
 

 
 
 
 
 
 
 
 

 

Sayle, K.L., Cook, G.T., Ascough, P.L., Hastie, H.R., Einarsson, Á., 

McGovern, T.H., Hicks, M.T., Edwald, Á., and Friðriksson, 

A. (2013) Application of 
34

S analysis for elucidating terrestrial, marine and 

freshwater ecosystems: evidence of animal movement/husbandry practices 

in an early Viking community around Lake Mývatn, Iceland. Geochimica et 

Cosmochimica Acta, 120 (1). pp. 531-544. ISSN 0016-7037 
 
 
  Copyright © 2013 Elsevier 
 
 
A copy can be downloaded for personal non-commercial research or 

study, without prior permission or charge 

 

Content must not be changed in any way or reproduced in any 

format or medium without the formal permission of the copyright 

holder(s) 
 

 

When referring to this work, full bibliographic details must be given 
 
 

 
http://eprints.gla.ac.uk/ 85304/ 

 
 

 

  Deposited on: 06 September 2013 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/view/author/8948.html
http://eprints.gla.ac.uk/view/author/5255.html
http://eprints.gla.ac.uk/view/author/11034.html
http://eprints.gla.ac.uk/view/author/6733.html
http://eprints.gla.ac.uk/view/journal_volume/Geochimica_et_Cosmochimica_Acta.html
http://eprints.gla.ac.uk/view/journal_volume/Geochimica_et_Cosmochimica_Acta.html
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


Accepted Manuscript

Application of 34 S analysis for elucidating terrestrial, marine and freshwater
ecosystems: Evidence of animal movement/husbandry practices in an Early
Viking community around Lake Mývatn, Iceland

Kerry L. Sayle, Gordon T. Cook, Philippa L. Ascough, Helen R. Hastie, Árni
Einarsson, Thomas H. McGovern, Megan T. Hicks, Ágústa Edwald, Adolf
Friðriksson

PII: S0016-7037(13)00387-6
DOI: http://dx.doi.org/10.1016/j.gca.2013.07.008
Reference: GCA 8357

To appear in: Geochimica et Cosmochimica Acta

Received Date: 11 December 2012
Accepted Date: 5 July 2013

Please cite this article as: Sayle, K.L., Cook, G.T., Ascough, P.L., Hastie, H.R., Einarsson, Á., McGovern, T.H.,
Hicks, M.T., Edwald, Á., Friðriksson, A., Application of 34 S analysis for elucidating terrestrial, marine and
freshwater ecosystems: Evidence of animal movement/husbandry practices in an Early Viking community around
Lake Mývatn, Iceland, Geochimica et Cosmochimica Acta (2013), doi: http://dx.doi.org/10.1016/j.gca.2013.07.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.gca.2013.07.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.gca.2013.07.008


  

1 

 

Application of 34S analysis for elucidating terrestrial, marine and freshwater 1 

ecosystems: Evidence of animal movement/husbandry practices in an Early Viking 2 

community around Lake Mývatn, Iceland 3 

Kerry L. Sayle1*, Gordon T. Cook1, Philippa L. Ascough1, Helen R. Hastie1, Árni 4 

Einarsson2,3, Thomas H. McGovern4, Megan T. Hicks4, Ágústa Edwald5, Adolf  5 

Friðriksson6 
6 

1Scottish Universities Environmental Research Centre, Scottish Enterprise Technology 7 

Park, Rankine Avenue, East Kilbride, Scotland G75 0QF, UK 8 

2Mývatn Research Station, IS-660 Mývatn, Iceland 9 

3University of Iceland, Institute of Earth Sciences, IS-101 Reykjavik, Iceland  10 

4Hunter Zooarchaeology Laboratory, Hunter College CUNY, NYC 10021, USA 11 

5Department of Archaeology, School of Geosciences, University of Aberdeen, 12 

St. Mary's, Elphinstone Road, AB24 3UF 13 

6Archaeological Institute Iceland, Barugotu 2, 101 Reykjavik Iceland 14 

*corresponding author email: kerry.sayle@glasgow.ac.uk 15 

Present address: SUERC, Scottish Enterprise Technology Park, Rankine Avenue, East 16 

Kilbride G75 0QF, UK 17 



  

2 

 

 1 

Abstract 2 

Carbon and nitrogen stable isotope ratios (δ13C and δ15N) have been used widely in 3 

archaeology to investigate palaeodiet.  Sulphur stable isotope ratios (δ34S) have shown 4 

great promise in this regard but the potential of this technique within archaeological 5 

science has yet to be fully explored.  Here we report δ34S, δ13C and δ15N values for 129 6 

samples of animal bone collagen from Skútustaðir, an early Viking age (landnám) 7 

settlement in north-east Iceland.  This dataset represents the most comprehensive study to 8 

date of its kind on archaeological material and the results show a clear offset in δ34S 9 

values between animals deriving their dietary resources from terrestrial (mean = +5.6 ± 10 

2.8‰), freshwater (mean = -2.7 ± 1.4‰) or marine (mean = +15.9 ± 1.5‰) reservoirs 11 

(with the three food groups being significantly different at 2σ).  This offset allows 12 

reconstruction of the dietary history of domesticated herbivores and demonstrates 13 

differences in husbandry practices and animal movement/trade, which would be 14 

otherwise impossible using only δ13C and δ15N values.  For example, several terrestrial 15 

herbivores displayed enriched bone collagen δ34S values compared to the geology of the 16 

Lake Mývatn region, indicating they may have been affected by sea-spray whilst being 17 

pastured closer to the coast, before being traded inland.  Additionally, the combination of 18 

heavy δ15N values coupled with light δ34S values within pig bone collagen suggests that 19 

these omnivores were consuming freshwater fish as a significant portion of their diet.  20 

Arctic foxes were also found to be consuming large quantities of freshwater resources and 21 

radiocarbon dating of both the pigs and foxes confirmed previous studies showing that a 22 

large freshwater radiocarbon (14C) reservoir effect exists within the lake. Overall, these 23 

stable isotope and 14C data have important implications for obtaining a fuller 24 

reconstruction of the diets of the early Viking settlers in Iceland, and may allow a clearer 25 

identification of the marine and/or freshwater 14C reservoir effects that are known to exist 26 

in human bone collagen. 27 

 28 
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1. Introduction 1 

Extensive controlled feeding studies of modern terrestrial, freshwater and marine 2 

species have shown that that diet can directly influence carbon (δ13C) and nitrogen (δ15N) 3 

stable isotope values in the tissues of the consumer (DeNiro and Epstein, 1978, 1981).  4 

Archaeologists were very quick to exploit this theory and stable isotope analysis of 5 

preserved bone collagen is now routinely utilised in palaeodietary reconstruction studies, 6 

providing archaeologists with a detailed insight into prehistoric diet (Schoeninger et al., 7 

1983; Tauber, 1981; Van der Merwe and Vogel, 1978). 8 

Recent advances in continuous-flow isotope-ratio mass spectrometry (CF-IRMS) 9 

have allowed sulphur isotopes (δ34S) to be measured from organic and inorganic materials 10 

(Fritzsche and Tichomirowa, 2006; Fry, 2007; Fry et al., 1996; Giesemann et al., 1994; 11 

Grassineau et al., 2001, 2006; Hansen et al., 2009; Yun et al., 2005) and over the past 12 

decade there has been a marked increase in the use of sulphur isotopes in conjunction 13 

with carbon and nitrogen isotopes to aid our understanding of the diet and movement of 14 

prehistoric animals and humans (Craig et al., 2010; Howcroft et al., 2012; Hu et al., 2009; 15 

Macko et al., 1999; Nehlich et al., 2012; Oelze et al., 2012a, 2012b; Vika, 2009; Richards 16 

et al., 2001, 2003).  Sulphur isotopes have also been exploited to explore the variability in 17 

terrestrial-, marine- and freshwater-based diets (Craig et al., 2006; Lamb et al., 2012; 18 

Nehlich et al., 2010, 2011; Privat et al., 2007), have been used as indicators of 19 

environmental changes (Newton and Bottrell, 2007; Wadleigh, 2003; Yun et al., 2010) 20 

and are regularly utilised in food authentication studies (Bahar et al., 2008; Osorio et al., 21 

2011; Rummel et al., 2010; Tanz and Schmidt, 2010).     22 

Previous findings from the Lake Mývatn region of north-east Iceland have 23 

demonstrated a significant overlap between the δ15N values of both modern and 24 

archaeological-age terrestrial herbivore bone collagen and the δ15N values of modern and 25 

archaeological-age freshwater fish.  δ13C values of freshwater biota were also found to be 26 

similar to those of marine resources (Ascough et al, 2010), and consequently, separation 27 

of herbivores, freshwater fish and marine fish as components of human diet is difficult 28 

using only δ13C and δ15N analyses.  Likewise, complications were encountered when 29 

human bone collagen samples from the same region were radiocarbon (14C) dated, as the 30 

exact proportion of freshwater and marine carbon consumed was indeterminable, which 31 

prevented ages being corrected for both marine and freshwater 14C reservoir effects 32 
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(Ascough et al. 2012).  Freshwater and marine radiocarbon reservoir effects (FRE and 1 

MRE, respectively) are 14C age offsets between CO2 in the atmosphere and the freshwater 2 

or marine carbon reservoirs.  The MRE arises because of the extended residence time of 3 

carbon in the global marine reservoir, during which time radioactive decay of the 14C 4 

occurs.  It has a global average value of approximately 400 14C years for surface waters 5 

and can be corrected for in order to produce a truer calendar age range (Reimer et al. 6 

2009).  FREs are brought about by the input of low 14C-activity carbon (e.g. carbon from 7 

dissolution of geological carbonates or from high temperature geothermal water–rock 8 

interactions), or restriction of atmosphere-water CO2 exchange (e.g. via density 9 

stratification or ice cover).  Unlike the MRE, a universal amendment cannot be 10 

implemented as the magnitude of FREs is site dependent and can fluctuate significantly 11 

(Ascough et al., 2011; Keaveney and Reimer, 2012). 12 

The purpose of this study was to utilise δ34S stable isotope measurements in animal 13 

and bird bone collagen from remains found in midden deposits at a Viking farmstead on 14 

Lake Mývatn in an attempt to distinguish between terrestrial, marine and freshwater 15 

dietary components.  In turn, this could allow the identification of terrestrial, freshwater 16 

and marine components in the human diet.  To date, this is the first study of its kind to 17 

examine sulphur isotopes in bone collagen from archaeological remains found in Iceland.  18 

It is also the largest, single-site sulphur isotope study to be undertaken, in which 129 19 

bones of domesticated and wild fauna from Skútustaðir were analysed.  These data were 20 

produced, together with C and N stable isotope ratio measurements and 14C age 21 

measurements, as part of a multi-isotope approach, building on previous work to 22 

reconstruct animal diet and human activity in the region (Ascough et al. 2007, 2010, 23 

2012).  24 
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 1 

2. Background  2 

2.1 Geographical & Historical Information  3 

The animal bones analysed in this study were from Skútustaðir, an archaeological 4 

site to the south of Lake Mývatn (meaning “the lake of midges” in Icelandic) in the north-5 

eastern highlands of Iceland.  Famed, as its name suggests, for its abundant insect life, 6 

this shallow lake, located ~50 km inland and at an altitude of 277 m above sea level 7 

(Figure 1), is a sanctuary for breeding waterfowl (Einarsson, 2004; Gardarsson, 2006).  8 

The region has been documented as an area of major archaeological importance with 9 

respect to the settlement of Viking communities during the landnám from around AD 870 10 

onwards (Vésteinsson, 1998; McGovern et al., 2007; Einarsson and Aldred, 2011).  11 

Radiocarbon dating of terrestrial animal remains and tephrochronological studies from 12 

various sites surrounding Lake Mývatn have shown that settlers populated the region 13 

from the late 9th century (McGovern et al., 2006, 2007).  The presence of these 14 

inhabitants is thought to have had a large environmental impact on the area, with the 15 

introduction of grazing livestock and rapid deforestation (Hallsdóttir, 1987), leading to 16 

significant soil erosion (Arnalds et al., 1997; Dugmore et al., 2005; Lawson et al., 2007; 17 

Vésteinsson et al., 2002).   18 

 19 

2.2 Geology of the Lake Mývatn Area 20 

The area surrounding Lake Mývatn is volcanic in nature, with igneous rocks of the 21 

tholeiitic series dominating the landscape.  The series is split into three subsections: (1) 22 

basaltic rocks, which are most abundant, comprising of picrite, olivine tholeiite and 23 

tholeiite; (2) intermediate rocks which include icelandite and basaltic icelandite; and (3) 24 

silicic rocks which include dacite and rhyolite (Jakobsson et al., 2008).  Porous lava fields 25 

dominate the area, leaving the surface characteristically devoid of water.  The lake has 26 

two major basins, Ytriflói (north basin), which is fed by hot springs from the Námafjall 27 

geothermal field, and Syðriflói (south basin), which is fed by cold springs along its 28 

eastern shores (Kristmannsdóttir and Ármannsson, 2004).  As groundwater springs supply 29 

most of Lake Mývatn’s water and there is an absence of surface water in the area for it to 30 

mix with, the chemical makeup of the water entering the lake is very stable.  Before 31 
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draining into the River Laxá in the west, the geothermal waters provide Lake Mývatn 1 

with plentiful supplies of silica and sulphate, whilst cooler waters deliver phosphate to the 2 

lake (Kristmannsdóttir and Ármannsson, 2004). 3 

 4 

2.3 Isotope Geochemistry of Iceland 5 

The lithosphere and hydrosphere store the majority of the earth’s sulphur supplies, 6 

with sulphides in shale and sulphates in evaporites exhibiting δ34S values between -40‰ 7 

and +30‰ (Claypool et al, 1980; Strauss, 1997) and sulphate in marine water providing a 8 

very isotopically uniform reservoir of δ34S = +21‰ (Rees et al., 1978).  In coastal 9 

regions, sulphur-containing particles can be propelled inland in a process known as the 10 

sea-spray effect, causing soil δ34S values to be similar to that of seawater (Wadleigh et al., 11 

1994).   12 

Intensive weathering of igneous rocks causes leached sulphides to filter into ground 13 

and stream water systems, enabling plants to accumulate the oxidised sulphate form in 14 

their roots.  Oxidation of pyrite (FeS2) produces negligible isotopic fractionation (Nakai 15 

and Jensen, 1964; Taylor and Wheeler, 1984), whilst plant δ34S values are on average 16 

1.5‰ depleted compared to their sulphate source (Trust and Fry, 1992).  Analysis of total 17 

sulphur in volcanic rocks from the Krafla-Námafjall fissure swarm neighbouring Lake 18 

Mývatn provided δ34S values that ranged between -2.0‰ and +4.2‰ (mean: -0.8‰) 19 

(Torssander, 1989), whilst examination of transitional basaltic and rhyolitic rocks from 20 

the Katla Volcanic Centre in southern Iceland gave similar δ34S values, ranging between -21 

1.8‰ and +2.4‰ (Hildebrand and Torssander, 1998).  As isotopic fractionation between 22 

plants and sulphates deposited in the soil from the weathering of local bedrock is 23 

relatively small, δ34S values of Lake Mývatn flora should be similar to those reported by 24 

Torssander (1989).  However, Icelandic lava fields are sparsely vegetated with lichen and 25 

moss (Bjarnason, 1991), which can accumulate their sulphur directly from atmospheric 26 

sulphur dioxide (SO2) with very little isotopic fractionation (Krouse, 1977).  SO2 gas 27 

produced during the eruption of Krafla in July 1980 yielded δ34S values between -1.8‰ 28 

and +3.4‰ (Torssander, 1988), however, it is conceivable that atmospheric SO2 in 29 

Iceland has varied with time due to the volcanic nature of the island.  Wet deposition of 30 

sulphate from the aqueous oxidation of atmospheric SO2 can provide soil with an 31 

additional source of sulphur and isotopic fractionation during this process can be very 32 
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large (ca. -11‰ to +17‰) (Harris et al., 2012).  However, the amount of sulphate 1 

deposited has been shown to be negligible in areas where SO2 emissions are high (Nriagu 2 

and Coker, 1978), and compared to other parts of Iceland, the Mývatn region has little 3 

rain- or snowfall (Einarsson, 1979).  4 

The eruption of the Grímsvötn volcano in 1996, which is situated below the 5 

Vatnajökull Glacier in south-east Iceland, caused the Skeiðará River to flood, and water 6 

samples taken before and during the early stages of the overflow revealed a post-eruption 7 

increase in sulphur concentration.  Analysis of sulphate in the floodwaters demonstrated 8 

that δ34S values varied between +7.9‰ and +9.0‰, suggesting that sulphurous magmatic 9 

gases were oxidised to sulphate upon dissolution in water (Gíslason et al., 2002).  10 

Together with water samples taken from kettle-hole lakes that had formed since the 1996 11 

glacier-outburst flood, further groundwater, geothermal spring water and Skeiðará River 12 

samples were retrieved between 1998 and 2001 from the Skeiðarársandur outwash plain 13 

(Robinson et al., 2009).  δ34S values from river sulphates ranged from +3.4‰ to +8.8‰, 14 

with the higher value again attributed to magmatic sulphate from the Grímsvötn caldera, 15 

whilst the lower end value was measured during normal discharge; both values fall within 16 

the range of +2‰ to +10‰ reported by Gíslason and Torssander (2006).  Groundwater 17 

sulphate δ34S values varied between -0.3‰ and +5.3‰, whilst sulphate in geothermal 18 

spring water had an average δ34S value of +4.1‰.  Water from the kettle-hole lakes was 19 

found to be depleted in 34S, with δ34S values ranging between -1.7‰ and 0.0‰, which 20 

could be attributed to dissolved sulphate originating from igneous sulphide minerals.   21 

Samples taken from the Hekla cold springs in southern Iceland, fifteen years after the 22 

volcano last erupted, revealed that magmatic degassing into groundwater was still 23 

occurring.  Dissolved sulphate in these water samples displayed δ34S values between 24 

+1.5‰ and +4.3‰, with magmatic sulphate estimated to have had a δ34S value of around 25 

+7.0‰ (Holm et al., 2010).  Thus, the numerous volcanic eruptions that have occurred 26 

since Iceland was first settled are likely to have influenced the δ34S values of all water 27 

sources feeding Lake Mývatn and its surrounding landscape.  However, whilst Icelandic 28 

rock and water samples have demonstrated δ34S values that span from -2‰ to +10, and 29 

atmospheric SO2  δ
34S values in the Mývatn region may vary between -1.8‰ and +3.4‰, 30 

what is evident is that they are all isotopically very distinct from the δ34S value of 31 

seawater (Figure 2). 32 

 33 



  

8 

 

 1 

2.4 Isotope Biochemistry of Iceland  2 

δ
13C analysis of various plants and lichens from four lakes in northern Iceland 3 

provided values ranging between -30.9‰ and -23.3‰ (Wang and Wooller, 2006).  4 

Likewise, the analysis of moss, grass, willow and liverwort samples from the geothermal 5 

area of Kerlingarfjöll in central Iceland produced δ13C values between -28.8‰ and -6 

20.4‰ (Skrzypek et al., 2008).  Ascough et al. (in press) measured δ13C on a variety of 7 

modern flora from four sites close to Lake Mývatn and at one location approximately 5 8 

km to the west of the lake, and found that the vegetation ranged from -31.6‰ to -26.9‰.  9 

These results are within the expected range for plants in the northern hemisphere 10 

following a C3 photosynthetic pathway, with the more enriched value of -20.4‰ from 11 

Kerlingarfjöll being attributed to the moss growing in a colder climate (Skrzypek et al., 12 

2007).  Aquatic plant samples from one site had δ13C values averaging -13.3‰, which is 13 

characteristic of freshwater plants in Iceland (Wang and Wooller, 2006).  Previous stable 14 

isotope studies of archaeological bone samples discovered at various sites surrounding 15 

Lake Mývatn indicate that δ13C values for terrestrial animals ranged from -22.1‰ to -16 

20.3‰, whilst modern and archaeological freshwater fish displayed δ13C values from -17 

16.0‰ to -7.9‰.  Omnivorous pigs and various birds displayed a large range of δ13C 18 

values (-22.5‰ to -16.9‰ and -24.8‰ to -7.9‰, respectively), reflecting the mixed 19 

terrestrial, freshwater and possibly marine diet they would have been consuming 20 

(Ascough et al., 2007, 2010, 2012, in press).  Although cod and haddock bones have been 21 

recovered at Skútustaðir, prior to this study, no stable isotope analysis had been 22 

undertaken on these samples.  However, cod from four archaeological sites in the north-23 

east Atlantic yielded δ13C values between -14.7‰ and -11.3‰ (Barrett, 2008, 2011; 24 

Russell, 2011).   25 

It is well established that, although 13C trophic level shifts are small, 15N values have 26 

been shown to shift between +3‰ and +5‰ with each trophic level in marine and 27 

terrestrial food chains (Schoeninger and DeNiro, 1984).  Given that terrestrial plants have 28 

δ
15N values ranging between approximately 0 and +5‰, herbivores and carnivores should 29 

accordingly exhibit δ15N values of ~+4 to +9‰ and ~+8 to +13‰, respectively.  Within 30 

the marine environment, δ15N values can range between ~+15 to +20‰ as a consequence 31 

of the food chains being considerably longer than in the terrestrial biosphere (DeNiro and 32 

Epstein, 1981; Schoeninger et al., 1983; Schoeninger and DeNiro, 1984).  However, 33 
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organisms lower down in the marine food chain such as gastropods, molluscs, Polychaeta 1 

and Maxillopoda demonstrate lighter δ13C (-23.2‰ to -17.1‰) and δ15N values (+5.9‰ 2 

to +9.7‰) (Mateo et al., 2008).  Freshwater fish have also displayed enriched δ15N 3 

values; however studies have shown that some species have δ13C and δ15N values that are 4 

similar to those observed within a terrestrial environment (Dufour et al., 1999).  5 

Therefore, the introduction of a third stable isotope, namely sulphur, to aid in the 6 

distinction between these two food groups, is potentially highly advantageous.   7 

Wang and Wooller (2006) carried out δ15N analysis on the plants and lichens 8 

recovered from the four sites mentioned previously in northern Iceland and found that 9 

values ranged from -12.4‰ to +5.6‰, with many of the samples having values lower 10 

than -6.0‰.  Similarly, the analysis of moss, grass, willow and liverwort specimens from 11 

Kerlingarfjöll produced δ15N values between -5.5‰ and -1.7‰ (Skrzypek et al., 2008).   12 

Ascough et al. (in press) determined that modern flora from around Lake Mývatn had 13 

δ
15N values between -9.1‰ and +6.5‰.  It has been noted that in soils depleted in 14 

phosphorous, plants and lichens that take up ammonia from the atmosphere are capable of 15 

generating negative δ15N values (Erskine et al., 1998; McKee et al., 2002).  Ascough et al. 16 

(2007, 2010, 2012, in press) found that δ15N values for modern and archaeological 17 

terrestrial animals ranged between -1.5‰ and +5.9‰, whilst freshwater fish displayed 18 

δ
15N values from +3.1‰ to +8.5‰, and north-east Atlantic cod yielded δ15N values from 19 

+11.9‰ to +15.4‰ (Barrett, 2008, 2011; Russell, 2011).  Again, the δ15N values for pigs 20 

and birds displayed a large range of values (-1.2‰ to +8.7‰ and -3.7‰ and +16.4‰, 21 

respectively), and are typical of a mixed diet.  A comparison of the various δ13C and δ15N 22 

ranges for Icelandic terrestrial and aquatic plants and fauna from the Lake Mývatn region 23 

is illustrated in Figure 3. 24 

Oceanic primary producers demonstrate sulphate δ34S values between +17‰ and 25 

+21‰ (Peterson and Fry, 1987), however, δ34S values for organisms living within a 26 

freshwater environment have been shown to vary anywhere between -22‰ and +20‰ 27 

due to differing sulphur sources in the local geology as well as anaerobic bacteria residing 28 

within lakes and rivers, which can reduce sulphate ions to hydrogen sulphide (H2S) 29 

(Faure, 1977; Peterson and Fry, 1987).  For mammals to successfully thrive, sulphur-30 

containing biochemical compounds, such as the essential amino acids, methionine and 31 

cysteine, need to be acquired from the diet.  Studies have demonstrated that there is a 32 

negligible trophic level shift for sulphur isotopes compared to the large range of δ34S 33 
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values shown within terrestrial, freshwater and marine environments (Peterson et al., 1 

1985; Richards et al., 2003).  Therefore, consumers eating produce from within the Lake 2 

Mývatn vicinity should have similar δ34S values to the surrounding terrestrial vegetation.  3 

Currently, there are no published δ34S values for either animal or human archaeological 4 

remains from Iceland, and globally only a small number of sulphur isotope studies have 5 

been undertaken on archaeological material.  However, this is now changing rapidly and 6 

more recently an increasing number of archaeological studies have utilised sulphur 7 

isotope analysis as part of their investigations (Nehlich et al., 2011; Privat et al., 2007; 8 

Vika, 2009).  Nevertheless, many of these findings could be seen to be limited in that they 9 

are either lacking in sample numbers, or where a larger sample set has been analysed, 10 

they have originated from multiple sites (Hu et al., 2009; Nehlich et al., 2010; Richards et 11 

al., 2001).   12 
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 1 

3. Methodology 2 

3.1 Sampling location and materials 3 

Skútustaðir, situated on the southern shore of Lake Mývatn (65o 57′ N 17o 03′ W), 4 

was excavated during the NSF-funded IPY program “Long Term Human Ecodynamics in 5 

the Norse North Atlantic: cases of sustainability, survival, and collapse”.  After the 6 

discovery of an archaeological midden in 2007, the site was explored in greater detail 7 

during a series of excavations between 2008 and 2010 (Edwald and McGovern, 2009, 8 

2010; Hicks, 2010; Hicks et al., 2009; Hicks and Pálsdóttir, 2011), and a large number of 9 

animal bones and artefacts were discovered.  The midden site is on a natural rise in the 10 

landscape, and due to the porous nature of the bedrock, drainage conditions are good and 11 

no pockets of waterlogged sediments were noted.  The pH of the soil is around 6.5, 12 

providing favourable conditions for preservation of animal bones.  The work discussed in 13 

this paper deals solely with excavations carried out during the 2008 and 2009 field trips 14 

and a list of all samples analysed with their stratigraphic context and chronology is 15 

presented in the supplementary data section.   16 

 17 

3.2 Extraction of Bone Collagen  18 

A modified version of the Longin method was used to extract the collagen 19 

component from the animal bones (Longin, 1971).  Sample surfaces were initially cleaned 20 

using a Dremel® multi-tool, before they were lightly crushed into smaller fragments and 21 

immersed in 1M HCl for approx. 24 h to effect demineralisation. The acid was then 22 

decanted and samples were rinsed with ultra-pure water to remove any remaining 23 

dissociated carbonates, acid soluble contaminants and solubilised bioapatite. The 24 

gelatinous-like material was heated gently to ~80°C in ultra-pure water to denature and 25 

solubilise the collagen.  After cooling, the solution was filtered, reduced to approx. 5 ml 26 

and freeze-dried. 27 

 28 

3.3 Carbon, Nitrogen and Sulphur Isotope Ratio Analyses 29 
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δ
13C, δ15N and δ34S stable isotope measurements were obtained using a continuous-1 

flow isotope ratio mass spectrometer (Thermo Scientific Delta V Advantage (Bremen, 2 

Germany)) coupled to a Costech ECS 4010 elemental analyser (EA) (Milan, Italy) fitted 3 

with a pneumatic autosampler.  Samples were weighed into tin capsules (~600 µg for 4 

δ
13C and δ15N and ~10 mg for δ34S) and the δ13C and δ15N values measured in one of two 5 

ways.  The EA was coupled to the mass spectrometer via a ConfloIIITM and samples were 6 

combusted in a reactor containing chromium oxide and silvered cobaltous/cobaltic oxide 7 

at 1020°C to produce N2 and CO2.  The gases were then passed over a reduction reactor 8 

containing reduced copper wires at 650°C.  A magnesium perchlorate trap was used to 9 

eliminate water produced during the combustion process and the gases were separated in 10 

a 3 m stainless steel Porapak QS 50-80 mesh GC column heated to 45°C.  Alternatively, 11 

the EA was coupled via a ConfloIVTM and samples were combusted in a single reactor 12 

containing tungstic oxide and copper wires at 1020°C to produce N2 and CO2.  The gases 13 

were then separated in a 2 m stainless steel Porapak QS 50-80 mesh GC column heated to 14 

70°C.  The latter system was used to obtain δ34S values and the column was heated to 15 

90°C to separate SO2.  Helium (100mL/min) was used as a carrier gas throughout the 16 

procedure.  N2, CO2 and SO2 entered the mass spectrometer via an open split arrangement 17 

within the ConfloIIITM/ConfloIVTM and were analysed against their corresponding 18 

reference gases. 19 

For every ten unknown samples, in-house gelatine standards, which are calibrated to 20 

the international reference materials USGS40 (-26.39‰), USGS41 (+37.63‰), IAEA-21 

CH-6 (-10.45%), USGS25 (-30.41‰), IAEA-N-1 (+0.43‰) and IAEA-N-2 (+20.41‰), 22 

were run in duplicate.  Results are reported as per mil (‰) relative to the internationally 23 

accepted standards VPDB and AIR with 1σ precisions of ± 0.2‰ and ± 0.3‰ for δ13C 24 

and δ15N, respectively.  All animals analysed had C:N atomic ratios that fell within the 25 

range of 2.9 to 3.6, indicating good bone collagen preservation (DeNiro, 1985).  For δ34S 26 

analysis, two internal standards, which are calibrated to the international reference 27 

materials IAEA-S-1 (-0.3‰), IAEA-S-3 (-32.55‰) and IAEA-S-4 (+16.90‰), were run 28 

for every five unknown samples.  Results are reported as per mil (‰) relative to the 29 

internationally accepted standard VCDT and the precision was ± 0.6‰.  25% of δ34S 30 

analyses were carried out in duplicate; there were no significant differences in the 31 

reproducibility of the results.   32 

Nehlich and Richards (2009) analysed a variety of mammalian and fish bone 33 

archaeological samples, with the objective of introducing quality control standards for 34 
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measuring sulphur isotopes in bone collagen.  They found that, on average, mammalian 1 

and bird bone collagen had an atomic C:S ratio of 600 ± 300, an atomic N:S ratio of 200 2 

± 100 and contained between 0.15 and 0.35% sulphur, whilst fish bone collagen was 3 

found to have an atomic C:S ratio of 175 ± 50, an atomic N:S ratio of 60 ± 20 and 4 

contained between 0.4 and 0.8% sulphur.  A small number of individual samples in this 5 

study fell outside the above ranges and are excluded from the discussion (shown in italics 6 

and bold italics in their respective data tables in Supplementary Data Section).  Two 7 

samples (highlighted by an asterisk in their respective data tables) have still been included 8 

as their values fall within the desired ranges when corrected for weighing errors on the 9 

analytical balance. 10 

 11 

3.4 Radiocarbon Dating 12 

Radiocarbon ages were obtained from selected samples in this study.  CO2 was 13 

generated from collagen via combustion following the method of Vandeputte et al. 14 

(1996).  Following cryogenic purification, δ13C was measured on an aliquot of the CO2 15 

for normalization of sample 14C/13C ratios.  This was achieved on a VG SIRA 10 isotope 16 

ratio mass spectrometer, using NBS 22 (oil) and NBS 19 (marble) as standards.  The 17 

method of Slota et al. (1987) was used to convert a 3 ml aliquot of the CO2 to graphite for 18 

14C measurement by accelerator mass spectrometry (AMS).  Sample 14C/13C ratios were 19 

measured with carbon in the +1 charge state on the SUERC SSAMS at 245 keV. 20 

Calibrated age ranges at 2σ were obtained from sample 14C ages using the atmospheric 21 

IntCal09 curve (Reimer et al., 2009) and OxCal version 4.1 (Bronk Ramsey 1995; 2001).  22 

 23 
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 1 

4. Results 2 

A summary of the stable isotope results is presented in Table 1 and plotted in Figure 3 

4.  All stable isotope and radiocarbon age measurements together with sampling areas and 4 

stratigraphic contexts analysed in this study, can be found in Tables S1-S9 in the 5 

Supplementary Data Section.    6 

 7 

4.1 Terrestrial Herbivores 8 

Cows (n=32): δ13C values ranged from -22.5 to -20.6‰ (mean = -21.5 ± 0.4‰), δ15N 9 

values from +1.1 to +5.6‰ (mean = +3.9 ± 1.0‰) and δ34S values from -1.0 to +13.9‰ 10 

(mean = +4.1 ± 3.2‰), respectively.   11 

Caprines (sheep and goats) (n=48):  δ13C values ranged from -22.0 to -20.4‰ (mean 12 

= -21.2 ± 0.4‰), δ15N values from -0.1 to +5.5‰ (mean = +2.5 ± 1.1‰) and δ34S values 13 

from +2.3 to +12.3‰ (mean = +6.7 ± 1.9‰).   14 

Horses (n=5): δ13C values ranged from -22.4 to -21.4‰ (mean = -21.8 ± 0.4‰), δ15N 15 

values from +0.6 to +3.6‰ (mean = +1.9 ± 1.3‰), and δ34S values from +1.4 to +10.2‰ 16 

(mean = +5.7 ± 3.2‰).   17 

 18 

4.2 Freshwater Fish 19 

The analysis of trout (n= 5) and char (n=7) bones yielded δ13C values that ranged 20 

from -9.8 to -9.3‰ (mean = -9.6 ± 0.2‰) and -11.4 to -9.1‰ (mean = -10.0 ± 0.8‰), 21 

respectively.  δ15N values ranged from +5.0 to +6.8‰ (mean = +6.1 ± 0.7‰) and +5.2 to 22 

+6.8‰ (mean = +5.9 ± 0.5‰), respectively, whilst δ34S values ranged from -4.2 to -0.2‰ 23 

(mean = -2.4 ± 1.5‰) and -4.3 to -0.4‰ (mean = -3.0 ± 1.3‰), respectively.   24 

 25 

4.3 Marine Fish 26 

Haddock (n = 3) and cod bones (n=6) provided δ13C values from -14.6 to -14.0‰ 27 

(mean = -14.3 ± 0.3‰) and -14.7‰ to -13.5‰ (mean = -14.2 ± 0.4‰), respectively.   28 
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 δ15N values ranged from +12.2 to +12.8‰ (mean = +12.6 ± 0.3‰), and +13.3 to +14.5‰ 1 

(mean +13.9 ± 0.5‰), respectively, whilst δ34S values varied from +12.4 to +15.9‰ 2 

(mean = +14.0 ± 1.8‰), and +15.6 and +17.5‰ (mean = +16.8 ± 0.9‰), respectively.  3 

Haddock bones were on average 1.3‰ less enriched in nitrogen and 2.8‰ less enriched 4 

in sulphur than cod bones.  Although both fish are carnivores, adult cod are slightly 5 

higher in the marine food web than haddock, and they have been known to eat smaller 6 

cod, hence the difference in δ15N and δ34S values.   7 

 8 

4.4 Marine Mammals 9 

Seal bones (n=6) δ13C values ranged from -16.3 to -14.8‰ (mean = -15.3 ± 0.5‰), 10 

δ
15N values from +12.1 to +13.3‰ (mean = +12.7 ± 0.5‰) and δ34S values from +14.3 to 11 

+16.8‰ (mean = +15.9 ± 1.0‰).   12 

 13 

4.5 Omnivorous Mammals 14 

Pig bone (n=3) δ13C, δ15N and δ34S values ranged from -20.6 to -18.9‰ (mean = -15 

19.5 ± 1.0‰), +6.5 to +9.7‰ (mean = +8.5 ± 1.7‰), and +3.7 to +8.5‰ (mean = +5.3 ± 16 

2.7‰), respectively.  GUsi-1110, GUsi-1111 and GUsi-1113 yielded radiocarbon ages of 17 

1593 ± 28 14C yr. BP, 1552 ± 29 14C yr. BP,  and 1431 ± 29 14C yr. BP, respectively, 18 

giving an average date of death between AD 412-656.  19 

Arctic fox bone (n=3) δ13C, δ15N and δ34S values ranged from -15.8 to -13.4‰ (mean 20 

= -14.9 ± 1.3‰), +7.8 to +10.7‰ (mean = +9.0 ± 1.5‰), and +0.6 to +1.9‰ (mean = 21 

+1.4 ± 0.7‰), respectively. GUsi-2118 and GUsi-2126 yielded radiocarbon ages of 2605 22 

± 30 14C yr. BP and 2160 ± 30 14C yr. BP, giving an average date of death between 827-23 

107 BC.  24 

 25 

4.6 Birds 26 

δ
13C, δ15N and δ34S stable isotope analysis on eleven birds of varying breed were 27 

undertaken.  Chicken (n=1), duck (n=2), tufted duck (n=1), mallard (n=2), common scoter 28 

(n=1), swan (n=3) and swan/goose (n=1) bones gave δ13C, δ15N and δ34S values that 29 
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ranged from -21.3 to -6.9‰ (mean = -13.6 ± 4.2‰), +1.9 to +16.1‰ (mean = +6.5 ± 1 

3.9‰), and -5.3 to +13.6‰ (mean = +3.0 ± 5.0‰), respectively.   2 

 3 

4.7 Summary: Isotopic and Elemental Measurements 4 

Terrestrial herbivores had average δ13C, δ15N and δ34S values of -21.3 ± 0.4‰, +3.0 5 

± 1.3‰ and +5.6 ± 2.8‰, respectively.  Freshwater fish yielded average δ13C, δ15N and 6 

δ
34S values of -9.8 ± 0.6‰, +5.9 ± 0.6‰ and -2.7 ± 1.4‰, respectively, whilst marine 7 

mammals and fish had average δ13C, δ15N and δ34S values of -14.7 ± 0.7‰, +13.2 ± 0.7‰ 8 

and +15.9 ± 1.5‰, respectively (Table 2).  The results demonstrate that there is a clear 9 

distinction between the δ34S values of terrestrial, freshwater and marine species (Figure 10 

4), and at 2σ, the average δ13C, δ15N and δ34S values of the three food groups are all 11 

significantly different.   12 

The average atomic C:S and N:S ratios, as well as average %S values for all 13 

mammalian, bird and fish samples analysed fall within the criteria set out by Nehlich and 14 

Richards (2009) to assess the quality of archaeological bone collagen for sulphur isotope 15 

analysis (Table 3).  Combined mammalian, bird and fish C:S and N:S atomic ratios are 16 

also presented in Table 3.  Mammalian and bird C:S atomic ratios averaged 528 ± 123 17 

and  N:S atomic ratios averaged 160 ± 37, whilst collectively, fish samples had an 18 

average C:S atomic ratio of 188 ± 14 and an average N:S atomic ratio of 56 ± 5.  19 

Although a broader range of animal species were analysed in Nehlich and Richards study 20 

which may account for the larger error range, the results here exhibit a smaller range and 21 

are more in keeping with the mammalian ranges presented by Richards et al. (2001) (C:S 22 

= 463 ± 176) and Craig et al. (2006) (C:S = 496 ± 39, N:S = 148 ± 12), and the fish 23 

ranges shown by Privat et al. (2007) (C:S = 198 ± 28, N:S = 61 ± 8). 24 
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 1 

5. Discussion 2 

5.1 Domestic Animals: Evidence of Husbandry Practices via stable isotope analysis  3 

δ
13C and δ15N values confirm that cows, caprines and horses were consuming a 4 

wholly terrestrial C3 plant diet, however, δ34S values varied by 14.9‰ (-1.0 to +13.9‰, 5 

mean = +5.6 ± 2.8‰), implying that these animals were acquiring their food from 6 

different geographical areas.  There are currently no published δ34S values for the 7 

vegetation surrounding Lake Mývatn, however, local flora can source its sulphur from 8 

three main reservoirs: rock sulphide (Mývatn δ34S value: -2.0 to +4.2‰, (Torssander, 9 

1989)), atmospheric SO2 (Mývatn δ34S value: -1.8 to +3.4‰, (Torssander, 1988)) and 10 

river, ground, and spring water in the area.  Whilst δ34S values for Mývatn water supplies 11 

have not yet been established, previous studies have shown that magmatic sulphate from 12 

volcanic eruptions have the potential to influence local water sources, and sulphate δ34S 13 

values have been found to range between -1.7 and +10.1‰ (Gíslason and Torssander, 14 

2006; Gíslason et al., 2002; Holm et al., 2010; Robinson et al., 2009).   Therefore, it is 15 

conceivable that the δ34S value of sulphur in the Mývatn region could range from -2.0 to 16 

+10.1‰, and since plants are depleted in 34S by ~1.5‰ relative to their sulphate source 17 

(Trust and Fry, 1992), vegetation in the region is likely to have a δ34S value that can vary 18 

between -3.5‰ and +8.6‰.  Similarly, isotopic fractionation of sulphur in mammals is 19 

small relative to their diet (Peterson et al, 1985, Richards et al., 2003), and hence 20 

domestic animals raised in Mývatn and consuming local vegetation would not be 21 

expected to display a δ34S value greater than ~+10‰, however, this cut off value remains 22 

ambiguous until δ34S values of flora and water samples in the area have been measured.     23 

Two late medieval to early modern cows provided very similar δ13C and δ15N values 24 

(GU-20231: -21.6‰ and +4.0‰, respectively and GU-20241: -21.9‰ and +4.1‰, 25 

respectively), and it could mistakenly be assumed that these animals were reared in close 26 

proximity to each other, yet their δ34S values tell a very different story (+0.6‰ vs. 27 

+9.0‰) (Figure 5).  Norse communities were known to participate in co-operative 28 

farming and animals were often moved around multiple farmsteads or jointly supervised 29 

uplands (e.g. Dugmore et al, 2012).  The lower δ34S value for GU-20231 indicates that 30 

this cow was likely grazing on vegetation that assimilated its sulphur predominantly from 31 

δ
34S-depleted rock sulphide, whilst it is possible that animals with higher δ34S values, as 32 
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observed with GU-20241, were perhaps grazing closer to δ34S-enriched geothermal water 1 

sources or were reared on sea-spray effected coastal vegetation (see Section 5.2 for 2 

further discussion).  A weak linear relationship (R2 = 0.24) between δ15N and δ34S exists 3 

for cows, with animals that have a more enriched δ15N value tending to have a depleted 4 

δ
34S value (Figure 6A).  Cattle grazing near Lake Mývatn are likely to have consumed 5 

plant material that was enriched in 15N due to the decomposition of chironomid midges, 6 

which transports nitrogen from the lake to the shore, whilst for cows foraging further 7 

afield, their δ15N values may be less enriched due to a decreasing effect of chironomid 8 

numbers with increasing distance from the shore (Gratton et al., 2008).  Alternatively, 9 

animals being farmed closer to Lake Mývatn may have elevated δ15N values due to the 10 

soil being fertilised with manure (Bogaard et al., 2007; Fraser et al., 2011). 11 

Although the average δ13C and δ15N values for cattle and caprines are very similar (-12 

21.5‰ vs. -21.2‰ and +3.9‰ vs. +2.5‰), their average δ34S values are slightly different 13 

(+4.1‰ vs. +6.7‰) (Figure 4), suggesting differing diet and/or grazing areas between the 14 

two groups.  If sheep and goats were grazing in the Krafla lava fields, then they may have 15 

been consuming moss and lichens that are capable of accumulating their sulphur directly 16 

from atmospheric SO2.  Given that atmospheric SO2 is likely to have varied over time due 17 

to numerous volcanic eruptions, it is not inconceivable that the higher δ34S value of 18 

caprines compared to cattle may be due to the consumption of a different food source 19 

with a more enriched isotopic signature.  As observed with cows, there is a weak 20 

correlation (R2 = 0.22) between δ15N and δ34S, with caprines that have a more enriched 21 

δ
15N value tending to have depleted δ34S value (Figure 6B), suggesting that sheep and 22 

goats that were being kept closer to the lake were also consuming plants that had been 15N 23 

enriched by chironomid midges.   24 

Only five horses were sampled in this study and as expected their δ13C, δ15N and δ34S 25 

values were very similar to those observed in cattle and caprines.  It is probable that, 26 

similarly to cattle, they were being managed closer to the farmstead at Skútustaðir rather 27 

than being grazed further afield.  However, their average δ15N value of +1.9‰ is less 28 

enriched than cows, emphasising that the two species were likely being given different 29 

foodstuffs.   30 

 31 

5.2 Domestic Animals: Evidence of Regional Trading 32 
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Haddock, cod and seal bones were all excavated from middens at Skútustaðir and 1 

demonstrate that although Lake Mývatn is approximately 50 km inland, established trade 2 

links to the coast were in place.  The intake of marine resources was an important part of 3 

the Norse diet and in times when crop production or animal stocks were low, marine 4 

resources may have provided a major source of food (McGovern, pers. comm.).  Whilst 5 

the boundary plots in Figure 5 show that clear differences exist between terrestrial, 6 

freshwater and marine species, two cows (GU-20246: δ34S +13.9‰ and GU-20248: δ34S 7 

+10.1‰), three sheep (GU-20232: δ34S +12.3‰, GU-20249: δ34S +11.0‰, and GU-8 

20275: δ34S +10.5‰) and a horse (GUsi-2131: δ34S +10.2‰) displayed enriched δ34S 9 

values.  The higher δ34S values may be attributed to the consumption of vegetation 10 

containing marine-derived sulphur, suggesting these animals may have been reared closer 11 

to the coast and trading of domestic animals was also occurring within Icelandic Norse 12 

communities.  Studies have shown that sea-spray not only influences coastal soil δ34S 13 

values, as sulphate particles can be propelled inland over extensive distances (Zazzo et 14 

al., 2011), however, it is unlikely that the land around Lake Mývatn would have been 15 

affected by sea-spray as the δ34S values of these six animals are very distinct from the 16 

average δ34S values of their contemporaries. 17 

The rate of bone collagen turnover is poorly understood, with estimates ranging from 18 

less than a year in birds (Hobson and Clark, 1992) to over ten years in adult humans 19 

(Hedges et al., 2007).  Assuming that fully matured animals are slaughtered within a few 20 

years of being brought inland, their 34S signature is unlikely to have changed significantly 21 

from when they first arrived at Lake Mývatn.  However, collagen turnover rates in 22 

juveniles should be higher than in adults, and therefore if young livestock grazing on 23 

coastal vegetation were then traded inland and reared for the remainder of their lives in 24 

the Lake Mývatn region, it is likely that their δ34S values would lie somewhere between a 25 

marine signature and the δ34S value for the local vegetation, and this may account for the 26 

intermediary δ34S values observed in some domestic animals.       27 

 28 

5.3 Lake Mývatn Birdlife: Evidence of Avian Diet Variability 29 

The very broad range in δ13C (-21.3 to -6.9‰, mean = -13.6 ± 4.2‰), δ15N (+1.9 to 30 

+16.1‰, mean = +6.5 ± 3.9‰) and δ34S (-5.3 to +13.6‰, mean = -3.0 ± 5.0‰) values for 31 

birds reflects the variation in diet of each species.  Analysis of modern detritus, algae, 32 
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pondweed, larvae, zooplankton and mollusc samples taken from Lake Mývatn yielded 1 

δ
13C values that varied between -22.6‰ and -10.1‰ and δ15N values that varied between 2 

-16.0‰ and +6.3‰ (Ascough et al., 2011).  Freshwater resources would have been the 3 

main food supply for birds surrounding Lake Mývatn, and as eight of the eleven birds 4 

have a δ34S value below +4‰, this suggests that the waters of Lake Mývatn may have 5 

been their permanent home.  Settlers brought the domestic fowl to Iceland in the 9th 6 

century, and whilst only one chicken has currently been analysed, its enriched δ13C, δ15N 7 

and depleted δ34S value (GUsi-2116: -18.3‰, +9.5‰ and +2.6‰, respectively) would 8 

suggest that it had consumed freshwater fish scraps.  GUsi-2129’s enriched δ15N value 9 

(+8.5‰) indicates that this duck may have also been consuming some animal protein.  10 

However, its δ34S value (+7.7‰) is midway between the values observed for a pure 11 

freshwater feeder and a pure marine feeder, which would suggest migratory birds also 12 

resided at Lake Mývatn.  The enriched δ15N and δ34S values of GUsi-2130 (+16.0‰ and 13 

+13.6‰, respectively) demonstrate that although this bird spent the majority of its life 14 

within a marine environment, it may have occasionally migrated to the fertile waters of 15 

Lake Mývatn.  Alternatively, this bird could have spent its entire life at the coast, 16 

indicating that perhaps it was not just domestic animals, seals and marine fish that were 17 

being traded between communities. 18 

 19 

5.4 14C-dating: Evidence of Freshwater Reservoir Effects 20 

δ
13C and δ15N values for two of the three pigs examined in this study indicated they 21 

were consuming a variety of produce, including both terrestrial- and non-terrestrial-based 22 

resources (GUsi-1110: -18.9‰ and +9.7‰, respectively and GUsi-1111: -19.0‰ and 23 

+9.3‰, respectively).  However, by solely considering their δ13C and δ15N values, there is 24 

no clear indication as to whether it was terrestrial animal, freshwater fish or marine 25 

fish/mammal protein that was being consumed.  Given that the δ34S values of GUsi-1110 26 

(+3.8‰) and GUsi-1111 (+3.7‰) are lower than the average δ34S values observed for the 27 

terrestrial animals (+5.6‰), and marine species recovered from the midden at Skútustaðir 28 

have an average δ34S value of +15.9‰, these results would suggest that the pigs have 29 

been consuming freshwater fish scraps, and the depleted δ34S values exhibited in trout 30 

and char bones (mean: -2.7 ± 1.4‰) corroborates this theory.  Radiocarbon dating of 31 

GUsi-1110 (1593 ± 28 14C yr. BP, cal. AD 412-540 (95.4% probability)) and GUsi-1111 32 
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(1552 ± 29 14C yr. BP, cal. AD 426-573 (95.4% probability)) confirms that a large 1 

freshwater reservoir effect (FRE) was occurring as both pigs are significantly older than 2 

the landnám Viking settlement date of AD 871 ± 2 (Vésteinsson, 1998; McGovern et al., 3 

2007; Einarsson and Aldred, 2011).  It was assumed that GUsi-1113, with its slightly 4 

enriched δ13C (-20.6‰), δ15N (+6.5‰) and δ34S (+8.5‰) values, may have been 5 

consuming a small proportion of terrestrial animal or marine resources, yet its 6 

radiocarbon date (1431 ± 29 14C yr. BP) would suggest otherwise.  As observed with 7 

GUsi-1110 and GUsi-1111, GUsi-1113 pre-dates the landnám and displayed an overall 8 

2σ calibrated age range of AD 576-656.  This could suggest that this pig had been 9 

consuming freshwater resources from a different body of water to Lake Mývatn, and 10 

again potentially highlights that trading was taking place between Viking communities.  11 

Subsequently, human consumption of these pigs (and any other freshwater species) would 12 

influence their 14C ages and they too would appear older than their assigned cultural 13 

period (Ascough et al., 2007, 2010, 2011, 2012).  14 

Arctic foxes are known to be opportunistic feeders that can adapt their diet depending 15 

on seasonal or geographical changes (Hersteinsson and MacDonald, 1996).  They are 16 

renowned for preying on birds and stealing their eggs, and the large population of 17 

waterfowl surrounding Lake Mývatn would have provided an ample food supply for these 18 

predators.  Even during the winter months, a considerable part of the lake and the Laxá 19 

River remains ice-free, allowing the foxes to hunt all year round.  δ13C (mean: -14.9 ± 20 

1.3‰), δ15N (mean: +9.0 ± 1.5‰) and in particular δ34S (mean: +1.4‰ ± 0.7‰) stable 21 

isotope analysis supports the theory that like pigs, they too may have been scavenging 22 

freshwater fish carcasses from the shores of the lake and river.  GUsi-2118 and GUsi-23 

2126 were discovered just above the landnám tephra fall of AD 871 ± 2, yet 14C-dating 24 

estimates that these animals ranged from 2605 ± 30 14C yr. BP (GUsi-2118) to 2160 ± 30 25 

14C yr. BP (GUsi-2126).  These results offer an overall 2σ age range of 827-107 BC, 26 

which again is significantly earlier than the Viking settlement period and demonstrates 27 

that the 14C ages of these samples are affected by a freshwater reservoir effect (Ascough 28 

et al., 2007, 2010, 2011, 2012).   29 
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 1 

6. Conclusions 2 

In the first comprehensive stable isotope study to be undertaken of archaeological 3 

fauna from one specific site within the Lake Mývatn area, utilisation of 34S analysis in 4 

conjunction with 13C and 15N analyses has revealed important details concerning the 5 

husbandry techniques and livestock trading practice of early Viking settlers in Iceland.  6 

This study is also the first instance in which sulphur isotope analysis has been carried out 7 

on animal remains from archaeological deposits in Iceland, and has proven to be a 8 

valuable tool for discriminating between terrestrial, freshwater and marine based diets.  9 

Cattle bones were found to have lower δ34S values but higher δ15N values than the 10 

caprine bones analysed, which suggests that they were being kept closer to Lake Mývatn 11 

and perhaps feeding on δ15N enriched grasses, whereas a more enriched δ34S value for 12 

sheep and goat bones indicated they were grazing away from the lake and possibly 13 

consuming moss and lichens on the Krafla lava fields.  Three 10th century pigs were 14 

analysed during this study and δ13C and δ15N values indicated that two of them were 15 

consuming a mixture of terrestrial and non-terrestrial resources, whilst δ34S analyses and 16 

radiocarbon dating points towards the ingestion of freshwater fish as the non-terrestrial 17 

source.  This suggests that early settlers allowed pigs to roam quite freely around the 18 

farmstead and consume domestic waste, or alternatively, if they were styed, they were 19 

deliberately being fed scraps that included non-terrestrial material.   20 

It would be incorrect to assume that only the weathering of local bedrock dictates 21 

δ
34S results, as the majority of the terrestrial animals examined had a δ34S value greater 22 

than +4.2‰, whilst almost all of the freshwater fish had δ34S values less than -2.0‰.   23 

Iceland has been subjected to many volcanic eruptions before and since the landnám, and 24 

evidence has shown that the increased amounts of sulphurous magmatic gases have 25 

affected the δ34S values of rivers, lakes and groundwater.  The increase in sulphate 26 

concentration has led to an increase in δ34S variability, and as a consequence, this 27 

variability has been transferred throughout the food chain.  It is highly conceivable that 28 

the enriched sulphur isotope values observed in some terrestrial animals were the result of 29 

sea-spray affecting coastally reared animals, which were then moved inland.   30 

Overall, there is an offset of ~8‰ in sulphur isotope values between terrestrial and 31 

freshwater systems in the Lake Mývatn region of Iceland, and the tight range for 32 
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freshwater fish demonstrates the homogeneity of this environment with respect to δ34S.  1 

Results have shown that the freshwater fish populating Lake Mývatn have a significantly 2 

different δ34S value from their marine contemporaries, with the average δ34S value of the 3 

two groups offset by approx. 18.5‰.  As the remains of both freshwater and marine 4 

resources have been found in middens at Skútustaðir, sulphur isotope analysis will be a 5 

useful tool for reconstructing the diets of the human inhabitants, and while correcting for 6 

the freshwater 14C reservoir effect at Lake Mývatn is problematic, these results have 7 

nevertheless enabled us to differentiate whether the anomalously old 14C ages are due to a 8 

marine or freshwater 14C reservoir effect.   9 

As a final point, further research into the use of sulphur isotopes in archaeology is 10 

required, but this study has demonstrated that if a system is well-defined, is investigated 11 

in a methodical manner and is supported with archaeological and palaeoenvironmental 12 

information, it is possible to use sulphur isotopes as an important tracer of diet.  13 

 14 

Acknowledgements 15 

This research received no specific grant from any funding agency in the public, 16 

commercial, or not-for profit sectors.  The authors would like to thank the archaeologists 17 

involved in the excavation at Skútustaðir, which was funded as part of the US National 18 

Science Foundation IPY program “Long Term Human Ecodynamics in the Norse North 19 

Atlantic: cases of sustainability, survival, and collapse” (grant number 0732327), and was 20 

awarded by the Office of Polar Programs Arctic Social Sciences International Polar Year 21 

program 2007-2010.  The authors would also like to thank two anonymous referees and 22 

Rob Newton for reviewing the manuscript and for providing very helpful comments.23 



  

24 

 

 1 

References 2 

Arnalds, Ó., Thorarinsdóttir, E.F., Metusalemsson, S., Johnsson, A., Gretarsson, E., 3 

Arnason, A.  1997.  Soil Erosion in Iceland.  Reykjavik: Icelandic SCS and the 4 

Agricultural Research Institute. 5 

Ascough, P.L., Cook, G.T., Church, M.J., Dugmore, A.J., McGovern, T.H., Dunbar, E., 6 

Einarsson, Á., Friðriksson, A., Gestsdóttir, H.  2007.  Reservoirs and radiocarbon: 14C 7 

dating problems in Mývatnssveit, northern Iceland.  Radiocarbon 49, 947-961.  8 

Ascough, P.L., Cook, G.T., Church, M.J., Dunbar, E., Einarsson Á., McGovern, T.H., 9 

Dugmore, A.J., Perdikaris, S., Hastie, H., Friðriksson, A., Gestsdóttir, H.  2010.  10 

Temporal and spatial variations in freshwater 14C Reservoir Effects:  Lake Mývatn, 11 

northern Iceland.  Radiocarbon 52, 1098-1112. 12 

Ascough, P.L., Cook, G.T., Hastie, H., Dunbar, E., Church, M.J., Einarsson, Á., 13 

McGovern, T.H., Dugmore, A.J.  2011.  An Icelandic Freshwater Radiocarbon Reservoir 14 

Effect: Implications for lacustrine 14C chronologies.  The Holocene 21, 1073-1080. 15 

Ascough, P.L., Church, M.J., Cook, G.T., Dunbar, E., Gestsdóttir, H., McGovern, T.H., 16 

Dugmore, A.J., Friðriksson, A., Edwards, K.J.  2012.  Radiocarbon reservoir effects in 17 

human bone collagen from northern Iceland.   Journal of Archaeological Science 39, 18 

2261-2271. 19 

Ascough, P.L., Church, M.J., Cook, G.T., Einarsson, Á., McGovern, T.H., Dugmore, 20 

A.J., Edwards, K.J.  In press.  Stable isotopic (δ13C and δ15N) characterization of key 21 

faunal resources on Norse period settlements in North Iceland.  Journal of the North 22 

Atlantic. 23 

Bahar, B., Schmidt, O., Moloney, A.P., Scrimgeour, C.M., Begley, I.S., Monahan, F.J.  24 

2008.  Seasonal variation in the C, N and S stable isotope composition of retail organic 25 

and conventional Irish beef.  Food Chemistry 106, 1299-1305. 26 

Barrett, J., Johnstone, C., Harland, J., Van Neer, W., Ervynck, A., Makowiecki, D., 27 

Heinrich, D., Hufthammer, A.K., Enghoff, I.B., Amundsen, C., Christiansen, J.S., Jones, 28 

A.K.G., Locker, A., Hamilton-Dyer, S., Jonsson, L., Lõugas, L., Roberts, C., Richards, 29 



  

25 

 

M.  2008.  Detecting the medieval cod trade: a new method and first results.  Journal of 1 

Archaeological Science 35, 850-861. 2 

Barrett, J.H., Orton, D., Johnstone, C., Harland, J., Van Neer, W., Ervynck, A., Roberts, 3 

C., Locker, A., Amundsen, C., Enghoff, I.B., Hamilton-Dyer, S., Heinrich, D., 4 

Hufthammer, A.K., Jones, A.K.G., Jonsson, L., Makowiecki, D., Pope, P., O’Connell, 5 

T.C., de Roo, T., Richards, M.  2011.  Interpreting the expansion of sea fishing in 6 

medieval Europe using stable isotope analysis of archaeological cod bones.  Journal of 7 

Archaeological Science 38, 1516-1524.  8 

Bjarnason, Á.H.  1991.  Vegetation on lava fields in the Hekla area, Iceland.  Acta 9 

Phytogeographica Suecica 77, 3-105. 10 

Bogaard, A., Heaton, T.H.E., Poulton, P., Merbach, I.  2007.  The impact of manuring on 11 

nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet 12 

and crop management practices.  Journal of Archaeological Science 34, 335-343.                     13 

Bronk Ramsey, C.  1995.  Radiocarbon Calibration and Analysis of Stratigraphy: The 14 

OxCal Program.  Radiocarbon 37, 425-430. 15 

Bronk Ramsey, C.  2001.  Development of the radiocarbon program OxCal.  Radiocarbon 16 

43, 355-363.  17 

Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., Zak, I.  1980.  The age curves of 18 

sulphur and oxygen isotopes in marine sulphate and their mutual interpretation.  Chemical 19 

Geology 28, 199-260. 20 

Craig, O.E., Ross, R., Andersen, S.H., Milner, N., Bailey, G.N.  2006.  Focus: sulphur 21 

isotope variation in archaeological marine fauna from northern Europe.  Journal of 22 

Archaeological Science 33, 1642-1646. 23 

Craig, O.E., Biazzo, M., Colonese, A.C., Di Giuseppe, Z., Martinez-Labarga, C., Lo 24 

Vetro, D., Lelli, R., Martini, F., Rickards, O.  2010.  Stable isotope analysis of Late Upper 25 

Palaeolithic human and faunal remains from Grotta del Romito (Cosenza), Italy.  Journal 26 

of Archaeological Science 37, 2504-2512. 27 

DeNiro, M.J., Epstein, S.  1978.  Influence of diet on the distribution of carbon isotopes 28 

in animals.  Geochimica et Cosmochimica Acta 42, 495-506. 29 



  

26 

 

DeNiro, M.J., Epstein, S.  1981.  Influence of diet on the distribution of nitrogen isotopes 1 

in animals.  Geochimica et Cosmochimica Acta 45, 341-351. 2 

DeNiro, M.J.  1985.  Postmortem preservation and alteration of in vivo bone collagen 3 

isotope ratios in relation to palaeodietary reconstruction.  Nature 317, 806-809. 4 

Dufour, E., Bocherens, H., Mariotti, A.  1999.  Palaeodietary Implications of Isotopic 5 

Variability in Eurasian Lacustrine Fish.  Journal of Archaeological Science 26, 617-627. 6 

Dugmore, A.J., Church, M.J., Buckland, P.C., Edwards, K.J., Lawson, I., McGovern, 7 

T.H., Panagiotakopulu, E., Simpson, I.A., Skidmore, P., Sveinbjarnardóttir, G.  2005.  8 

The Norse landnám on the north Atlantic islands: an environmental impact assessment. 9 

Polar Record 41, 21-37. 10 

Dugmore, A.J., McGovern, T.H., Vésteinsson, O., Arneborg, J., Streeter, R., Keller, C.  11 

2012.  Cultural adaptation, compounding vulnerabilities and conjunctures in Norse 12 

Greenland.  Proceedings of the National Academy of Sciences 109, 3658-3663. 13 

Edwald, Á., McGovern, T.H.  2009.  Skútustaðir Midden Investigations Mývatn Northern 14 

Iceland 2008. . (Available for download from: 15 

http://www.nabohome.org/uploads/tommcgovern/Skutustadir_Field_Report_for_NABO_16 

website.pdf). 17 

Edwald, Á., McGovern, T.H.  2010.  Skútustaðir Midden Investigations Mývatn Northern 18 

Iceland 2009. (Available for download from: 19 

http://www.nabohome.org/publications/fieldreports/SkutustadirField%20Report2009225120 

0.pdf). 21 

Einarsson, Á.  2004.  Lake Myvatn and the River Laxá: An introduction.  Aquatic 22 

Ecology 38, 111-114. 23 

Einarsson, Á., Aldred, O.  2011.  The archaeological landscape of northeast Iceland: a 24 

ghost of a Viking Age society. In: Remote Sensing for Archaeological Heritage 25 

Management.  EAC (Europae Archaeologiae Consilium) Publications. Pp. 243-258. 26 

Einarsson, M. Á.  1979.  Climatic conditions of the Lake Mývatn area.  Oikos 32, 29-37. 27 



  

27 

 

Erskine, P.D., Bergstrom, D.M., Schmidt, S., Stewart, G.R., Tweedie, C.E., Shaw, J.D.  1 

1998.  Subantarctic Macquarie Island – a model ecosystem for studying animal-derived 2 

nitrogen sources using 15N natural abundance.  Oecologia 117, 187-193. 3 

Faure, G.  1977.  Sulfur. In: Principles of Isotope Geology. Wiley: New York, 523-552. 4 

Fraser, R.A., Bogaard, A., Heaton, T., Charles, M., Jones, G., Christensen, B.T., 5 

Halstead, P., Merbach, I., Poulton, P.R., Sparkes, D., Styring, A.K.  2011.  Manuring and 6 

stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical 7 

approach to the inference of land use and dietary practices.  Journal of Archaeological 8 

Science 38, 2790-2804. 9 

Fritzsche, F., Tichomirowa, M.  2006.  Signal improvement in elemental 10 

analyzer/continuous flow isotope ratio mass spectrometry for samples with low sulfur 11 

contents using a pre-concentration technique for on-line concentration adjustment.  Rapid 12 

Communications in Mass Spectrometry 20, 1679-1682. 13 

Fry, B., Garritt, R., Tholke, K., Neill, C., Michener, R.H., Mersch, F.J., Brand, W.  1996.  14 

Cryoflow: Cryofocussing Nanomole Amounts of CO2, N2, and SO2 from an Elemental 15 

Analyzer for Stable Isotope Analysis.  Rapid Communications in Mass Spectrometry 10, 16 

953-958. 17 

Fry, B.  2007.  Coupled N, C and S stable isotope measurements using a dual-column gas 18 

chromatography system.  Rapid Communications in Mass Spectrometry 21, 750-756. 19 

Gardarsson, A.  2006.  Temporal processes and duck populations: examples from 20 

Mývatn. Hydrobiologia 567, 89-100. 21 

Gíslason, S.R., Snorrason, Á., Kristmannsdóttir, H.K., Sveinbjörnsdóttir, Á.E., 22 

Torssander, P., Ólafsson, J., Castet, S. Dupré, B.  2002.  Effects of volcanic eruptions on 23 

the CO2 content of the atmosphere and the ocean: the 1996 eruption and flood within the 24 

Vatnajökull Glacier, Iceland.  Chemical Geology 190, 181-205. 25 

Gíslason, S.R., Torssander, P.  2006.  Response of Sulfate Concentration and Isotope 26 

Composition in Icelandic Rivers to the Decline in Global Atmospheric SO2 Emissions 27 

into the North Atlantic Region.  Environmental Science & Technology 40, 680-686. 28 



  

28 

 

Giesemann, A., Jäger, H.-J., Norman, A.L., Krouse, H.R., Brand, W.A.  1994.  On-line 1 

Sulfur-Isotope Determination Using Elemental Analyzer Coupled to a Mass 2 

Spectrometer.  Analytical Chemistry 66, 2816-2819. 3 

Grassineau, N.V., Mattey, D.P., Lowry, D.  2001.  Sulfur Isotope Analysis of Sulfide and 4 

Sulfate Minerals by Continuous Flow-Isotope Ratio Mass Spectrometry.  Analytical 5 

Chemistry 73, 220-225. 6 

Grassineau, N.V.  2006.  High-precision EA-IRMS analysis of S and C isotopes in 7 

geological materials.  Applied Geochemistry 21, 756-765. 8 

Gratton, C., Donaldson, J., Vander Zanden, M.J.  2008.  Ecosystems Linkages Between 9 

Lakes and the Surrounding Terrestrial Landscape in Northeast Iceland.  Ecosystems 11, 10 

764-774. 11 

Hallsdóttir, M.  1987.  Pollen Analytical Studies of Human Influence on Vegetation in 12 

Relation to the Landnám Tephra Layer in Southwest Iceland.  Lundqua Thesis 18, 13 

Department of Quaternary Geology, Lund University. 14 

Hansen, T., Burmeister, A., Sommer, U.  2009.  Simultaneous δ15N, δ13C and δ34S 15 

measurements of low-biomass samples using a technically advanced high sensitivity 16 

elemental analyzer connected to an isotope ratio mass spectrometer.  Rapid 17 

Communications in Mass Spectrometry 23, 3387-3393. 18 

Harris, E. Sinha, B., Hoppe, P., Crowley, J.N., Ono, S., Foley, S.  2012.  Sulfur isotope 19 

fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and 20 

aqueous oxidation by H2O2, O3 and iron catalysis.  Atmospheric Chemistry and Physics 21 

12, 407-424. 22 

Hedges, R.E.M., Clement, J.G., Thomas, C.D.L., O’Connell, T.C.  2007.  Collagen 23 

turnover in the adult femoral mid-shaft: Modeled from anthropogenic radiocarbon tracer 24 

measurements.  American Journal of Physical Anthropology 133, 808–816. 25 

Hersteinsson, P., MacDonald, D.W.  1996.  Diet of arctic foxes (Alopex lagopus) in 26 

Iceland.  Journal of Zoology 240, 457-474.   27 



  

29 

 

Hicks, M.T., McGovern, T.H., Harrison, R.  2009.  A Preliminary Report of the 2008 1 

Midden Excavation at Skútustaðir, N Iceland. (Available for download from: 2 

http://www.nabohome.org/uploads/fsi/FS419-08271_SKU08.pdf). 3 

Hicks, M.T.  2010.  Skútustaðir: An Interim Zooarchaeological Report following the 2009 4 

Field Season. (Available for download from: 5 

http://www.nabohome.org/publications/labreports/NORSEC_SKU_InterimZooachaeologi6 

calReport2009_5_5_2010.pdf). 7 

Hicks, M.T., Pálsdóttir, L.B.  2011.  Excavations at Skútustaðir, Mývatn Northern 8 

Iceland: Preliminary Field Report After the Excavation Season June – July 2010.  9 

(Available for download from: http:// http://www.nabohome.org/uploads/fsi/FS457-10 

08273Skutustadir_FieldReport.pdf) 11 

Hildebrand, L.W.; Torssander, P.  1998.  Sulfur isotope ratios from the Katla Volcanic 12 

Centre – With implications for mantle heterogeneities? In Water-Rock Interaction; 13 

Arehart, G.B., Hulston, J.R. Eds.; Balkema: Rotterdam; 451-454. 14 

Hobson, K.A., Clark, R.G. 1992.  Assessing Avian Diets Using Stable Isotopes I: 15 

Turnover of 13C in Tissues.  The Condor 94, 181-188. 16 

Holm, N.G., Gíslason, S.R., Sturkell E., Torssander, P.  2010.  Hekla cold springs 17 

(Iceland): groundwater mixing with magmatic gases.  Isotopes in Environmental and 18 

Health Studies 46, 180-189. 19 

Howcroft, R., Eriksson, G., Lidén, K.  2012.  Conformity in Diversity?  Isotopic 20 

Investigations of Infant Feeding Practices in Two Iron Age Populations From Southern 21 

Öland, Sweden.  American Journal of Physical Anthropology 149, 217-230.   22 

Hu, Y., Shang, H., Tong, H., Nehlich, O., Liu, W., Zhao, C., Yu, J., Wang, C., Trinkaus, 23 

E. Richards, M.P.  2009.  Stable isotope dietary analysis of the Tianyuan 1 early modern 24 

human.  Proceedings of the National Academy of Sciences 106, 10971-10974. 25 

Jakobsson, S.P., Jónasson, K., Sigurdsson, I.A.  2008.  The three igneous rock series of 26 

Iceland.  Jökull 58, 117-138. 27 



  

30 

 

Keaveney, E.M., Reimer, P.J.  2012.  Understanding the variability in freshwater 1 

radiocarbon reservoir offsets: a cautionary tale.  Journal of Archaeological Science 39, 2 

1306-1316. 3 

Kristmannsdóttir, H., Ármannsson, H.  2004.  Groundwater in the Lake Myvatn area, 4 

northern Iceland: Chemistry, origin and interaction.  Aquatic Ecology 38, 115-128. 5 

Krouse, H.R.  1977.  Sulphur isotope abundance elucidate uptake of atmospheric sulphur 6 

emission by vegetation.  Nature 65, 45-46. 7 

Lamb, A.L., Melikian, M., Ives. R., Evans, J.  2012.  Multi-isotope analysis of the 8 

population of the lost medieval village of Auldhame, East Lothian, Scotland.  Journal of 9 

Analytical Atomic Spectrometry 27, 765-777. 10 

Lawson, I.T., Gathorne-Hardy, F.J., Church, M.J., Newton, A.J., Edwards, K.J., 11 

Dugmore, A.J., Einarsson, Á.  2007.  Environmental impacts of the Norse settlement: 12 

palaeoenvironmental data from Mývatnssveit, northern Iceland.  Boreas 36, 1-19. 13 

Longin, R.  1971.  New Method Of Collagen Extraction For Radiocarbon Dating.  Nature 14 

230, 241-242. 15 

Macko, S.A., Engel, M.H., Andrusevich, V., Lubec, G. O’Connell, T.C., Hedges, R.E.M.  16 

1999.  Documenting the diet in ancient human populations through stable isotope analysis 17 

of hair.  Philosophical Transactions of the Royal Society B 354, 65-76. 18 

Mateo, M.A., Serrano, O., Serrano, L., Michener, R.H.  2008.  Effects of sample 19 

preparation on stable isotopes ratios of carbon and nitrogen in marine invertebrates: 20 

implications for food web studies using stable isotopes.  Oecologia 157, 105-115. 21 

McGovern, T.H., Perdikaris, S., Einarsson, A., Sidell, J.  2006.  Coastal connections, 22 

local fishing, and sustainable egg harvesting: patterns of Viking Age inland wild resource 23 

use in Mývatn district, northern Iceland.  Environmental Archaeology 11, 187-205. 24 

McGovern, T.H., Vésteinsson, O., Fridriksson, A., Church, M., Lawson, I., Simpson, 25 

I.A., Einarsson, A., Dugmore, A., Cook, G., Perdikaris, S., Edwards, K.J., Thomson, 26 

A.M., Adderley, W.P., Newton, A., Lucas, G., Edvardsson, R., Aldred, O., Dunbar, E.  27 

2007.  Landscapes of settlement in Northern Iceland: Historical ecology of human impact 28 

and climate fluctuation on the millennial scale.  American Anthropologist 109, 27-51. 29 



  

31 

 

McKee, K.L., Feller, I.C., Popp, M., Wanek, W.  2002.  Mangrove Isotopic (δ15N and 1 

δ
13C) fractionation across a nitrogen vs. phosphorus limitation gradient.  Ecology 83, 2 

1065-1075. 3 

Nakai, N., Jensen, M.L.  1964.  The kinetic isotope effect in the bacterial reduction and 4 

oxidation of sulfur.  Geochimica et Cosmochimica Acta 28, 1893-1912. 5 

Nehlich, O., Richards, M.P.  2009.  Establishing quality criteria for sulphur isotope 6 

analysis of archaeological bone collagen.  Archaeological and Anthropological Sciences 7 

1, 59-75. 8 

Nehlich, O. Borić, D., Stefanović, S., Richards, M.P.  2010.  Sulphur isotope evidence for 9 

freshwater fish consumption: a case study from the Danube Gorges, SE Europe.  Journal 10 

of Archaeological Science 37, 1131-1139. 11 

Nehlich, O., Fuller, B.T., Jay, M., Mora, A., Nicholson, R.A., Smith, C.I., Richards, M.T.  12 

2011.  Application of sulphur isotope ratios to examine weaning patterns and freshwater 13 

fish consumption in Roman Oxfordshire, UK.  Geochimica et Cosmochimica Acta 75, 14 

4963-4977. 15 

Nehlich, O., Fuller, B.T., Márquez-Grant, N., Richards, M.P.  2012.  Investigation of 16 

Diachronic Dietary Patterns on the Islands of Ibiza and Formentera, Spain: Evidence from 17 

Sulfur Stable Isotope Ratio Analysis.  American Journal of Physical Anthropology 149, 18 

115-124. 19 

Newton, R., Bottrell, S.  2007.  Stable isotopes of carbon and sulphur as indicators of 20 

environmental change: past and present.  Journal of the Geological Society 164, 691-708. 21 

Nriagu, J.O., Coker, R.D.  1978.  Isotopic composition of sulphur in atmospheric 22 

precipitation around Sudbury, Ontario.  Nature 274, 883-885. 23 

Oelze, V.M., Nehlich, O., Richards, M.P.  2012a.  ‘There’s No Place Like Home’ - No 24 

Isotopic Evidence for Mobility at the Early Bronze Age Cemetery of Singen, Germany.  25 

Archaeometry 54, 752-778. 26 

Oelze, V.M., Koch, J.K., Kupke K., Nehlich, O., Zäuner, S., Wahl, J., Weise, S.M., 27 

Rieckhoff, S., Richards, M.P.  2012b.  Multi-Isotopic Analysis Reveals Individual 28 



  

32 

 

Mobility and Diet at the Early Iron Age Monumental Tumulus of Magdalenenberg, 1 

Germany.  American Journal of Physical Anthropology 148, 406-421.   2 

Osorio, M.T., Moloney, A.P., Schmidt, O., Monahan, F.J.  2011.  Beef Authentication 3 

and Retrospective Dietary Verification Using Stable Isotope Ratio Analysis of Bovine 4 

Muscle and Tail Hair.  Journal of Agricultural and Food Chemistry 59, 3295-3305. 5 

Peterson, B.J., Fry, B.  1987.  Stable isotopes in ecosystem studies.  Annual Review of 6 

Ecological Systems 18, 293-320. 7 

Peterson, B.J., Howarth, R.W., Garritt, R.H.  1985.  Multiple stable isotopes used to trace 8 

the flow of organic matter in estuarine food webs.  Science 227, 1361-1363. 9 

Privat, K.L., O’Connell, T.C., Hedges, R.E.M.  2007.  The distinction between 10 

freshwater- and terrestrial-based diets: methodological concerns and archaeological 11 

applications of sulphur stable isotope analysis.  Journal of Archaeological Science 34, 12 

1197-1204. 13 

Rees, C.E., Jenkins, W.J, Monster, J.  1978.  The sulphur isotopic composition of ocean 14 

water sulphate.  Geochimica et Cosmochimica Acta 42, 377-381. 15 

Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk 16 

Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., 17 

Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., 18 

Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, 19 

J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E.  2009.  INTCAL 20 

09 and MARINE09 radiocarbon age calibration curves, 0-50,000 years Cal BP. 21 

Radiocarbon 51, 1111-1150. 22 

Richards, M.P., Fuller, B.T., Hedges, R.E.M.  2001.  Sulphur isotopic variation in ancient 23 

bone collagen from Europe: implications for human palaeodiet, residence mobility, and 24 

modern pollutant studies.  Earth and Planetary Science Letters 191, 185-190. 25 

Richards, M.P., Fuller, B.T., Sponheimer, M., Robinson, T. Ayliffe, L.  2003.  Sulphur 26 

Isotopes in Palaeodietary Studies: a Review and Results from a Controlled Feeding 27 

Experiment.  International Journal of Osteoarchaeology 13, 37-45. 28 



  

33 

 

Robinson, Z.P., Fairchild, I.J., Spiro, B.  2009.  The sulphur isotope and hydrochemical 1 

characteristics of Skeiðarársandur, Iceland: identification of solute sources and 2 

implications for weather processes.  Hydrological Processes 23, 2212-2224. 3 

Rummel, S., Hoelzl, S., Horn, P., Rossmann, A., Schlicht, C.  2010.  The combination of 4 

stable isotope abundance ratios of H, C, N and S with 87Sr/86Sr for geographical origin 5 

assignment of orange juices.  Food Chemistry 118, 890-900. 6 

Russell, N., Cook, G.T., Ascough, P., Barrett, J.H., Dugmore, A.  2011.  Species specific 7 

marine radiocarbon reservoir effect: a comparison of ΔR values between Patella vulgata 8 

(limpet) shell carbonate and Gadus morhua (Atlantic cod) bone collagen.  Journal of 9 

Archaeological Science 38, 1008-1015. 10 

Schoeninger, M.J., DeNiro, M.J., Tauber, H.  1983.  Stable Nitrogen Isotope Ratios of 11 

Bone Collagen Reflect Marine and Terrestrial Components of Prehistoric Human Diet.  12 

Science 220, 1381-1383. 13 

Schoeninger, M.J., DeNiro, M.J.  1984.  Nitrogen and carbon isotopic composition of 14 

bone collagen from marine and terrestrial animals.  Geochimica et Cosmochimica Acta 15 

48, 625-639. 16 

Skrzypek, G., Kałużny, A., Wojtuń, B., Jędrysek, M.O.  2007.  The carbon stable isotopic 17 

composition of mosses: A record of temperature variations.  Organic Geochemistry 38, 18 

1770-1781. 19 

Skrzypek, G., Paul, D., Wojtuń, B.  2008.  Stable isotope composition of plants and peat 20 

from Arctic mire and geothermal area in Iceland.  Polish Polar Research 29, 365-376. 21 

Slota, P.J., Jull, A.J.T., Linick, T.W., Toolin, L.J.  1987.  Preparation of small samples for 22 

14C accelerator targets by catalytic reduction of CO.  Radiocarbon 29, 303-306. 23 

Strauss, H.  1997.  The isotopic composition of sedimentary sulfur through time.  24 

Palaeogeography, Palaeoclimatology, Palaeoecology 32, 97-118. 25 

Tanz, N., Schmidt, H-L.  2010.  δ34S-Value Measurements in Food Origin Assignments 26 

and Sulfur Isotope Fractionations in Plants and Animals.  Journal of Agricultural and 27 

Food Chemistry 58, 3139-3146. 28 



  

34 

 

Tauber, H.  1981.  13C evidence for dietary habits of prehistoric man in Denmark.  Nature 1 

292, 332-333. 2 

Taylor, B.E., Wheeler, M.C.  1984.  Isotopic composition of sulphate in acid mine 3 

drainage as measure of bacterial oxidation.  Nature 308, 538-541. 4 

Torssander, P.  1988.  Sulfur Isotope Ratios of Icelandic Lava Incrustations and Volcanic 5 

Gases.  Journal of Volcanology and Geothermal Research 35, 227-235. 6 

Torssander, P.  1989.  Sulfur isotope ratios of Icelandic rocks.  Contributions to 7 

Mineralogy and Petrology 102, 18-23. 8 

Trust, B.A., Fry, B.  1992.  Stable sulphur isotopes in plants: a review.  Plant, Cell and 9 

Environment 15, 1105-1110. 10 

Van der Merwe, N.J., Vogel, J.C.  1978.  13C Content of human collagen as a measure of 11 

prehistoric diet in woodland North America.  Nature 276, 815-816. 12 

Vandeputte, K., Moens, L., Dams, R.  1996.  Improved sealed-tube combustion of organic 13 

samples to CO2 for stable isotopic analysis, radiocarbon dating and percent carbon 14 

determinations. Analytical Letters 29, 2761-73. 15 

Vésteinsson, O.  1998.  Patterns of settlement in Iceland: A study in prehistory.  Saga 16 

Book 28, 1–29. 17 

Vésteinsson, O., McGovern, T.H., Keller, C.  2002.  Enduring Impacts: Social and 18 

Environmental Aspects of Viking Age Settlement in Iceland and Greenland. 19 

Archaeologia Islandica 2, 98-136. 20 

Vika, E.  2009.  Strangers in the grave? Investigating local provenance in a Greek Bronze 21 

Age mass burial using δ34S analysis.  Journal of Archaeological Science 36, 2024-2028. 22 

Wadleigh, M.A., Schwarcz, H.P., Kramer, J.R.  1994.  Sulphur isotope tests of seasalt 23 

correction factors in precipitation: Nova Scotia, Canada.  Water, Air and Soil Pollution 24 

77, 1-16. 25 

Wadleigh, M.A.  2003.  Lichens and atmospheric sulphur: what stable isotopes reveal. 26 

Environmental Pollution 126, 345-351. 27 



  

35 

 

Wang, Y.M., Wooller, M.J.  2006.  The stable isotopic (C and N) composition of modern 1 

plants and lichens from northern Iceland: with ecological and paleoenvironmental 2 

implications.  Jökull 56, 27-38. 3 

Yun, M., Mayer, B., Taylor, S.W.  2005.  δ34S measurements on organic materials by 4 

continuous flow isotope ratio mass spectrometry.  Rapid Communications in Mass 5 

Spectrometry 19, 1429-1436. 6 

Yun, M., Wadleigh, M.A., Mayer, B.  2010.  Variations of sulfur isotope ratios in a single 7 

lichen thallus: A potential historical archive for sulfur pollution.  Environmental Pollution 8 

158, 3534-3538 9 

Zazzo, A., Monahan, F.J., Moloney, A.P., Green, S., Schmidt, O.  2011.  Sulphur isotopes 10 

in animal hair track distance to sea.  Rapid Communications in Mass Spectrometry 25, 11 

2371-2378. 12 



  

Figure captions 

Figure 1:  Location of Skútustaðir from which material was obtained for stable isotope (δ
13

C, 

δ
15

N and δ
34

S) and radiocarbon (
14

C) measurements. 

Figure 2: δ
34

S values for various Icelandic sulphur sources.  

Figure 3: δ
13

C and δ
15

N values for various flora and fauna from around Iceland and the Lake 

Mývatn region. 

Figure 4: Mean δ
13

C vs. δ
34

S (A) and δ
15

N vs. δ
34

S (B) for Skútustaðir animal bone collagen 

samples.  Error bars show standard deviations (1σ) from the mean. 

Figure 5: Plots of δ
13

C vs. δ
34

S (A) and δ
15

N vs. δ
34

S (B) of Skútustaðir animals that lie 

outside the boundaries of terrestrial (T), marine (M) and freshwater (F) species.  The figure 

also highlights the two cows, GU-20231 and GU-20241, with contrasting δ
34

S values.   

Figure 6:  Cow bone collagen (A) and caprine bone collagen (B) stable isotope values for 

archaeological samples from Skútustaðir.  In both graphs a significant (p<0.01) linear 

relationship is observed between increasing δ
15

N and decreasing δ
34

S values.  
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 1 

Species N δ
34

S [‰] S wt% δ
13

C [‰] δ
15

N [‰] 

Cow 32 4.1 ± 3.2 0.21 ± 0.05 -21.5 ± 0.4 3.9 ± 1.0 

Sheep/goat 48 6.7 ± 1.9 0.21 ± 0.05 -21.2 ± 0.4 2.5 ± 1.1 

Horse 5 5.7 ± 3.2 0.20 ± 0.02 -21.8 ± 0.4 1.9 ± 1.3 

Trout 5 -2.4 ± 1.5 0.53 ± 0.04 -9.6 ± 0.2  6.1 ± 0.7 

Charr 7 -3.0 ± 1.3 0.58 ± 0.03 -10.0 ± 0.8 5.9 ± 0.5 

Haddock 3 14.0 ± 1.8 0.46 ± 0.03 -14.3 ± 0.3 12.6 ± 0.3 

Cod 6 16.8 ± 0.9 0.50 ± 0.02 -14.2 ± 0.4 13.9 ± 0.5 

Seal 6 15.9 ± 1.0 0.21 ± 0.05 -15.3 ± 0.5 12.7 ± 0.5 

Pig 3 5.3 ± 2.7 0.17 ± 0.01 -19.5 ± 1.0 8.5 ± 1.7 

Birds 11 3.0 ± 5.0 0.29 ± 0.03 -13.6 ± 4.2 6.5 ± 3.9 

Arctic Fox 3 1.4 ± 0.7 0.25 ± 0.03 -14.9 ± 1.3 9.0 ± 1.5 

Table 1: Mean and standard deviations (1σ) of bone collagen δ
34

S, δ
13

C and δ
15

N values 2 

for animals from Skútustaðir, Iceland. 3 

 4 

Species group N δ
34

S [‰] δ
13

C [‰] δ
15

N [‰] 

Terrestrial 85 5.6 ± 2.8 -21.3 ± 0.4 3.0 ± 1.3 

Freshwater 12 -2.7 ± 1.4 -9.8 ± 0.6 5.9 ± 0.6 

Marine 15 15.9 ± 1.5 -14.7 ± 0.7 13.2 ± 0.7 

Table 2: Mean and standard deviations (1σ) of terrestrial, freshwater and marine animal 5 

bone collagen from Skútustaðir, Iceland.6 



  

2 
 

 

Species N C:S Ratio 

(ave.) 

N:S Ratio 

(ave.) 

%S 

(ave.) 

C:S Ratio N:S Ratio %S 

Cow 32 544 ± 127 164 ± 38 0.21 ± 0.05 503* 158* 0.25* 

Sheep/Goat 48 545 ± 116 165 ± 35 0.21 ± 0.05 521* 163* 0.26* 

Horse 5 575 ± 125 172 ± 41 0.20 ± 0.03 540* 166* 0.23* 

Pig 3 589 ± 38 179 ± 13 0.17 ± 0.01 401* 124* 0.32* 

Char/Trout 12 190 ± 11 55 ± 3 0.56 ± 0.04 180* 55* 0.64* 

Cod/Haddock 9 186 ± 18 58 ± 7 0.48 ± 0.03 196* 61* 0.62* 

Seal 6 579 ± 33 175 ± 11 0.21 ± 0.05 472* 148* 0.26* 

Birds 11 397 ± 56 120 ± 16 0.29 ± 0.03 417* 128* 0.29* 

Arctic fox 3 408 ± 79 122 ± 25 0.25 ± 0.03 N/A N/A N/A 

All Mammals & Birds 108 528 ± 123 160 ± 37 0.22 ± 0.05 600 ± 300* 200 ± 100* 0.15-0.35* 

All Fish 21 188 ± 14 56 ± 5 0.53 ± 0.05 175 ± 50* 60 ± 20* 0.4-0.8* 

Table 3: Mean and standard deviations (1σ) of C:S and N:S ratios and %S of archaeological samples from Skútustaðir.  *Nehlich and Richards, 

2009. 


