1} of the
Dynkin diagram in analogy to the results of [5].

Proposition 4.1. Let g be of nonexceptional affine type, r ∈ I \ I 0 and t−crωr = wτ for w ∈ W

and τ ∈ Σ . Then a reduced word for the minimum length coset representative w2 in W0w is
given by
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w2 =

⎧⎪⎪⎨⎪⎪⎩
∏1

k=i s0(s2s3 · · · s2k−1)(s1s2 · · · s2k−2) for r = 2i and B
(1)
n , D

(1)
n , A

(2)
2n−1,∏1

k=i s0(s2s3 · · · s2k)(s1s2 · · · s2k−1) for r = 2i + 1 and B
(1)
n ,D

(1)
n ,A

(2)
2n−1,∏1

k=i s0(s1s2 · · · sk−1) for r = i and C
(1)
n , A

(2)
2n , D

(2)
n+1,

(4.1)

where the index k decreases as the product is formed from left to right.

Proof. All nodes for A
(1)
n are special so we may assume g is not of this type.

Applying the sequence of reflections in (4.1) to Λτ(0), we see that each reflection sj changes
the weight by a positive multiple of αj , and the final weight is Λ0 + crωr − iδ. It follows that
(4.1) yields a reduced decomposition of some element w2 ∈ W .

Using (2.3), in all cases we have

wΛτ(0) = t−crωr τ
−1Λτ(0) = Λ0 − crωr − iδ/a0.

Since r /∈ I 0 we have w
ωr

0 ωr = −ωr where w
ωr

0 is defined in (2.11). Moreover, w
ωr

0 is also the
shortest element of W0 sending Λ0 + crωr − iδ/a0 to Λ0 − crωr − iδ/a0. It follows that w =
w

ωr

0 w2 is a length-additive factorization and that w2 is the minimum length coset representative
in W0w. �
Remark 3. Let K = {0,1, . . . , r − 1} ⊂ I , gK ⊂ g the simple subalgebra with Dynkin nodes K ,
{ω̃j | j ∈ K} the fundamental weights for gK , and WK = 〈sj | j ∈ K〉 ⊂ W the Weyl group

of gK . This given, we have w2 = w
ω̃τ(0)

0 where w
ω̃j

0 ∈ WK is defined with respect to gK .

Lemma 4.2. All of the weights of Br,cr s are in the convex hull of the W0-orbit W0 · crsωr .
Moreover, for every μ ∈ W0 · crsωr , there is a unique element uμ ∈ B(crsωr) ⊂ Br,cr s of the
extremal weight μ.

Proof. By [5,22] the classical decomposition of D(crωr, s) agrees with that specified in [7]. In
every case the above condition holds. �
Lemma 4.3. Let g be of nonexceptional affine type, r ∈ I \ I 0, s ∈ Z>0, k < r where B(crsωk)

occurs in Br,cr s , and b = ucr sωk
∈ B(crsωk) ⊂ Br,cr s . Define

y =
{

S2 · · ·Sk+1S1 · · ·Sk(b) for B
(1)
n , D

(1)
n , A

(2)
2n−1,

S1 · · ·Sk(b) for C
(1)
n , D

(2)
n+1, A

(2)
2n .

Then

f s
0 (y) =

{
ucr sωk+2 for B

(1)
n , D

(1)
n , A

(2)
2n−1,

ucr sωk+1 for C
(1)
n , D

(2)
n+1, A

(2)
2n .

(4.2)
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Proof. By definition the element y is an extremal weight vector within the classical crystal
B(crsωk). By weight considerations one may check that

y =
{

f s
2 · · ·f s

k f s
k+1f

s
1 f s

2 · · ·f s
k−1f

s
k (b) for B

(1)
n , D

(1)
n , A

(2)
2n−1,

f
cr s
1 f

cr s
2 · · ·f cr s

k (b) for C
(1)
n , D

(2)
n+1, A

(2)
2n .

We claim that

ε(y) = s(Λ0 + Λ2), ϕ(y) = s(Λ0 + Λk+2), for B(1)
n , D(1)

n , A
(2)
2n−1, k > 0,

ε(y) = s(Λ0 + crΛ1), ϕ(y) = s(Λ0 + crΛk+1), for C(1)
n , A

(2)
2n , D

(2)
n+1, k > 0,

ε(y) = sΛ0, ϕ(y) = sΛ0, for k = 0.

By extremality and Lemma 4.2, y is in the indicated position within its i-strings for i ∈ I \ {0}.
It remains to show that ε0(y) = ϕ0(y) = s and (4.2) holds. In each case we shall use Assump-
tion 1(3) either for the existence of a crystal automorphism σ on Br,cr s or, in type A

(2)
2n , for the

virtual crystal construction of Br,cr s .
We begin with type D

(1)
n . We have cr = 1 and μ := wt(y) = (02, sk,0n−k−2). Here we realize

P0 ⊂ ((1/2)Z)n with ith standard basis element εi , with ωi = (1i ,0n−i ) for 1 � i � n−2 (we do
not need the spin weights) and αi = εi − εi+1 for 1 � i � n − 1. Let b′ = usωk+2 ∈ B(sωk+2) ⊂
Br,s . We have ϕ0(b

′) = 0, for otherwise f0(b
′) ∈ Br,s has weight contradicting Lemma 4.2. Since

〈α∨
0 ,wt(b′)〉 = 2s, we have ε0(b

′) = 2s.

For type D
(1)
n , the automorphism σ of Br,cr s satisfies e0 = σ ◦ e1 ◦ σ . Define z = es

1(σ (b′)).
It suffices to show that

y = σ(z).

Let K = {2,3, . . . , n} ⊂ I . The subalgebra of g with simple roots αi for i ∈ K , is of type Dn−1.
For this reason we shall refer to Dn−1-components and Dn−1-highest weight vectors instead of
K-components and K-highest weight vectors. Our proof rests on the following fact:

Br,s contains a unique element of weight μ that satisfies ε1 = 0 and whose associated Dn−1-
highest weight vector has Dn-weight λ := (0, sk,0n−k−1).

For the classical components of Br,s that contain Dn−1-components of weight λ, are precisely
those of the form B((s − t)ωk + tωk+2) for 0 � t � s, and only for t = 0 does the classical
component contain an element of weight μ with ε1 = 0 (and by extremality B(sωk) contains a
unique element of weight μ).

y clearly satisfies the above property. It suffices to show that σ(z) does also.
σ(b′) is a Dn−1-highest weight vector with wt(σ (b′)) = (−s, sk+1,0n−k−2). So wt(z) = μ.

By weight considerations and Lemma 4.2, z′ = Sk+1 · · ·S2(z) is a Dn−1-highest weight vector of
weight λ. Therefore, σ(z) has weight σ(μ) = μ and has associated Dn−1-highest weight vector
σ(z′), which has weight σ(λ) = λ. Since the Dynkin nodes 0 and 1 are nonadjacent we have
ε1(σ (z)) = ε1(e

s
0(b

′)) = ε1(b
′) = 0. Thus σ(z) fulfills the above criteria and so must be equal

to y.
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The proof is analogous for types B
(1)
n and A

(2)
2n−1 using the same set K , which defines subal-

gebras of types Bn−1 and Cn−1, respectively.
For type C

(1)
n we have cr = 2 for all 1 � r � n − 1. Let K = {1,2, . . . , n − 1}; the associated

subalgebra is of type An−1. Here we realize P0 ∼= Zn with ωi = (1i ,0n−i ) for 1 � i � n and
αi = εi − εi+1 for 1 � i � n − 1 and αn = 2εn. Our argument uses the fact that

Br,2s contains a unique element of weight μ := (0, (2s)k,0n−k−1) such that εn = 0 and whose
associated An−1-highest weight vector has Cn-weight 2sωk .

For the classical components in Br,2s that contain such an An−1-component, are precisely those
of the form B(2(s − t)ωk +2tωk+1) for 0 � t � s, and among these, only for t = 0 does the clas-
sical component contain an element of weight μ for which εn = 0 (and by extremality B(2sωk)

contains a unique element of weight μ).
By construction y satisfies this property. It suffices to show that σ(z) does also, where z =

es
n ◦ σ(b′) and b′ = u2sωk+1 ∈ B(2sωk+1) ⊂ Br,s .

We have ϕ0(b
′) = 0 for otherwise f0(b

′) ∈ Br,2s would have weight contradicting Lemma 4.2.
Since 〈α∨

0 ,wt(b′)〉 = 2s we have ε0(b
′) = 2s.

σ(b′) is an An−1-highest weight vector of weight σ(2sωk+1) = (0n−k−1, (−2s)k+1). There-
fore, z has weight (0n−k−1, (−2s)k,0) and associated An−1-highest weight vector z′ =
Sn−k · · ·Sn−1(z), which has weight (0n−k, (−2s)k). It follows that σ(z) has weight μ and its as-
sociated An−1-highest weight vector has weight 2sωk . Now εn(σ (z)) = εn(e

s
0(b

′)) = εn(b
′) = 0

since the Dynkin nodes 0 and n are nonadjacent. We have shown that σ(z) satisfies the above
criteria and so must be equal to y.

Type D
(2)
n+1 is similar to type C

(1)
n .

For type A
(2)
2n , the above kind of argument is not available since A

(2)
2n admits no nontrivial

Dynkin automorphism. Instead we apply virtual crystals. Under Assumption 1(3), by [23] the
crystal Br,s is realized as the subset of V r,s = B

2n−r,s
A ⊗ B

r,s
A of type A

(1)
2n−1 generated from

usω2n−r
⊗ usωr by the virtual crystal operators f̂i = fif2n−i for 1 � i � n and f̂0 = f 2

0 where fi

are the crystal operators of the A
(1)
2n−1-crystal V r,s . Denote the virtualization by v :Br,s ↪→ V r,s .

We perform explicit computations using the tableau realization of Uq(A2n−1)-crystals in [19]
and 0-arrows given by [24]. We have

v(b) = (2n − k)s · · · (r + 2)s(r + 1)sks · · ·2s1s ⊗ rs · · ·2s1s ,

v(y) = (2n)s(2n − k − 1)s · · · (r + 2)s(r + 1)s(k + 1)s · · ·3s2s ⊗ rs · · ·2s1s ,

v
(
f s

0 y
) = (2n − k − 1)s · · · (r + 2)s(r + 1)s(k + 1)s · · ·2s1s ⊗ rs · · ·2s1s = v(usωk+1). �

The next theorem is the main result of this paper. It shows that under the isomorphism be-
tween the Demazure and the KR crystals as classical crystals zero arrows map to zero arrows.
In addition it yields the isomorphism (4.3) without the assumption that the KR crystal Br,cr s is
perfect.

Theorem 4.4. Let (r, s) ∈ I \ {0} × Z>0. Suppose that r ∈ I 0, or crωr = θ , or g is of nonex-
ceptional affine type. Write t−crω∗

r
= wτ with w ∈ W and τ ∈ Σ . Then there is an affine crystal

isomorphism
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B(sΛτ(0)) ∼= Br,cr s ⊗ B(sΛ0),

usΛτ(0)
�→ u′ := u ⊗ usΛ0 (4.3)

where u is the element specified by Assumption 1(2). It restricts to an isomorphism

D(crωr, s) ∼= Br,cr s ⊗ usΛ0 (4.4)

where both sides of (4.4) are regarded as full subcrystals of their respective sides in (4.3).

Proof. Let w2 be the minimum length coset representative in W0w. Then w = w1w2 is a length-
additive factorization with w1 = ww−1

2 ∈ W0. We choose a reduced word of w by concatenating
reduced words of w1 and w2. We claim that it suffices to establish the following assertions.

(A1) There is a bijection

Bw2(sΛτ(0)) → B ′ := fw2(u
′),

usΛτ(0)
�→ u′ (4.5)

that preserves all arrows in fw2 .
(A2) B ′ ⊂ Br,cr s ⊗ usΛ0 .

Suppose (A1) and (A2) hold. Since w1 ∈ W0, Bw2(sΛτ(0)) contains all the classical highest
weight vectors of D(crωr, s). By (A1) these classical highest weight vectors correspond to the
classical highest weight vectors in B ′. Let B ′′ ⊂ Br,cr s ⊗ B(sΛ0) be the classical subcrystal
generated by B ′; by (A2) B ′′ ⊂ Br,cr s ⊗ usΛ0 . By Demazure theory for highest weight modules
over simple Lie algebras, the bijection (4.5) extends uniquely to a classical crystal isomorphism
D(crωr, s) ∼= B ′′. By Assumption 1 and Remark 2 we have B ′′ = Br,cr s ⊗ usΛ0 . So we have a
bijection

D(crωr, s) ∼= Br,cr s ⊗ usΛ0 (4.6)

which is an isomorphism of classical crystals that extends the bijection (4.5). It follows that
Br,cr s ⊗ usΛ0 and, therefore, Br,cr s ⊗ B(sΛ0), have a unique affine highest weight vector,
namely, u′. By [17, Proposition 2.4.4] there is an affine crystal isomorphism (4.3). It must extend
the bijection (4.6), and the theorem follows.

We prove (A1) and (A2) by cases.
If r ∈ I 0 then by (2.10) w2 is the identity, Bw2(sΛτ(0)) = {usΛτ(0)

}, B ′ = {u′}, cr = 1, and
Br,s ∼= B(sωr) as a classical crystal with classical highest weight vector u. In this case (A1) and
(A2) are immediate. This is the only case where ω∗

r �= ωr .
If crωr = θ then τ is the identity, w1 = sθ and w2 = s0. By Assumption 1(2), Bw2(sΛ0) and

B ′ are the 0-strings of usΛ0 and u′, respectively. The elements are at the dominant ends of their
respective 0-strings, which both have length s. This gives (A1). (A2) follows by the signature
rule and Assumption 1(2).

Otherwise we assume that g is of nonexceptional affine type and r ∈ I \ I 0. Then w2 is given
in Proposition 4.1. We use the notation of Remark 3 throughout the rest of the proof. Since
K � I , gK is a simple Lie algebra and Assumption 1(1) implies that Br,cr s decomposes into a
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direct sum of K-components, each of which is isomorphic to the crystal graph of an irreducible
highest weight module for Uq(gK). We have the K-crystal isomorphisms

Bw2(sΛτ(0)) ∼= Bw2(sω̃τ(0)) = B(sω̃τ(0)) ∼= B ′. (4.7)

The first isomorphism holds by restriction from an I -crystal to a K-crystal. The equality holds
by Remark 3 and Demazure theory for the simple Lie algebra gK . We have Bw2(sω̃τ(0)) ∼= B ′,
since both sides are generated by fw2 (with w2 ∈ WK ) applied to K-highest weight vectors of
K-weight sω̃τ(0); see Assumption 1(2). This establishes (A1).

For types D
(1)
n , B

(1)
n , A

(2)
2n−1 we have cr = 1 for all r and τ = τ0 or τ = τ1 (and τ(0) = 0 or

τ(0) = 1) according as r is even or odd. Here u = usωτ(0)
∈ B(sωτ(0)) ⊂ Br,cr s , where ω0 = 0 by

convention.
We consider the decomposition of Br,cr s into K-components, which we call Dr -components.

Note that 0 and 1 are the spinor nodes in Dr . Now ucr sωr ∈ Br,cr s is a Dr -lowest weight vector
of Dr -weight −2sω̃0. Therefore, there is a Dr -crystal embedding

B(2sω̃0) ⊗ usΛ0 → B(sω̃τ(0))
⊗2 ⊗ B(sΛ0),

ucr sωr ⊗ usΛ0 �→ u⊗2
−sω̃0

⊗ usΛ0 .

But by Lemma 4.3 there is a Dr -path from u′ to ucr sωr ⊗ usΛ0 that never changes the right-hand
tensor factor. Therefore, there is a Dr -embedding

B ′ → B(sω̃τ(0))
⊗2 ⊗ B(sΛ0),

u′ = u ⊗ usΛ0 �→ usω̃τ(0)
⊗ u−sω̃0 ⊗ usΛ0 .

The image of u′ is uniquely determined by Assumption 1(2) since usω̃τ(0)
⊗ u−sω̃0 is the unique

element of B(sω̃τ(0))
⊗2 with ε = sΛ0 and ϕ = sΛτ(0).

The form of the image of u′ now clearly shows that when fw2 is applied to u′ it only acts on
the left-hand tensor factor. This implies (A2).

Next let us consider type C
(1)
n for r /∈ I 0; for such r , cr = 2 and τ is the identity. Here u is the

unique element in the one-dimensional Cn-crystal in Br,2s . We decompose Br,2s as a K-crystal,
which is a Cr -crystal in this case. All other arguments go through as for type D

(1)
n .

Types D
(2)
n+1 and A

(2)
2n follow in the same fashion. In this case the decomposition of Br,cr s as

a K-crystal is a Br crystal. �
Remark 4. We expect Theorem 4.4 to hold for any affine algebra g and any Dynkin node r ∈
I \ {0}. Our proof requires a special property, that the minimum length coset representative w2
of Proposition 4.1 has a certain form, namely, in the notation of (2.11), w2 = wλ

0 where λ is a
fundamental weight for some subalgebra gK where K � I . This property of w2 does not hold
for the trivalent node in type E

(1)
6 . For such nodes a different strategy is required.

Remark 5. In the notation of Lemma 2.3 we expect that for any affine algebra g with affine
Dynkin diagram X and any σ ∈ Aut(X), there is a bijection σ :Br,cr s → Bσ ′(r),cr s such that (3.3)
holds. In particular, for any σ ∈ Aut(X), we expect that there is an automorphism σ on Br,cr s
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satisfying (3.3) if and only if σ ′(r) = r . By Remark 1 this means that every special Dynkin auto-
morphism σ ∈ Σ should induce an automorphism of each Br,cr s . In contrast, for the nonspecial
automorphism σ = (0,1) of D

(1)
n , σ ′ = (n − 1, n) is not the identity and σ induces a bijection

Bn−1,s → Bn,s satisfying (3.3).

Remark 5 comes into play in Section 6 and the following theorem.

Theorem 4.5. For the cases in Assumption 1(3) where σ is defined, there exist unique maps

Ψ :D(ωr, s) ↪→ Br,cr s and Ψ σ :Dσ (ωr, s) ↪→ Br,cr s .

The maps are induced by Ψ (usΛ0) = u and Ψ σ (usΛσ(0)
) = σ(u).

Proof. The map Ψ σ is obtained by applying σ to everything in sight. �
Corollary 4.6. The affine structure of Br,cr s is uniquely determined.

Theorem 4.7. Suppose that λ = ∑
r∈I\{0} mrcrωr with mr ∈ Z�0 and mr > 0 only when r is as

in Theorem 4.4. Write t−λ∗ = wτ for w ∈ W and τ ∈ Σ . Assume that for each k ∈ I 0 and every
r ∈ I \ {0} with mr > 0, the special Dynkin automorphism τk ∈ Σ induces an automorphism of
Br,cr s that sends i-arrows to τk(i)-arrows. Then for every r ′ ∈ I 0 there is an isomorphism

B(sΛτ(r ′)) ∼=
( ⊗

r∈I\{0}

(
Br,cr s

)⊗mr

)
⊗ B(sΛr ′)

which restricts to an isomorphism of full subcrystals

B
τ−1
r′ wτr′

(sΛτ(r ′)) ∼=
( ⊗

r∈I\{0}

(
Br,cr s

)⊗mr

)
⊗ usΛr′ .

Proof. Induction allows a straightforward reduction to the case of one KR tensor factor. Ap-
plying a special Dynkin automorphism allows the reduction to the case r ′ = 0, which is Theo-
rem 4.4. �
Corollary 4.8. Let λ be as in Theorem 4.7. Then the Demazure crystal D(λ, s) can be extended
to a full affine crystal by adding 0-arrows.

Remark 6. This proves Conjecture 1 in [5] on the level of crystals. However it is not yet clear
whether there exists a global basis of the Demazure module, whose corresponding crystal basis
is the one given in Theorem 4.7. For level s = 1, Theorem 4.7 was proved using the Littelmann
path model in [6, Proposition 3].

5. Reaching the classical highest weight vectors of a KR crystal

In the proof of Lemma 4.3, explicit paths in the KR crystal were given, from the element u to
certain classical highest weight vectors in the KR crystal. For g of nonexceptional affine type and
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for each KR crystal Br,cr s , we shall give (without proof) an explicit way to reach each classical
highest weight vector in Br,cr s from the element u of Assumption 1.

If r ∈ I 0 then the KR crystal Br,cr s is connected as a classical crystal and the problem is
trivial. This includes all r ∈ I \ {0} for A

(1)
n .

So we now assume r /∈ I 0.
We shall use the standard realizations of the weight lattices of Bn, Cn, Dn by sublattices of

((1/2)Z)n. We let ωi = (1i ,0n−i ) for i ∈ I \ {0} nonspin. Since r /∈ I 0 the only spin weight
we need is ωn = (1/2)(1n) in type Bn, and in that case cn = 2. Thus all the weights we must
consider, correspond to partitions, elements in Zn

�0 consisting of weakly decreasing sequences.
Moreover, for the nonexceptional affine algebras the KR crystals are multiplicity-free as classical
crystals.

For g of type B
(1)
n , D

(1)
n , or A

(2)
2n−1, B(λ) occurs in Br,cr s if and only if the diagram of the

partition corresponding to λ, is obtained from the r × s rectangular partition by removing vertical
dominoes. Let t = 0 or t = 1 according as r is even or odd. We have

uλ =
(

1∏
i=(r−t)/2

f
λ2i

0

(
f

λ2i

2 f
λ2i

3 · · ·f λ2i

2i−1+t

)(
f

λ2i

1 f
λ2i

2 · · ·f λ2i

2i−2+t

))
u

where the product is formed from left to right using decreasing indices i.

Example 1. Let g be of type D
(1)
7 , (r, s) = (5,4) and λ be the weight ω5 + ω3 + 2ω1.

Then t = 1, λ is the partition (4,2,2,1,1), and the sequence of lowering operators is
(f0f2f3f4f1f2f3)(f

2
0 f 2

2 f 2
1 ). This is applied to the classical highest weight vector of weight

given by the partition (4), and the parenthesized subexpressions successively yield classical
highest weight vectors corresponding to the partitions (4,2,2), and (4,2,2,1,1), respectively.

For g of type C
(1)
n , A

(2)
2n or D

(2)
n+1, the partitions corresponding to classical highest weights

in Br,cr s are precisely those of the form crλ = (crλ1, crλ2, . . .) where λ runs over the partitions
contained in the r × s rectangle. We have

ucrλ =
(

1∏
i=r

f
crλi

0 f
crλi

1 · · ·f crλi

i−1

)
u

where the product of operators is formed from left to right as i decreases.

Example 2. Let g be of type C
(1)
3 , (r, s) = (2,3), and λ = ω2 + 2ω1. Then we have cr = 2, the

partition λ = (3,1), and the sequence of lowering operators (f 2
0 f 2

1 )(f 6
0 ). This is applied to the

classical highest weight vector of weight 0 (corresponding to the empty partition). After f 6
0 the

classical weight is given by the partition (6) and after f 2
0 f 2

1 one has the partition (6,2) = 2λ.

6. Connectedness

Theorem 4.4 shows that the KR crystals Br,cr s are connected. In this section we show that
the tensor product of two KR crystals is also connected by providing an algorithm which for any
given element in the crystal yields a string of operators ei (or fi ) to reach a given special element.
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This algorithm is also useful in defining crystal morphisms such as the combinatorial R-matrix.
Since KR crystals and their tensor products are not highest weight crystals, it is not completely
obvious which sequence of raising operators ei will yield a given special element.

Here we give a construction on how to reach u1 ⊗ u2 ∈ Br1,cr1 s1 ⊗ Br2,cr2 s2 where u1 is the
unique element of Br1,cr1 s1 with ε(u1) = s1Λ0 and ϕ(u1) = s1Λτ1(0) as required in Assump-
tion 1(2), and u2 is the unique element in Br2,cr2 s2 with ε(u2) = s2Λτ−1

2 (0)
and ϕ(u2) = s2Λ0 as

required in Assumption 1(2) and Remark 5.
By Theorems 4.4 and 4.5 we have the following isomorphism of affine crystals

Br1,cr1 s1 ⊗ Br2,cr2 s2 ⊗ B(s2Λτ−1
2 (0)

) ∼= Br1,cr1 s1 ⊗ B(s2Λ0),

u1 ⊗ u2 ⊗ us2Λ
τ
−1
2 (0)

�→ u1 ⊗ us2Λ0 .

Assume that s1 � s2. Acting with raising operators ei with i ∈ I one can bring any element
b1 ⊗ b2 ⊗ us2Λ

τ
−1
2 (0)

into the form c1 ⊗ u2 ⊗ us2Λ
τ
−1
2 (0)

since by the tensor product rule the ei

will eventually act on the right tensor factors and by Theorem 4.4 b2 ⊗ us2Λ
τ
−1
2 (0)

is connected to

u2 ⊗ us2Λ
τ
−1
2 (0)

. Once such an element is reached, tensor from the right by u(s1−s2)Λ0 ∈ B((s1 −
s2)Λ0) to obtain

Br1,cr1 s1 ⊗ Br2,cr2 s2 ⊗ B(s2Λτ−1
2 (0)

) ⊗ B
(
(s1 − s2)Λ0

)
∼= Br1,cr1 s1 ⊗ B(s2Λ0) ⊗ B

(
(s1 − s2)Λ0

)
under which c1 ⊗ u2 ⊗ us2Λ

τ
−1
2 (0)

⊗ u(s1−s2)Λ0 maps to c1 ⊗ us2Λ0 ⊗ u(s1−s2)Λ0 . The lat-

ter element is the image of the vector c1 ⊗ us1Λ0 under the embedding of affine crystals
Br1,cr1 s1 ⊗ B(s1Λ0) → Br1,cr1 s1 ⊗ B((s1 − s2)Λ0) ⊗ B(s2Λ0).

Now from c1 ⊗ us1Λ0 ∈ Br1,cr1 s1 ⊗ B(s1Λ0) one can reach u1 ⊗ us1Λ0 using ei with i ∈ I .
If s1 < s2 we tensor from the left with the dual crystals. Explicitly,

B∨(s1Λτ1(0)) ⊗ Br1,cr1 s1 ⊗ Br2,cr2 s2 ∼= B∨(s1Λ0) ⊗ Br2,cr2 s2 .

The lowest weight element u∨
s1Λ0

∈ B∨(s1Λ0) corresponds to u∨
s1Λτ1(0)

⊗ u1 ∈ B∨(s1Λτ1(0)) ⊗
Br1,cr1 s1 . Acting with lowering operators fi with i ∈ I one can bring any element u∨

s1Λτ1(0)
⊗

b1 ⊗ b2 into the form u∨
s1Λτ1(0)

⊗ u1 ⊗ c2. Once this element is reached, tensor on the left by

u∨
(s2−s1)Λ0

∈ B∨((s2 − s1)Λ0), obtaining the element u∨
(s2−s1)Λ0

⊗ u∨
s1Λτ1(0)

⊗ u1 ⊗ c2, which can

be identified with u∨
s2Λ0

⊗ c2 ∈ B∨(s2Λ0) ⊗ Br2,cr2 s2 . Now move down to the lowest weight
vector u∨

s2Λ0
⊗ u2 using fi with i ∈ I .

As a result of the above construction we obtain the following corollary:

Corollary 6.1. The tensor product Br1,cr1 s1 ⊗ Br2,cr2 s2 of KR crystals is connected.

The combinatorial R-matrix is a crystal morphism. More precisely

R :Br1,cr1 s1 ⊗ Br2,cr2 s2 → Br2,cr2 s2 ⊗ Br1,cr1 s1
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satisfies R ◦ ei = ei ◦ R and R ◦ fi = fi ◦ R for all i ∈ I . There exists a unique ele-
ment ucrk

skωrk
∈ Brk,crk

sk and by weight considerations R must map R(ucr1 s1ωr1
⊗ ucr2 s2ωr2

) =
ucr2 s2ωr2

⊗ ucr1 s1ωr1
. Assume that s1 � s2. Then for any element b1 ⊗ b2 ∈ Br1,cr1 s1 ⊗ Br2,cr2 r2

the above algorithm provides a sequence e{i} := ei1ei2 · · · ei� such that e{i}(b1 ⊗ b2) = u1 ⊗ u2.
In particular, e{j}(ucr1 s1ωr1

⊗ ucr2 s2ωr2
) = u1 ⊗ u2. Set f{←i} := fi� · · ·fi1 . Then

R(b1 ⊗ b2) = f{←i}e{j}(ucr2 s2ωr2
⊗ ucr1 s1ωr1

).

For the case s1 < s2 a similar construction works where fi and ei are interchanged.
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