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Summary
The Laplace-Beltrami operator on a sphere with a cut arises when considering
the problem of wave scattering by a quarter-plane. Recent methods developed
for sound-soft (Dirichlet) and sound-hard (Neumann) quarter-planes rely on an a
priori knowledge of the spectrum of the Laplace-Beltrami operator. In this paper
we consider this spectral problem for more general boundary conditions, including
Dirichlet, Neumann, real and complex impedance, where the value of the impedance
varies like α/r, r being the distance from the vertex of the quarter-plane and α being
constant, and any combination of these. We analyse the corresponding eigenvalues
of the Laplace-Beltrami operator, both theoretically and numerically. We show
in particular that when the operator stops being self-adjoint, its eigenvalues are
complex and are contained within a sector of the complex plane, for which we provide
analytical bounds. Moreover, for impedance of small enough modulus |α|, the complex
eigenvalues approach the real eigenvalues of the Neumann case.

1. Introduction

Scattering (or diffraction) problems involve studying the field resulting from a wave incident
upon an obstacle. This can for example be an acoustic or an electromagnetic wave. In
general, these are complicated time-dependent problems, but often a hypothesis of time
harmonicity can be made, i.e the time dependency is simply a factor e−iΩt, where Ω is the
frequency of the incident wave, and the wave equation reduces to the Helmholtz equation.
A class of scattering problems, the canonical scattering problems, is particularly important.
It derives from studying scattering by simple obstacles with particular characteristics such
as sharp edges or corners, often of infinite size. Although “simple”, these geometries can be
used to evaluate the scattered field from more complicated geometries with high frequency
incident waves. The understanding of such canonical geometries represents the building
blocks for Keller’s Geometrical Theory of Diffraction (GTD) (1). There is a long history
of mathematicians working on such canonical problems; one of the first was Sommerfeld,
leading to his famous solution to the half-plane problem (2) and to the creation of the
field of Mathematical Theory of Diffraction. Since then, some very ingenious mathematical
methods have been developed to tackle such problems, the most famous being the Wiener-
Hopf (3) and the Sommerfeld-Malyuzhinets (4) techniques. However, despite tremendous
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efforts in this field, some canonical problems remain open, in the sense that they have no
clear analytical solution or rapidly convergent fast hybrid numerical-analytical scheme. In
particular, this is the case for the canonical problem of scattering by a quarter-plane (see
Figure 2.1).

In the last 50 years, the quarter-plane problem has attracted a lot of attention, and
different approaches have been used. By considering the quarter-plane as a degenerated
elliptic cone, the field can be expressed as a spherical-wave multipole series ((5), (6), (7)),
but these series are poorly convergent in the far-field. A review of this approach and
attempts to accelerate the series convergence are described in (8). Another approach ((9),
(10)), elegantly based on the Wiener-Hopf technique in two complex variables, has been
used, however it led to a solution that has proved to be erroneous ((11), (12)). It is also
worth mentioning an unusual and interesting approach in (13), where diffraction theory
and statistical analysis are used in order to obtain the corner diffraction coefficient for a
restricted set of incidence and observation direction.

A different way of considering this problem (in fact the more general problem of arbitrarily
shaped cones), based on the use of spherical Green’s functions has been introduced in ((14),
(15)) and led to an integral formula for the spherical diffraction coefficient. However,
this solution is not valid for all incidence-observation directions and requires a numerical
treatment and some regularisation of Abel-Poisson type in order to be evaluated (16).
Building on this type of approach, a hybrid numerical-analytical method, which partially
solves the acoustic quarter-plane problem in the Dirichlet case has been introduced in (17)
and (18). The main advantage of this method compared to the one mentioned previously
is that in this case the formulae giving the diffraction coefficient, the Modified Smyshlyaev
Formulae (MSF) are “naturally convergent” in the sense that they do not require special
treatment to regularise or accelerate their convergence. The method is based on edge and
spherical edge Green’s functions and on the theory of embedding formulae, introduced
in (19) and further developed in (20) for example. This method has been extensively
described, adapted to the Neumann case and implemented in (21). The solution obtained,
though valid for all observer directions over a wide range of incidence directions, remain
partial in general, since for a range of incidence directions, there exists observation points
for which the MSF are not valid. However, the range of validity of the MSF is bigger than
that of any other method, going beyond the first singularity regions caused by the primary
edge diffracted waves. A reason behind the limits of the MSF validity is the existence of
secondary edge diffracted waves in the quarter-plane problem. In (22), a rigorous definition
of the notion of the diffraction coefficient for the quarter-plane problem was given and the
first analytical expression for these secondary edge waves generated during the diffraction
process was derived. More recently, the Sommerfeld-Malyuzhinets technique was applied to
the quarter-plane problem in the acoustic (23) and the electromagnetic (24) case, giving
the overall structure of the diffracted field and recovering the results of (22) regarding the
secondary diffracted waves.

The motivation of the present work is two-fold. On one hand, it has been shown for
example in (21) that the derivation and the numerical evaluation of the MSF relies strongly
on a detailed knowledge of the spectrum of the Laplace-Beltrami operator on the unit sphere
with a cut. On the other hand, it seems that most of the work regarding the quarter-plane
problem has been carried out for Dirichlet or Neumann boundary conditions and that more
general boundary conditions should now be considered. The case of constant impedance
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conditions on the surface of the quarter-plane cannot be treated in a similar way as the more
usual Neumann and Dirichlet conditions. The reason behind this difference, is that the
usual approach relies on the fact that such problems are separable in spherical coordinates.
However, as shall be seen later, the problem of constant impedance on the face of the
quarter-plane is not separable anymore. Important work regarding constant impedance
for the diffraction by an arbitrary shaped cone has been carried out in (25, 26, 27), and
alternative formulations have been provided. However, the problem becomes separable if
one assumes that the value of the impedance depends on the radial variable r and can be
written as α/r for some constant α. Therefore, it is reasonable to believe that in that case,
an embedding (or MSF) approach should work. Once separated, the problem reduces to
that of finding the eigenvalues of the Laplace-Beltrami operator on the unit sphere, with
constant impedance boundary imposed on a cut. Hence, in order to make progress in this
direction, it is first important to shed some light on the eigenvalues of the Laplace-Beltrami
operator with impedance conditions imposed on a cut. Impedance boundary conditions in
canonical scattering problems have led to some very interesting developments, such has the
Malyuzhinets technique in the case of the impedance wedge and impedance half-plane ((28),
(29)) or the Wiener-Hopf-Hilbert method for the impedance half-plane ((30)). There has
also been some work on the spectrum of the Laplace-Beltrami operator on a sphere with a
cut, such as (31), (32), (33), (34) and (21), but again, to the authors’ knowledge, solely
in the Dirichlet and Neumann cases.

In the present work, the Laplace-Beltrami eigenvalue problem on a sphere with a cut will
be approached both theoretically and numerically for a wide range of boundary conditions
including Dirichlet, Neumann, real and complex impedance, and any combination of these.
One of the most interesting features comes from the fact that a change in boundary
conditions can lead to a big theoretical change. Indeed, the Laplace-Beltrami operator with
Dirichlet or Neumann boundary condition is a self-adjoint operator, for which the spectral
theory is well understood and developed (see e.g. (35)), while for complex impedance
boundary conditions this ceases to be the case and the operator becomes non-self-adjoint,
resulting in a rich behaviour of the eigenvalues and necessitating a different theoretical
approach (see e.g. (36) and (37)).

The rest of this paper is structured as follows. The problem is presented in Section 2. To
this end, the problem of scattering by a quarter-plane is formulated in Subsection 2.1 and
its link with the Laplace-Beltrami operator eigenvalue problem is explained in Subsection
2.2. In Subsection 2.3, we provide a short description of the impedance boundary conditions
and their implementation.

In Section 3, we focus our attention on a set of boundary conditions, said to be of type
I, corresponding to the Laplace-Beltrami operator being self-adjoint. In Subsection 3.1, we
briefly summarise the relevant theoretical results in spectral theory of self-adjoint differential
operators and, after having described important function sets in Subsection 3.2, we apply
them to the case of the Laplace-Beltrami operator in Subsection 3.3, showing that in this
case, as expected, there is an infinite set of real positive discrete eigenvalues. Moreover,
the relative position of the eigenvalues on the real line is investigated for different sets of
boundary conditions of type I.

In Section 4, we focus our attention on a set of boundary conditions, said to be of type
II, corresponding to the Laplace-Beltrami operator being non-self-adjoint. The breakdown
of self-adjointness is explained in Subsection 4.1. The appropriate theoretical framework
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for non-self-adjoint operators is presented in Subsection 4.2 and applied to the Laplace-
Beltrami operator in Subsection 4.3, showing that in this case there is an infinite discrete
set of complex eigenvalues that are contained within a sector of the complex plane. In
Subsection 4.4, we show how to find an estimate of such sector.

Section 5 is dedicated to the numerical evaluation of the eigenvalues of the Laplace-
Beltrami operator. The numerical method used (surface finite elements) is briefly described
in Subsection 5.1 and the results are presented, starting with the self-adjoint case (boundary
conditions of type I) in Subsection 5.2 and following with the non-self-adjoint case (boundary
conditions of type II) in Subsection 5.3. We show that in this case, the complex eigenvalues
are indeed contained within a sector of the complex plane, and that for small or large enough
impedance, we may recover the self-adjoint eigenvalues. An explanation as why this is true
on a theoretical level is provided in Appendix B.

2. Presentation of the problem

2.1 The quarter-plane problem

Throughout the paper we assume that the problem is harmonic in time with frequency
Ω and a time dependency proportional to e−iΩt. As illustrated in Figure 2.1, consider an
incident acoustic plane wave uin on a quarter-plane P. Let us call P+ and P− the upper and
lower surfaces of the plane sector respectively. The problem of scattering can be summarised
as follows. We can write u = uin + usc + ure, where the four quantities u (total field), uin

(incident field), ure (reflected field) and usc (scattered field) satisfy the Helmholtz equation

∆u+ k2u = 0, (2.1)

and k is the wavenumber of the homogeneous media surrounding the quarter-plane.

Fig. 2.1: (Colour online) The scattering problem by a quarter-plane

In order for the problem to be well-posed, some conditions need to be satisfied.

• u should satisfy the edge conditions, that is the energy of the system should remain
bounded as we approach the edge. This can be expressed mathematically as u ∼
const +O(ρ1/2) near the edges, where ρ represents the distance to the edge. Physically,
this also means that no sources should be located at the edges.



laplace-beltrami & quarter-plane 5

• u should satisfy the vertex condition, that is the energy of the system should remain
bounded as we approach the vertex. This can be expressed mathematically by ∇u =
o(r−3/2) as r → 0, where r represents the distance to the vertex.

• The scattered field usc should satisfy a radiation condition. In other word, it should
not exhibit any sources at infinity and usc should only consist of outgoing waves in the
far-field. This radiation condition is an extension of the original Sommerfeld radiation
condition (38), that is valid for infinite domains exhibiting edges or vertices. This
extension follows the work by Rellich (39) and later Levine (40), as well as some
uniqueness proof by Jones (41). For a comprehensive history of the evolution of the
radiation condition, see (42).

• Finally, and most importantly, u has to satisfy some boundary conditions on P+ and
P−. These conditions can for example be the Dirichlet boundary conditions (u = 0),
the Neumann boundary conditions (n ·∇u = 0, where n is a unit normal vector to P±)

or varying Robin boundary conditions (n ·∇u+
α

r
u = 0, α being a specified constant).

Using the geometric theory of diffraction (22) or the Sommerfeld integrals (23), it has
been shown in the case of Dirichlet and Neumann boundary conditions that the far-field
behaviour of the scattered field could be written as

usc + ure = usph + uco1 + uco2 + uco12 + uco22 + ure, (2.2)

the subscript sph refers to the spherical wave emanating from the vertex, the subscript co

refers to the different (primary and secondary) conical waves emanating from the edges and
the subscript re refers to the wave reflected by the illuminated surface of the quarter plane
as explained in details in (21) and (22).

The structure of the conical waves is well understood (at least in the case of Dirichlet or
Neumann boundary conditions), and some analytical expressions of their far-field structures
are given in (22) and (23). The spherical wave is less understood. In order to reduce the
problem, it is useful to introduce the diffraction coefficient f(ω, ω0), where ω represents the
direction of observation and ω0 the direction of incidence of uin. The far-field behaviour of
usph can be represented by

usph(ω, ω0, r) = 2π
eikr

kr
f(ω, ω0) +O

(
eikr

(kr)2

)
as kr →∞ .

The evaluation of the diffraction coefficient f(ω, ω0) has been the subject of many studies.
A recent way of approaching the problem, leading to a partial resolution of the problem in
the case of Dirichlet (17) and Neumann (21), is to use the theory of embedding formulae to
obtain an integral expression of f(ω, ω0). A spherical version of the embedded formulae, the
so-called Modified Smyshlyaev formulae (MSF), are somehow easier to evaluate numerically,
using the so-called coordinate equation ((18), (21)). Thanks to this method, the diffraction
coefficient is now easily computable for many pairs (ω, ω0). However, as emphasised in (21),
because of the secondary diffracted waves there are still some regions where it is complicated
to evaluate f(ω, ω0), and for this reason the problem of scattering by a quarter-plane is still
considered as an open mathematical problem. In both cases (Dirichlet and Neumann),
the definition and the numerical evaluation of the MSF relies heavily on knowledge of
the eigenvalues of a certain linear differential operator: the Laplace-Beltrami operator
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(LBO). Hence if one envisages the evaluation of the diffraction coefficient f(ω, ω0) for
boundary conditions different from the pure Dirichlet or Neumann boundary conditions,
it is important to be able to compute a priori the eigenvalues of the LBO associated to
these boundary conditions. In the next subsection, we shall introduce the LBO in more
detail.

2.2 The Laplace Beltrami operator (LBO)

Seeking a spherically separable solution to the Helmholtz equation (2.1) of the form
u(r, θ, ϕ) = R(r)U(θ, ϕ), where (r, θ, ϕ) are the usual spherical coordinates (see Figure
2.2a) leads to an equation for R(r)

r2R′′ + 2rR′ + ((kr)2 − λ)R = 0,

with solution

R(r) =
CJν(kr) +DH

(1)
ν (kr)√

kr
,

where C and D are constants, Jν and H(1)
ν are the Bessel function and the Hankel function

of type 1 of order ν respectively, and ν is defined by

ν = (λ+ 1/4)1/2. (2.3)

The separation of variables also leads to an equation for U(θ, ϕ):

−∆̃U = λU, (2.4)

where ∆̃ is the LBO defined by

∆̃ =
1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin2(θ)

∂2

∂ϕ2
(2.5)

This can be interpreted as the restriction of the spherical Laplace operator to the surface
of the unit sphere. It is also useful to introduce ∇̃ and ∇̃· that represents the restriction of
the spherical gradient operator and the spherical divergence operator to the surface of the
sphere. More precisely, for a scalar function U(θ, ϕ) and a vector field A = (Aθ, Aϕ), we
have

∇̃U =


∂U

∂θ
1

sin(θ)

∂U

∂ϕ

 and ∇̃ ·A =
1

sin(θ)

∂

∂θ
(sin(θ)Aθ) +

1

sin(θ)

∂Aϕ
∂ϕ

, (2.6)

so that we have ∆̃U = ∇̃·∇̃U . In fact, because of the geometry of the quarter plane, (2.4) is
actually defined on the surface of a sphere with a slit (or cut) of length π/2 corresponding
to the intersection between the unit sphere and the quarter-plane. As shall be seen in
the next subsection, for the boundary conditions considered in this paper, the boundary
condition equation is also separable. Hence, solving the problem on the unit sphere with a
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(a) (b)

Fig. 2.2: (Colour online) (a) Spherical coordinates and (b) definition of S, S+ and S−

cut is enough. Let us call S the corresponding domain (see Figure 2.2b) and S+ and S−

the upper and lower part of the slit such that ∂S = S+ ∪ S−.
The aim of this work is the rigorous study of the eigenvalue problem (2.4), and that can

be reformulated as

Find all eigenvalues λ such that ∃U 6= 0 satisfying

 −∆̃U = λU on S
Boundary conditions on S+

Boundary conditions on S−
(2.7)

As already emphasised at the end of the previous subsection and shown in detail in (21),
knowledge of the eigenvalues is crucial to the definition and evaluation of the MSF that
involve complicated contours surrounding the said eigenvalues. Remember that ν and λ are
linked by (2.3), and even if they are different, we may refer to both of them as eigenvalues
of the problem (2.7). Moreover, the first eigenvalue is also useful in order to understand the
behaviour of the total field at the vertex of the quarter-plane. Indeed, it can be shown (see
(34)) that u = O(rν1−1/2) as r tends to zero, where ν1, corresponding to the first eigenvalue
of the Laplace-Beltrami operator, takes different values for different boundary conditions.

Many authors ((33), (31), (32), (21), (34)) have successfully considered this problem
with different techniques (e.g., WKB or shooting methods) for the case of pure Dirichlet
boundary conditions (i.e. Dirichlet on S+ and Dirichlet on S−) and pure Neumann
boundary conditions (i.e. Neumann on S+ and Neumann on S−). In this paper, we would
like to extend this knowledge to a broader range of boundary conditions. As we shall see
in the following sections, the choice of boundary conditions may have a significant impact
on the theory and the numerical methods necessary for the evaluation of the eigenvalues.

2.3 On the Robin boundary condition

Let us briefly summarise the definition and physical relevance of the Robin boundary
conditions. Consider a locally reacting surface boundary surrounded by a homogeneous
two- or three-dimensional space of density ρ, speed of sound c and wavenumber k. We can
define the acoustic field by the pressure p and the acoustic velocity v. Then the acoustic
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impedance or normal acoustic impedance z is defined as the ratio between the pressure and
the normal fluid velocity at a point on the surface:

z =
p

v · n on the surface, (2.8)

where we consider n as the normal pointing into the surface. Let us now consider the
potential ψ such that

p = −ρ∂ψ
∂t

and v = ∇ψ . (2.9)

Assuming that the acoustic field is harmonic with frequency Ω, we have Ω = kc and we can
write

ψ(x, y, z, t) = φ(x, y, z)e−iΩt . (2.10)

Now using (2.10) and (2.9) into (2.8), we obtain

∇φ · n = ik
ρc

z
φ on the surface . (2.11)

Let us now introduce some notations/vocabulary. It is common to introduce the
characteristic acoustic impedance z0 of a medium defined by z0 = ρc. Note that this
is totally independent of the boundary of the domain. One can then define the specific
acoustic impedance ζ by ζ = z/z0. Looking at equation (2.11), it is also useful to define the
specific acoustic admittance β by β = z0/z = 1/ζ. In general, β and ζ can be complex. It
is quite useful to rewrite (2.11) in terms of β, which gives:

∂φ

∂n
= ikβφ on the surface, (2.12)

where we have used the notation ∂φ/∂n = ∇φ · n. Physical boundaries have to be either
passive or absorbent, that is that the energy flux which flows across a surface element ds of
the boundary over an acoustic period Ta = 2π/Ω has to be positive. As emphasised in (4),
using the energy flux density vector (or acoustic Poynting vector), it can be shown that for
a surface to be either passive or absorbent, we need to have <(β) > 0. As it turns out, this
condition is often required to prove uniqueness results of scattering problem on a surface
with boundary conditions (2.12) see for example ((4), (43)).

In order to simplify the argument in the following sections, we shall introduce the quantity
A defined by A = −ikβ, so that the impedance boundary condition on a surface can be
rewritten as

∇φ · n +Aφ = 0.

Note that the absorbent condition (i.e. <(β) > 0) translates in a condition on A that is
=(A) 6 0. In the rest of this paper, we shall refer to A as the impedance of our surface.
Now, writing φ(r, θ, ϕ) = R(r)U(θ, φ), this condition reduces to

1

r
n · ∇̃U +AU = 0,
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where n is now considered as a two-dimensional vector in the (eθ, eϕ) basis. Hence, despite
the fact that the Helmholtz equation is separable, this is not the case for the boundary
equation if A is constant. However, if one considers the case when

A = A(r) =
α

r
,

for some constant α, then the boundary equation becomes separable and reduces to

n · ∇̃U + αU = 0.

Choosing such a varying impedance implies that the surface of the quarter-plane in that
case is sound-soft at the vertex, and gradually becomes harder a we move away from the
vertex. Note that uniqueness theorems for this type of boundary condition are studied
in (41) and mentioned in (40). In what follows, when referring to impedance or Robin
boundary conditions, we will refer to that situation.

3. Self-adjoint operators and boundary conditions of type I

Before presenting the spectral theory of linear operators, let us specify the boundary
conditions that will be considered in this section, the boundary conditions of type I.

Definition 3.1. A suitably smooth function u on S is said to satisfy boundary conditions
of type I if it satisfies any one of the following boundary conditions on S+ and S−:

•Dirichlet: u = 0
•Neumann: n± · ∇̃u = 0 on S±

•Robin: n± · ∇̃u+ α±u = 0 on S± with α± ∈ R and α± > 0

The boundary conditions do not necessarily have to be the same on each side (S+ or S−)
of the slit. The orientation of the normals n± is specified in Figure 3.1a.

(a) (b)

Fig. 3.1: (Colour online) Orientation of the normals n+ and n− (a) and of the cut (b)

As we shall see in Subsection 3.3, the LBO is well behaved for these boundary conditions,
in the sense that it is self-adjoint. Let us start by summarising the theoretical framework
appropriate to the study of such operators.
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3.1 Theoretical framework

We first recall some key definitions and results from (35) and (36). A linear operator T on
a Hilbert space (H, 〈·, ·〉) consists of a pair (T,Dom(T )), where Dom(T ) ⊂ H is a dense
linear subset of H for the Hilbert norm ‖ · ‖H . Dom(T ) is the domain of definition of
the linear map T : Dom(T ) → H and is called the domain of the linear operator T . A
linear operator T on (H, 〈·, ·〉) is said to be symmetric if for any f, g in Dom(T ), we have
〈T (f), g〉 = 〈f, T (g)〉. It is said to be non-negative if for any f ∈ Dom(T ), 〈T (f), f〉 > 0.
If S and T are two linear operators on H such that Dom(S) ⊂ Dom(T ) and T (f) = S(f)
for all f ∈ Dom(S), we say that T is an extension of S and S is a restriction of T , and we
write S ⊂ T .

Given a linear operator T on (H, 〈·, ·〉), we can define its adjoint operator T ∗, with domain
Dom(T ∗) defined by

Dom(T ∗) = {g ∈H s.t. ∃h ∈H s.t. ∀f ∈ Dom(T ), 〈T (f), g〉 = 〈f, h〉} ,

and with the condition that ∀f ∈ Dom(T ),∀g ∈ Dom(T ∗), 〈T (f), g〉 = 〈f, T ∗(g)〉. We say
that a linear operator T on H is self-adjoint if T is symmetric and Dom(T ) = Dom(T ∗).

The resolvent set ρ(T ) is defined as being the set of all ζ ∈ C such that ζI − T is
invertible (I being the identity operator) and the resolvent operator R(ζ, T ) = (ζI − T )−1

is bounded. A complex number λ is said to be an eigenvalue of T if there exists a non-zero
f in Dom(T ) such that T (f) = λf . The spectrum of T , σ(T ), is defined by σ(T ) = C\ρ(T ).
In the finite dimensional case, σ(T ) consists purely of eigenvalues. However, in the infinite
dimensional case (of interest here), this is not necessarily the case. The spectrum of T can
be decomposed into the discrete spectrum of T , σd(T ) (the set of all isolated eigenvalues
of finite multiplicity) and the essential spectrum of T , σess(T ) (the non-discrete part of the
spectrum).

The main theoretical result that will be used in this section is the following spectral
theorem.

Theorem 3.2. Spectral theorem [Cor. 4.2.3 in (35)] Let T be an unbounded self-adjoint
non-negative linear operator on H. The following are equivalent:

1. (Compact resolvent) The resolvent operator R(1,−T ) = (T + I)−1 is compact.

2. The operator T has empty essential spectrum.

3. There exists a complete orthonormal set of eigenvectors {φn}∞n=1 of T with corresponding
eigenvalues λn > 0 satisfying λn →∞ as n tends to infinity.

In order to make some mathematical progress, it is very useful to think in terms of
sesquilinear forms. In this paragraph, we shall recall a few facts and definitions about
these. A sesquilinear form t defined on a subspace D(t) of a Hilbert space H is a map
t : D(t) ×D(t) → C that is linear in its first argument and conjugate-linear in its second,
which means that for any u, v, w ∈ D(t), and any α ∈ C, we have

t(αu+ v, w) = αt(u, v) + t(v, w) and t(u, αv + w) = ᾱt(u, v) + t(u,w) ,

where denotes the complex conjugate. Concepts similar to the linear operators apply to
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sesquilinear forms. In particular, we say that a sesquilinear form t is densely defined if D(t)
is dense in H. We say that a sesquilinear form t is non-negative if for any u in D(t), we
have t(u, u) > 0. A non-negative sesquilinear form t is said to be closed if the normed space
(D(t), ‖ · ‖t) is complete, where ‖ · ‖t is the norm associated to t defined for u ∈ D(t) by

‖u‖t = (t(u, u) + ‖u‖2H)1/2 .

If this is the case, (D(t), ‖ · ‖t) is called the Hilbert space associated to t. We can define
extensions of sesquilinear forms similarly to the operator case. If t1 and t2 are two non-
negative sesquilinear forms such that D(t1) ⊂ D(t2) and for any (u, v) in D(t1), we have
t1(u, v) = t2(u, v), we say that t2 is an extension of t1. A sesquilinear form t is said to be
closable if it admits a closed extension. The smallest closed extension of a closable form
t is called the closure of t. For a closed sesquilinear form t, a finite dimensional subspace
L ⊂ D(t), we can introduce the functional Λt(L) as follows:

Λt(L) = sup {t(u, u) s.t. u ∈ L and ‖u‖H = 1}
This allows us to define a quantity Λt

n defined for each integer n > 1 by

Λt
n = inf

{
Λt(L) s.t. L ⊂ D(t) and dim(L) = n

}
Note that when there is no ambiguity, we may just write Λ(L) and Λn instead of Λt(L) and
Λt
n. Let us now state some useful results that link linear operators and sesquilinear forms.

Theorem 3.3. Representation theorem [Thm. VI.2.6 in (36), Thm. 4.4.2 in (35),
Thm. B.1.6. in (44)] A closed non-negative sesquilinear form t with domain D(t) acting in
a Hilbert space H gives rise to a non-negative self-adjoint operator T with domain Dom(T )
defined by

Dom(T ) = {u ∈ D(t) s.t. ∃h ∈H s.t. ∀v ∈ D(t), t(u, v) = 〈h, v〉H}
and such that for any u, v ∈ Dom(T ), we have 〈T (u), v〉H = t(u, v).

Theorem 3.4. [Direct corollary of Thm. 4.5.2 in (35)] Let t be a closed non-negative
sesquilinear form on a Hilbert space H, and T its associated self-adjoint operator (resulting
from Theorem 3.3). If Λt

n → ∞ as n → ∞, then T has empty essential spectrum. And so
by Theorem 3.2, T also has compact resolvent and an ordered discrete set of eigenvalues λn
and these correspond exactly to Λn.

Finally, as a direct consequence of the definitions of Λ and Λn, it is possible to deduce
the following theorem that will prove very useful in Subsection 3.3.

Theorem 3.5. Let (t1, D(t1)) and (t2, D(t2)) be two closed sesquilinear forms. Then

i. If D(t1) ⊂ D(t2) and t2|D(t1) = t1, then for any integer n > 1, Λt2
n 6 Λt1

n

ii. If D(t1) = D(t2) and ∀u ∈ D(t1) we have t1(u, u) < t2(u, u), then Λt1
n < Λt2

n .

3.2 Important function sets on S

Let us start by defining different sets of smooth functions on S

C∞(S) = {infinitely smooth functions f on S}
C∞(S̄) =

{
f ∈ C∞(S), all of whose partial derivatives can be extended continuously to S̄

}
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Let us also define different sets of compactly supported functions, where Supp(f) refers to
the support of a function f .

D(S) =
{
f ∈ C∞(S̄), s.t. ∃ compact K ⊂ S, s.t. Supp(f) = K

}
D+(S) =

{
f ∈ C∞(S̄), s.t. f vanishes in a neighbourhood of S+

}
D−(S) =

{
f ∈ C∞(S̄), s.t. f vanishes in a neighbourhood of S−

}
,

where what is meant by such a neighbourhood is described in Figure 3.2.

(a) (b)

Fig. 3.2: (Colour online) Illustration of typical neighbourhood in the definition of (a) D+(S)
and (b) D−(S)

Let us also define the space L2(S) as the Lebesgue space of square integrable functions
on S. L2(S) is a Hilbert space for the inner product 〈·, ·〉L2 and its associated norm ‖ · ‖L2

defined by

∀u, v ∈ L2(S), 〈u, v〉L2 =

∫∫
S

uv̄dS and ‖u‖2L2 = 〈u, u〉L2 =

∫∫
S

|u|2dS,

where dS = sin(θ)dθdϕ. It is a classic result that D(S) is dense in L2(S) (for the norm
‖.‖L2). Let us now introduce the classic Sobolev space H1(S), also sometimes referred to
as W 1,2(S), as

H1(S) =
{
f ∈ L2(S) whose partial derivatives of order 1 are in L2(S)

}
,

where here functions and derivatives are understood in the distributional sense. Note that
H1(S) is a Hilbert space for the inner product 〈., .〉H1 and the associated norm 9.9 defined
by

∀u, v ∈ H1(S), 〈u, v〉H1 = 〈u, v〉L2 + 〈∇̃u, ∇̃v〉L2 and 9u9 = (‖u‖2L2 + ‖∇̃u‖2L2)1/2 .

It is clear that D(S),D+(S) and D−(S) are all included in H1(S). Hence, it is now possible
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to define the spaces H1
0 (S), H1

0+(S) and H1
0−(S) as the closure in H1 (for the norm 9.9)

of the sets D(S),D+(S) and D−(S) respectively. It is important to note that

H1
0 (S) ⊂

{
H1

0+(S)

H1
0−(S)

}
⊂ H1(S).

3.3 The LBO as a self-adjoint operator for boundary conditions of type I

Consider the linear operator T acting in the Hilbert space (L2(S), 〈., .〉L2 , ‖.‖L2) and formally
defined by T = −∆̃ as in (2.5) with boundary conditions of type I. Let T be initially defined
on the domain Dom(T ) defined by

Dom(T ) =
{
f ∈ C∞(S̄), s.t. f satisfies the correct boundary conditions of type I

}
.

The appropriate notation for each possible combination of boundary condition is specified
in Table 3.1.

Boundary Condition on S+ Boundary Condition on S− Operator T
Dirichlet Dirichlet TDD

Neumann Neumann TNN

Dirichlet Neumann TDN

Neumann Dirichlet TND

Real positive Robin Dirichlet TRD

Dirichlet Real positive Robin TDR

Real positive Robin Neumann TRN

Neumann Real positive Robin TNR

Real positive Robin Real positive Robin TRR

Table 3.1: The operator T for boundary conditions of type I

Because of the inclusion D(S) ⊂ Dom(T ) ⊂ L2(S), and the fact that D(S) is dense in
L2(S), it is automatic to see that Dom(T ) is dense in L2(S), the Hilbert space T is acting
on. Hence (T,Dom(T )) is a well-defined linear operator on L2(S).

Now, using Green’s identity on S (See Appendix A), we can write

∀u, v ∈ Dom(T ), 〈T (u), v〉L2 =
〈
∇̃u, ∇̃v

〉
L2
−
∫
S+

v̄
(
∇̃u · n+

)
d`−

∫
S−

v̄
(
∇̃u · n−

)
d`

〈u, T (v)〉L2 =
〈
∇̃u, ∇̃v

〉
L2
−
∫
S+

u
(
∇̃v · n+

)
d`−

∫
S−

u
(
∇̃v · n−

)
d`.

When boundary conditions are applied, the right-hand side simplifies and the results are
presented in Table 3.2, where what is meant by the line integrals along S+ and S− is
specified in Appendix A by (A.6).

Since in this section, when considering Robin boundary conditions, we only consider real
impedances α±, it is clear that α± = α±, and that as such, using table 3.2 we have that

∀u, v ∈ Dom(T ), 〈T (u), v〉L2 = 〈u, T (v)〉L2 ,
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Operator T 〈T (u), v〉L2 = 〈u, T (v)〉L2 =

TDD, TNN, TDN, TND, 〈∇̃u, ∇̃v〉L2 〈∇̃u, ∇̃v〉L2

TRD, TRN 〈∇̃u, ∇̃v〉L2 + α+

∫
S+

uv̄ d` 〈∇̃u, ∇̃v〉L2 + α+

∫
S+

uv̄ d`

TDR, TNR 〈∇̃u, ∇̃v〉L2 + α−
∫
S−
uv̄ d` 〈∇̃u, ∇̃v〉L2 + α−

∫
S−
uv̄ d`

TRR 〈∇̃u, ∇̃v〉L2 + α+

∫
S+

uv̄ d`+ α−
∫
S−
uv̄ d` 〈∇̃u, ∇̃v〉L2 + α+

∫
S+

uv̄ d`+ α−
∫
S−
uv̄ d`

Table 3.2: Green’s identity applied to T for boundary conditions of type I

which means that (T,Dom(T )) is a symmetric linear operator. Now, using v = u in Table
3.2, and the fact that α± > 0, it is easy to see that

∀u ∈ Dom(T ), 〈T (u), u〉L2 > 0,

which means that (T,Dom(T )) is a non-negative linear operator. Note that the operator T
gives rise to a sesquilinear form t with D(t) = Dom(T ) defined in Table 3.3 for each type
of boundary conditions.

Sesquilinear form t t(u, v) Associated norm ‖.‖t

tDD, tNN, tDN, tND 〈∇̃u, ∇̃v〉L2 9.9

tRD, tRN 〈∇̃u, ∇̃v〉L2 + α+

∫
S+

uv̄ d`

(
9. 92 +α+

∫
S+

|u|2d`

)1/2

tDR, tNR 〈∇̃u, ∇̃v〉L2 + α−
∫
S−
uv̄ d`

(
9. 92 +α−

∫
S−
|u|2d`

)1/2

tRR 〈∇̃u, ∇̃v〉L2 + α+

∫
S+

uv̄ d`+ α−
∫
S−
uv̄ d`

(
9. 92 +α+

∫
S+

|u|2d`+ α−
∫
S−
|u|2d`

)1/2

Table 3.3: Definition of the sesquilinear form t arising from T for boundary conditions of
type I

Now it is possible to define a closed sesquilinear form (̃t, D(̃t)) that is an extension of
(t, D(t)), i.e, the formal definition of t̃ and its associated norm ‖.‖t̃ is the same as that given
for t in Table 3.3, but its domain D(̃t) is bigger. The domain D(̃t) for different boundary
conditions is given in Table 3.4.

The fact that t̃ is closed follows directly for boundary conditions of type I not involving
Robin conditions, since for these (see Table 3.3), we have ‖.‖t̃ = 9.9 and by definition the
associated D(̃t) defined as a closure for 9.9 is complete for that norm. In order to show
that t̃ is closed in the Robin case as well, we need to show that there exists a constant C
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Sesquilinear form t Closed extension t̃ D(̃t)

tDD t̃DD, H1
0 (S)

tDN, tDR t̃DN, t̃DR H1
0+(S)

tND, tRD t̃ND, t̃RD H1
0−(S)

tNN, tRN, tNR, tRR t̃NN, t̃RN, t̃NR, t̃RR H1(S)

Table 3.4: Domain of the closed extension t̃ for boundary conditions of type I

such that ‖.‖t̃ 6 C 9 .9. This proof will be omitted at this point, but will be shown to be
a direct consequence of the analysis in Subsection 4.3, as will be explained in Remark 4.9.
This implies that the norms ‖.‖t̃ and 9.9 are equivalent and hence it is clear that t̃ is the
closure of t. Now, by theorem 3.3, the closed sesquilinear form t̃ gives rise to a non-negative
self-adjoint operator T̃ with domain Dom(T̃ ) defined by

Dom(T̃ ) =
{
u ∈ D(̃t) s.t. ∃h ∈H s.t. ∀v ∈ D(̃t), t̃(u, v) = 〈h, v〉L2

}
and such that for any u, v ∈ Dom(T̃ ), we have 〈T̃ (u), v〉L2 = t̃(u, v). It is easy to see that
T̃ is an extension of T . We shall refer to T̃ as the Friedrich’s extension of T , and when
referring to the Laplace-Beltrami Operator with boundary conditions of type I, we will from
now on mean T̃ .

Theorem 3.6. For boundary conditions of type I, the self-adjoint Laplace-Beltrami operator
T̃ has an empty essential spectrum and a discrete set of real positive eigenvalues {λn}n∈N∗
enumerated in increasing order and repeated in accordance with multiplicity. In particular,
if {λDD

n }n∈N∗ and {λNN
n }n∈N∗ are the corresponding eigenvalues for the pure Dirichlet and

pure Neumann operators T̃DD and T̃NN, then we have that

∀n ∈ N∗, λNN
n 6 λn 6 λDD

n , (3.1)

where N∗ is the set of non-zero natural numbers.

Proof. Let T̃ be the non-negative self-adjoint Laplace-Beltrami operator with some
boundary condition of type I and let t̃ its associated closed sesquilinear form.

Let us start by using the fact that in (31) it has been shown that the pure Neumann
operator T̃NN has eigenvalues (and hence also the associated Λn, denoted ΛNN

n ) that tend
to infinity and so by Theorem 3.4 T̃NN has compact resolvent and a discrete set of real
positive eigenvalues {λNN

n }n∈N∗ enumerated in increasing order and repeated in accordance
with multiplicity.

Now let us remark that we have D(̃tRN,NR,RR) = D(̃tNN) (see table 3.4), and that for any
u ∈ D(̃tNN) we have t̃RN,NR,RR(u, u) > t̃NN(u, u) (see table 3.3, and the fact that α± > 0),
hence by Theorem 3.5 (ii) we have for any n > 1 that

ΛRN,NR,RR
n > ΛNN

n . (3.2)

Note also that D(̃tDD,DN,ND) ⊂ D(̃tNN) (see Table 3.4) and that t̃NN|D(̃tDD,DN,ND) =
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t̃DD,DN,ND (see Table 3.3). Hence, by Theorem 3.5 (i), we have for any n > 1 that

ΛDD,DN,ND
n > ΛNN

n . (3.3)

The last two cases remaining are treated in a similar way by noting that D(̃tRD) = D(̃tND)
and D(̃tDR) = D(̃tDN) (see Table 3.4) and that for any u ∈ D(̃tDN) and v ∈ D(̃tND), we
have t̃DR(u, u) > t̃DN(u, u) and t̃RD(v, v) > t̃ND(v, v) (see Table 3.3). Hence, by Theorem
3.5 (ii), we have for any n > 1 that ΛRD

n > ΛND
n and ΛDR

n > ΛDN
n and so by using (3.3), we

have that

ΛRD
n > ΛNN

n and ΛDR
n > ΛNN

n . (3.4)

All the different cases have been treated and so, using the fact that ΛNN
n → ∞ as n →

∞ and the inequalities (3.2),(3.3) and (3.4), we have that Λn → ∞ as n → ∞ and so
by Theorem 3.4, T̃ has compact resolvent and a discrete set of real positive eigenvalues
{λn}n∈N∗ enumerated in increasing order and repeated in accordance with multiplicity
corresponding exactly to {Λn}n∈N∗ . From the inequalities (3.2),(3.3) and (3.4), we also
know that for any n > 1

λNN
n 6 λn ,

and that along the way we have proved that λRD
n > λND

n and λDR
n > ΛDN

n .
In order to conclude the proof, we just need to show the second part of the inequality (3.1),

and we shall proceed in a similar way. In order to do that, let us note that D(̃tDD) ⊂ D(̃t)

(see Table 3.4) and that moreover we have t̃
∣∣∣D(̃tDD) = t̃DD. This comes from the fact that

the line integrals that may occur in the definition of t̃ (see Table 3.3) are always zero when
u, v ∈ D(̃tDD) = H1

0 (S). Hence, by Theorem 3.5 (i), we have that

λn 6 λDD
n ,

which completes the proof. Note also that with the same reasoning, and realising that
D(̃tDN) ⊂ D(̃tRN) and t̃RN|D(̃tDN) = t̃DN, we can show that λRN

n 6 λDN
n . Similarly, we

have that λNR
n 6 λND

n . Moreover, using the fact that D(̃tRR) = D(̃tRN) and t̃RR(u, u) >
t̃RN(u, u), we can conclude by Theorem 3.5 (ii) that λRR

n > λRN
n . Finally, using the fact

that D(̃tRD) ⊂ D(̃tRR) and t̃RR|D(̃tRD) = t̃RD, we can conclude by Theorem 3.5 (i) that

λRR
n 6 λRD

n .
And so we can summarise our findings by

λNN
n <

 λRN
n

λNR
n

 6

 λDN
n

λND
n

 <

 λDR
n

λRD
n

 6 λDD
n and

 λRN
n

λNR
n

 < λRR
n 6

 λDR
n

λRD
n

 .

(3.5)

Remark 3.7. Note of course that the eigenvalues related to the cases with Robin boundary
conditions do depend on α+ and α−, and with the exact same method as that used in the
proof of 3.6, using Theorem 3.5 (ii), we can show that λRN

n (α+) and λRD
n (α+) are strictly

increasing functions of α+, that λNR
n (α−) and λDR

n (α−) are strictly increasing functions of
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α− and that λRR
n (α+, α−) is a “strictly increasing function of α+ and α−” in the sense

that if α+
1 < α+

2 and α−1 < α−2 , then λRR
n (α+

1 , α
−
1 ) < λRR

n (α+
2 , α

−
2 ). It results from the

boundedness and the strict increasing character of these eigenvalues, that they converge to
a finite limit as α± → 0 or α± →∞. And that we have

lim
α+→0

λRN
n (α+) = λNN

n , lim
α−→0

λNR
n (α−) = λNN

n , lim
α±→0

λRR
n (α+, α−) = λNN

n ,

as can be verified by assuming† continuity of the eigenvalues as functions of α± and setting
α± = 0. We can also infer that

lim
α+→∞

λRN
n (α+) = λDN

n , lim
α−→∞

λNR
n (α−) = λND

n , lim
α±→∞

λRR
n (α+, α−) = λDD

n .

in a similar way. For α± 6= 0, divide the Robin boundary condition through by α± to get a
condition of the type n± · ∇u/α± + u = 0. The equality can then be verified by assuming
continuity of the eigenvalues as functions of 1/α± and setting 1/α± = 0.

4. Non-self-adjoint operators and boundary conditions of type II

4.1 Breakdown of self-adjointness for boundary conditions of type II

Let us now consider the same problem as in the previous section, but with a different type
of boundary conditions.

Definition 4.1. A suitably smooth function on S is said to satisfy boundary conditions of
type II if it satisfies the complex Robin boundary condition on at least one of S+ or S−:

n± · ∇̃u+ α±u = 0 s.t. α± ∈ C and =(α±) 6= 0

The condition on the other face can either be of type I or type II.

Remark 4.2. Note that to be physically relevant, as mentioned at the end of Subsection
2.3, we should have =(α) 6 0. However, mathematically, the sign of =(α) is not relevant to
obtain the eigenvalues. In fact if (u1, λ1) is solution to the eigenvalue problem associated
with α±1 , then (u2, λ2) = (u1, λ̄1) is solution to the eigenvalue problem associated with

α±2 = α±1 . Hence we can restrict our study to =(α) > 0, the cases with negative imaginary
part can be directly obtained by symmetry.

Consider the linear operator H acting in the Hilbert space (L2(S), 〈., .〉L2 , ‖.‖L2) and
formally defined by H = −∆̃ as in (2.5) with boundary conditions of type II. Let H be
initially defined on the domain Dom(H) defined by

Dom(H) =
{
f ∈ C∞(S̄), s.t. f satisfies the correct boundary conditions of type II

}
.

(4.1)

Note that once again Dom(H) is dense in L2(S) and so H is a well defined linear operator.
The appropriate notation for each possible combination of boundary condition of type II is
specified in in Table 4.1.

As in Subsection 3.3, we can use Green’s identity on S in order to obtain expressions for
〈H(u), v〉L2 and 〈u,H(v)〉L2 , a summary of which is displayed in Table 4.2.

† Here, for brevity, we do not justify this assumption, however, in order to do so, one could use the same
arguments of perturpation theory as those developed in a more complicated case in Appendix B.
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Boundary Condition on S+ Boundary Condition on S− Operator H
Complex Robin Dirichlet HRD

Dirichlet Complex Robin HDR

Complex Robin Neumann HRN

Neumann Complex Robin HNR

Complex Robin Complex Robin HRR

Table 4.1: The operator H for boundary conditions of type II

Operator H 〈H(u), v〉L2 = 〈u,H(v)〉L2 =

HRD, HRN 〈∇̃u, ∇̃v〉L2 + α+

∫
S+

uv̄ d` 〈∇̃u, ∇̃v〉L2 + α+

∫
S+

uv̄ d`

HDR, HNR 〈∇̃u, ∇̃v〉L2 + α−
∫
S−
uv̄ d` 〈∇̃u, ∇̃v〉L2 + α−

∫
S−
uv̄ d`

HRR 〈∇̃u, ∇̃v〉L2 + α+

∫
S+

uv̄ d`+ α−
∫
S−
uv̄ d` 〈∇̃u, ∇̃v〉L2 + α+

∫
S+

uv̄ d`+ α−
∫
S−
uv̄ d`

Table 4.2: Green’s identity applied to H for boundary conditions of type II

Note however that this time we have α± 6= α± and so, as such, we have 〈H(u), v〉L2 6=
〈u,H(v)〉L2 and the operator H is not symmetric, and hence it will not be possible to find
a self-adjoint extension of H. Note that we also lose the non-negative property here since
〈H(u), u〉L2 is not even real. Hence the theoretical framework of the previous section cannot
be used in this case and a new approach must be taken.

4.2 Theoretical framework

Let us consider again a densely defined linear operator H on a Hilbert space H.
The numerical range of H, Θ(H), is defined by Θ(H) = {〈H(f), f〉 s.t. f ∈
Dom(H) and ‖f‖H = 1}. We say that H is m-accretive if Re(Θ(H)) > 0 and 1 belongs to
ρ(−H). We say that H is quasi-m-accretive if there exists α ∈ R such that H + α is m-
accretive. H is said to be sectorial with vertex γ ∈ R and semi-angle ϑ, if its numerical range
is included in a sector of the complex plane with vertex γ ∈ R and semi-angle ϑ ∈ [0, π/2],
as illustrated in Figure 4.1. Finally, we say that a linear operator H is m-sectorial if it is
sectorial and quasi-m-accretive.

In order to get some information about the spectrum of a non-self-adjoint linear operator,
it is, once again, very useful to think in terms of sesquilinear forms. The numerical range
of a sesquilinear form h is defined by Θ(h) = {h(u, u) s.t. u ∈ D(h) and ‖u‖H = 1}. We
say that h is accretive if Re(Θ(h)) > 0 and sectorial with vertex γ ∈ R and semi-angle ϑ
if its numerical range is included in a sector of the complex plane with vertex γ ∈ R and
semi-angle ϑ ∈ [0, π/2]. We say that a sectorial sesquilinear form h is closed if the normed
space (D(h), ‖ · ‖h,γ) is complete, where ‖ · ‖h,γ is the norm associated to h defined for
u ∈ D(h) by

‖u‖h,γ = (<(h(u, u))− γ + ‖u‖2H)1/2 .
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Fig. 4.1: Typical sector of the complex plane with vertex γ and semi-angle ϑ

If this is the case, (D(h), ‖ · ‖h,γ) is called the Hilbert space associated to h. A sectorial
sesquilinear form h is said to be closable if it admits a closed extension. The smallest closed
extension of a closable form h is called the closure of h.

Let us now present three important results from (36), that we will use in this paper to
link m-sectorial linear operators and sectorial sesquilinear forms

Theorem 4.3. [Thm. VI.2.1 in (36)] Let h be a densely defined, closed, sectorial
sesquilinear form in H. Then there exists an m-sectorial linear operator H such that

1. Dom(H) ⊂ D(h) and ∀u ∈ Dom(H),∀v ∈ D(h), h(u, v) = 〈H(u), v〉

2. The resulting operator H is uniquely determined by this construction

Theorem 4.3 is important in the sense that it allows us to associate an m-sectorial operator
to a given (closed and sectorial) sesquilinear form. The following theorem makes use of this
association and will prove extremely important when trying to describe the non-self-adjoint
operators arising in Subsection 4.3.

Theorem 4.4. [Thm. VI.3.4 in (36)] Let h1 be a densely defined, closed, accretive and
sectorial sesquilinear form. Let H1 be the m-sectorial linear operator associated to h1. Let
h2 be a sesquilinear form bounded with respect to h1 in the sense that D(h1) ⊂ D(h2) and
for u ∈ D(h1), we have |h2(u, u)| 6 A‖u‖2H +B<(h1(u, u)), where A and B are non-negative
real numbers and B < 1.

Then the sesquilinear form h defined by h = h1 +h2 is also closed and sectorial. Let H be
the m-sectorial operator associated to h. If H1 has compact resolvent, then H has compact
resolvent too.

Remark 4.5. At this stage, it is useful to remark that from the definitions it is clear that a
non-negative self-adjoint operator with compact resolvent is an m-sectorial operator and a
closed non-negative sesquilinear form is a closed, accretive and sectorial sesquilinear form.

Theorem 4.6. [Thm. III.6.29 in (36)] Let H be an m-sectorial operator with compact
resolvent. Then the spectrum of H, σ(H), consists entirely of isolated eigenvalues with
finite multiplicities and is included in its numerical range, i.e. σ(H) ⊂ Θ(H). In order
to avoid confusion with the eigenvalues described in Subsection 3.3, we shall denote these
eigenvalues {µn}n∈N∗ .
Proof. The last part of this theorem, i.e. σ(H) ⊂ Θ(H), is not directly included in Theorem
6.29 p187 in (36), however it is relatively straightforward. Indeed, let µ ∈ σ(H), and u a



20 R. C. Assier, C. Poon & N. Peake

corresponding eigenvector in Dom(H). We have H(u) = µu and so 〈H(u), u〉H = µ‖u‖2H .
Now let v = u/‖u‖H . It is clear that v ∈ Dom(H), that ‖v‖H = 1 and that 〈H(v), v〉H = µ.
Hence, by definition of the numerical range, µ ∈ Θ(H).

4.3 The LBO as m-sectorial operator for boundary conditions of type II

Note that the operator H defined in Subsection 4.1 for boundary conditions of type II gives
rise to a densely defined sesquilinear form h with D(h) = Dom(H) defined in table 4.3 for
each type of boundary conditions.

Sesquilinear form h h(u, v) Sesquilinear form h̃2 h̃2(u, v)

hRD, hRN 〈∇̃u, ∇̃v〉L2 + α+

∫
S+

uv̄ d` h̃DR
2 , h̃NR

2 α+

∫
S+

uv̄ d`

hDR, hNR 〈∇̃u, ∇̃v〉L2 + α−
∫
S−
uv̄ d` h̃RD

2 , h̃RN
2 α−

∫
S−
uv̄ d`

hRR 〈∇̃u, ∇̃v〉L2 + α+

∫
S+

uv̄ d`+ α−
∫
S−
uv̄ d` h̃RR

2 α+

∫
S+

uv̄ d`+ α−
∫
S−
uv̄ d`

Table 4.3: Expression of the sesquilinear form h arising from H and the sesquilinear form
h̃2 for boundary conditions of type II.

Let us now consider the extension h̃ of h defined as h in Table 4.3, but with a bigger
domain D(h̃) that contains D(h) and given in Table 4.4.

Sesquilinear form h Extension h̃ D(h̃)

hDR h̃DR H1
0+(S)

hRD h̃RD H1
0−(S)

hRN, hNR, hRR h̃RN, h̃NR, h̃RR H1(S)

Table 4.4: Domain of the extension h̃ for boundary conditions of type II

It is now possible to define two new sesquilinear forms h̃1 and h̃2 with D(h̃1) = D(h̃2) =
D(h̃), such that

∀u, v ∈ D(h̃), h̃1(u, v) = 〈∇̃u, ∇̃v〉L2 and h̃(u, v) = h̃1(u, v) + h̃2(u, v)

The exact expression of h̃2(u, v) is given in table 4.3 for different boundary conditions
of type II. The crucial point at this stage is to realise that h̃1, by its definition and its
domain D(h̃1) corresponds exactly to one of the sesquilinear forms t̃DN, t̃ND or t̃NN defined
in Subsection 3.3, as specified in Table 4.5. But we know from Subsection 3.3 that t̃DN,
t̃ND and t̃NN are closed and non-negative sesquilinear forms, and so, by Remark 4.5, they
are also closed, accretive and sectorial forms and hence, so is h̃1. Hence we can conclude
that h̃1 is associated uniquely to an m-sectorial linear operator H̃1 in the sense of Theorem
4.3. Moreover, we know from Subsection 3.3 that t̃DN, t̃ND and t̃NN are associated in the
same way to the non-negative self-adjoint operators with compact resolvent T̃DN, T̃ND and
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T̃NN. By Remark 4.5, we know that T̃DN, T̃ND and T̃NN are also m-sectorial, and so, by
uniqueness, H̃1 is exactly equal to one of these operators as specified in Table 4.5 and has
compact resolvent.

Sesq. Form h̃1 Corresponding Sesq. Form t̃ Operator H̃1 Corresponding Operator T̃

h̃DR
1 t̃DN H̃DR

1 T̃DN

h̃RD
1 t̃ND H̃RD

1 T̃ND

h̃RN
1 , h̃NR

1 , h̃RR
1 t̃NN H̃RN

1 , H̃NR
1 , H̃RR

1 T̃NN

Table 4.5: Correspondence between h̃1 and t̃ as well as between H̃1 and T̃

We are now almost in a position to apply the Theorem 4.4 to h̃ = h̃1 + h̃2. The last
remaining hypothesis that we need to verify is that h̃2 is bounded with respect to h̃1.

Lemma 4.7. h̃2 is bounded with respect to h̃1

Proof. We will focus on the most general case of Robin conditions on both sides of the cut
(the other boundary conditions of type II can be treated in exactly the same way), so in
this proof we shall focus only on h̃RR

2 and h̃RR
1 and will drop the superscript for the duration

of the proof only. In order to prove that h̃2 is bounded with respect to h̃1, we need to show
that there exists two positive real constants A and B, with B < 1 such that

|h̃2(u, u)| 6 A‖u‖2L2 +B<(h̃1(u, u))

6 A‖u‖2L2 +B‖∇̃u‖2L2 ,

for u belonging to a dense subset of D(h̃1) = H1(S). Here we shall choose u to be in the
dense subset Dom(H) defined in (4.1). Before embarking into the proof, let us state an
intermediate lemma deriving from ((36), Eqn. IV.(1.19)) and from the fact that for any
real x and y, we have (x+ y)2 6 2(x2 + y2).

Lemma 4.8. Let (a, b) be an open segment of R with b > a. Then for any n > 0, any c in
the closed segment [a, b] and any f ∈ C∞((a, b)), we have:

|f(c)|2 6
2(b− a)

2n+ 3

∫ b

a

|f ′(x)|2dx+
2(n+ 1)2

(b− a)(2n+ 1)

∫ b

a

|f(x)|2dx.

We are now well equipped to start the proof. Let us try to bound h̃2(u, u) by first noting
that

|h̃2(u, u)| 6 |α+|
∫ π/2

ϕ=0

∣∣∣∣u(π2−, ϕ
)∣∣∣∣2 dϕ+ |α−|

∫ π/2

ϕ=0

∣∣∣∣u(π2 +
, ϕ

)∣∣∣∣2 dϕ

= |α+|I1 + |α−|I2, (4.2)

where

I1 =

∫ π/2

ϕ=0

∣∣∣∣u(π2−, ϕ
)∣∣∣∣2 dϕ and I2 =

∫ π/2

ϕ=0

∣∣∣∣u(π2 +
, ϕ

)∣∣∣∣2 dϕ.
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Let us try to bound I1 first. Making use of the lemma 4.8, by choosing a = π/2−L, b = π/2
and c = π/2, for 0 < L < π/2, we can show that∣∣∣∣u(π2−, ϕ

)∣∣∣∣2 6
2L

(2n+ 3)

∫ π/2

θ=π/2−L

∣∣∣∣∂u∂θ (θ, ϕ)

∣∣∣∣2 dθ +
2(n+ 1)2

L(2n+ 1)

∫ π/2

θ=π/2−L
|u(θ, ϕ)|2 dθ.

(4.3)

Hence we can use (4.3) to show that

I1 6
2L

(2n+ 3)

∫ π/2

ϕ=0

∫ π/2

θ=π/2−L

∣∣∣∣∂u∂θ (θ, ϕ)

∣∣∣∣2 dθdϕ+
2(n+ 1)2

L(2n+ 1)

∫ π/2

ϕ=0

∫ π/2

θ=π/2−L
|u(θ, ϕ)|2 dθdϕ

6
2L

(2n+ 3)

∫ π/2

ϕ=0

∫ π/2

θ=π/2−L
|∇̃u(θ, ϕ)|2 dθdϕ+

2(n+ 1)2

L(2n+ 1)

∫ π/2

ϕ=0

∫ π/2

θ=π/2−L
|u(θ, ϕ)|2 dθdϕ.

Now noting that when θ ∈ [π/2− L, π/2], we have
sin(θ)

cos(L)
> 1, we can deduce that

I1 6
2L

cos(L)(2n+ 3)

∫ π/2

ϕ=0

∫ π/2

θ=π/2−L
|∇̃u(θ, ϕ)|2 sin(θ) dθdϕ

+
2(n+ 1)2

cos(L)L(2n+ 1)

∫ π/2

ϕ=0

∫ π/2

θ=π/2−L
|u(θ, ϕ)| sin(θ)dθdϕ

6
2L

cos(L)(2n+ 3)

∫∫
R+

|∇̃u|2 dS+
2(n+ 1)2

cos(L)L(2n+ 1)

∫∫
R+

|u|2dS

6
2L

cos(L)(2n+ 3)
‖∇̃u‖2L2 +

2(n+ 1)2

cos(L)L(2n+ 1)
‖u‖2L2 , (4.4)

because the region R+ = {(θ, ϕ) : θ ∈ [π/2− L, π/2] and ϕ ∈ [0, π/2]} described in Figure
4.2a is a subset of S. It is useful to introduce the coefficient An and Bn defined by

Bn = Bn(L) =
2L

cos(L)(2n+ 3)
and An = An(L) =

2(n+ 1)2

cos(L)L(2n+ 1)
. (4.5)

Similarly, but this time using an intermediate region R− =
{(θ, ϕ) : θ ∈ [π/2, π/2 + L] and ϕ ∈ [0, π/2]}, also described in Figure 4.2b, and choosing
a = π/2, b = π/2 + L and c = π/2, we can also show that

I2 6 Bn(L)‖∇̃u‖2L2 +An(L)‖u‖2L2 . (4.6)

Hence, using (4.4) and (4.6) in (4.2), we obtain

|h̃2(u, u)| 6 (|α+|+ |α−|)Bn(L)‖∇̃u‖2L2 + (|α+|+ |α−|)An(L)‖u‖2L2 , (4.7)

and note that we can always have (|α+| + |α−|)Bn(L) < 1 upon choosing n big enough.
Hence by choosing

B = (|α+|+ |α−|)Bn(L) and A = (|α+|+ |α−|)An(L), (4.8)

we have proved that h̃2 is bounded with respect to h̃1.
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(a) (b)

Fig. 4.2: (Colour online) Illustration of the intermediate domains R+ (a) and R− (b)

Remark 4.9. Note that if α+ and α− are real and positive as in Subsection 3.3, the
inequality (4.7) implies that we have

‖u‖2
t̃RR

6 9u 92 +B‖∇̃u‖2L2 +A‖u‖2L2 6 (1 + max(A,B)) 9 u92

and hence upon choosing C =
√

1 + max(A,B), we have ‖.‖̃tRR
6 C 9 .9, as requested in

Subsection 3.3.

To summarise, we now know that h̃ = h̃1 + h̃2, with D(h̃) = D(h̃1) = D(h̃2), where h̃1

is a densely defined closed accretive and sectorial sesquilinear form associated to a linear
operator H̃1 that is m-sectorial and has compact resolvent. Moreover the sesquilinear form
h̃2 is bounded with respect to h̃1. Hence, we can apply the Theorem 4.4 to conclude that
the sesquilinear form h̃ is sectorial and closed and is associated with an m-sectorial operator
H̃ that has compact resolvent†. From now on, when referring to the Laplace-Beltrami
Operator with boundary conditions of type II, we will mean H̃. This allows us to obtain
the main result of this subsection:

Theorem 4.10. For boundary conditions of type II, the spectrum of the Laplace-Beltrami
operator H̃ consists entirely of isolated eigenvalues with finite multiplicities denoted
{µn}n∈N∗ . Moreover, there exists γ ∈ R and ϑ ∈ [0, π/2] such that the eigenvalues are
contained in the sector of the complex plane with vertex γ and semi-angle ϑ.

Proof. We know that H̃ is m-sectorial, so its numerical range Θ(H̃) is contained in a sector
of the complex plane with vertex γ ∈ R and semi-angle ϑ ∈ [0, π/2]. Moreover, H̃ has
compact resolvent and so by Theorem 4.6, its spectrum σ(H̃) consists entirely of isolated
eigenvalues with finite multiplicities, and we have σ(H̃) ⊂ Θ(H̃).

4.4 Estimating an appropriate sector

So far, we know that the eigenvalues of the LBO lie within a sector of the complex plane,
but we do not have a constructive method of finding the characteristic of this sector. In

† In fact since we have shown in Subsection 3.3 that h̃1 is the closure of h1, the relatively boundedness
of h̃2 implies that h̃ is the closure of h by Thm. VI.1.33 in (36).
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order to do so, let us start by noting that, following exactly the same technique as that
used in the proof of Lemma 4.7, we obtain

|<(h̃2(u, u))| 6 AR(Bn‖∇̃u‖2L2 +An‖u‖2L2) (4.9)

|=(h̃2(u, u))| 6 AI(Bn‖∇̃u‖2L2 +An‖u‖2L2), (4.10)

where

AR = |<(α+)|+ |<(α−)| and AI = |=(α+)|+ |=(α−)|. (4.11)

Finding a pair (γ, ϑ) such that Θ(h̃) is included in the sector with vertex γ and semi-angle
ϑ is equivalent to finding a pair (γ, ϑ) such that we have

<(h̃(u, u)) > γ‖u‖2L2
(4.12)

|=(h̃(u, u))| 6 tan(ϑ)(<(h̃(u, u))− γ‖u‖2L2
). (4.13)

In order to obtain an inequality of the type (4.12), we need to work with the real part of h̃.
Let us proceed as follows:

<(h̃(u, u)) = <(h̃1(u, u)) + <(h̃2(u, u))

= h̃1(u, u) + <(h̃2(u, u))

= ‖∇̃u‖2L2 + <(h̃2(u, u))

> ‖∇̃u‖2L2 − |<(h̃2(u, u))|
>

(4.9)
‖∇̃u‖2L2 −AR(Bn‖∇̃u‖2L2 +An‖u‖2L2)

> −ARAn‖u‖2L2 + (1−ARBn)‖∇̃u‖2L2 . (4.14)

Hence, by choosing γ to be

γ = −2ARAn, (4.15)

and noting that −ARAn = γ +ARAn, (4.14) becomes

<(h̃(u, u)) > (γ +ARAn)‖u‖2L2 + (1−ARBn)‖∇̃u‖2L2 ,

which implies that

<(h̃(u, u))− γ‖u‖2L2 > ARAn‖u‖2L2 + (1−ARBn)‖∇̃u‖2L2 . (4.16)

Hence, provided that the following condition is satisfied

Cond1 : (1−ARBn) > 0, (4.17)

we are sure that (4.12) holds. Let us now try to find an appropriate ϑ that will make (4.13)
hold. Note that from (4.16)we have

ARAn‖u‖2L2 6 <(h̃(u, u))− γ‖u‖2 − (1−ARBn)‖∇̃u‖2L2 . (4.18)
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Now, we shall assume that AR 6= 0 and so we have

|=(h̃(u, u))| = |=(h̃2(u, u))|
6

(4.10)
AI(Bn‖∇̃u‖2L2 +An‖u‖2L2) (4.19)

6
AI
AR

(ARBn‖∇̃u‖2L2 +ARAn‖u‖2L2)

6
(4.18)

AI
AR

(ARBn‖∇̃u‖2L2 + <(h̃(u, u))− γ‖u‖2L2 − (1−ARBn)‖∇̃u‖2L2)

6
AI
AR

((2ARBn − 1)‖∇̃u‖2L2 + <(h̃(u, u))− γ‖u‖2L2) .

So by choosing ϑ such that

tan(ϑ) =
AI
AR

, (4.20)

the inequality (4.13) holds, provided that the following condition

Cond2 : (2ARBn − 1) 6 0 (4.21)

is satisfied. Note that if Cond2 is satisfied, then Cond1 is automatically satisfied. Cond2
results in the following condition on the choice of n:

Cond3 : n >
1

2

(
4LAR
cos(L)

− 3

)
. (4.22)

It is always possible to find such n > 0. We therefore have a constructive way of finding
γ and ϑ. For a given pair of impedances we can compute AR and AI using (4.11). Pick n
such that Cond3 is satisfied and choose γ and ϑ according to (4.15) and (4.20). It is then
possible to look for the best possible γ, i.e γ as close to zero as possible (remember that
with (4.15), γ is always negative). This can be done by optimising the choice of n and L in
order to minimise the value of An(L). In particular one may realise that An(L) is strictly
increasing with n for a given L, and that for a given n, An(L) is always minimum when
L is such that tan(L) = 1/L. Note that we do not claim here to have the smallest sector
possible, but this is not the focus of the present work.

5. Numerical method and results

5.1 Numerical method

In order to compute the eigenvalues we have used a numerical method based on surface
finite element (see for example (45)). In particular, we used the open-source C++ library
Deal.II ((46)). This particular library has the capability of dealing with computation on
two dimensional surfaces embedded in a three dimensional space (Riemannian manifolds,
typical characteristic of S). For our purpose, we shall use a combination of step-38 and
step-36 of the tutorial problems. Once the mass and stiffness matrices are constructed (see
Appendix C), the eigenvalue problem is solved using the PETSc and SLEPc libraries. ((47),
(48)).
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One of the drawbacks of Deal.II is the fact that it can only deal with quadrilateral meshes
for such cases. In order to mesh the sphere with the slit, we have made used of the open
source meshing software Gmsh ((49)). Meshing the sphere with a slit is not a trivial issue,
and the procedure used here was first to mesh the sphere with a diamond hole, and then
to force the two extremities of the hole to be the same point. Hence, even if S+ and S−

are at the same geometrical location, they do not have the same mesh points so that we
can prescribe different boundary conditions on S+ and S−. We use the finite element space
of continuous, piecewise polynomials of degree 2 in each coordinate direction. It is worth
noting that other innovative methods such as (50), based on the properties of stereographic
projections and fast multipole methods, have been developed to solve the Laplace-Beltrami
equation on a sphere with “islands” subject to Dirichlet boundary conditions.

5.2 Results for boundary conditions of type I

The first thing to do is to consider the mixed Dirichlet-Neumann problem, that is Dirichlet
boundary condition on one face and Neumann boundary condition on the other. This is the
simplest example that could not be dealt with by the simple method proposed in (21) to
solve the pure Dirichlet and pure Neumann cases. These three cases, pure Dirichlet, pure
Neumann and mixed Dirichlet-Neumann, do not depend on any impedance parameter and
are represented by purple, green and red horizontal lines respectively in Figure 5.1. The
next step is to apply Robin boundary conditions with α± real. For these conditions, the
LBO is also non–negative and self-adjoint, so we expect to obtain real positive eigenvalues.
Figure 5.1 shows the results with Robin boundary conditions on one face and Neumann
boundary conditions on the other in orange (λNR

n ), Robin boundary condition on one face
and Dirichlet on the other in pink (λDR

n ) and Robin boundary conditions on both faces in
blue (λRR

n ). For plotting purposes, we have chosen α± = α ∈ [10−2, 104], but cases when
α+ 6= α− can also be dealt with in a similar way. The eigenvalues are plotted against log(α)
and presented in Figure 5.1, while some of the normalised eigenfunctions are plotted in
Figure 5.2. The results presented in Figure 5.1 illustrate the smooth transition from pure
Neumann to pure Dirichlet via Robin conditions, the smooth transition from pure Neumann
to mixed Dirichlet-Neumann via Robin-Neumann conditions and the smooth transition from
Dirichlet-Neumann to pure Dirichlet via Dirichlet-Robin boundary conditions. As predicted
in Subsection 3.3 and Remark 3.7, the eigenvalues are increasing functions of α and the
inequalities (3.5) are satisfied.

It is interesting to note that contrary to the pure Dirichlet and the pure Neumann
eigenfunctions, the mixed Neumann-Dirichlet eigenfunctions do not exhibit symmetry (or
antisymmetry) across the equatorial plane (see Figure 5.2). This breakdown in symmetry
can also be observed in the Robin case when different impedances are being used on each
side of the slit. This is an important observation since the symmetry properties of the pure
Neumann and pure Dirichlet eigenfunctions were essential for the method developed in (21)
to work.

In order to have an idea of the precision with which our eigenvalues were computed in the
Robin case, we performed a mesh sensitivity analysis by performing these computations for
successive mesh refinements. The usual exponential convergence from above is obtained, as
shown in Figure 5.3.
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Fig. 5.1: The first four eigenvalues of the LBO for different boundary conditions of type I

Fig. 5.2: Four typical normalised eigenfunctions for different boundary conditions of type
I: 1st eigenfunction for pure Dirichlet (top left), 2nd eigenfunction for pure Neumann (top
right), 5th eigenfunction for mixed Neumann-Dirichlet (bottom left) and 2nd eigenfunction
for real Robin conditions on both faces with α± = 1.
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Fig. 5.3: Mesh sensitivity analysis for Robin boundary conditions on both faces, with
α = 1. The mesh has been refined three times and the logarithm (with base 10) of the

error relative to the results of the third refinement, log

(
λ− λ?
λ?

)
, is plotted against the

number of refinements. The superscript ? denotes the results of the third refinement. The
results were recorded with 6 significant digits, so when the point of the second refinement
is missing, this means that the exact same result (up to six digit accuracy) was obtained
for the second and the third refinement.

5.3 Results for boundary conditions of type II

For these computations we use a very similar method to that presented in the previous
subsection, that is a surface finite element method using the libraries Deal.II, PETSc and
SLEPc and a similar mesh. However, at the time of performing the computations the use of
complex numbers was not yet fully supported in Deal.II. Hence some work had to be carried
out in order to solve the problem with boundary conditions of type II, leading to a partial
implementation of complex numbers within the Deal.II library. For plotting purposes, and
in order to match with Subsection 4.3, we are solving the problem for α+ = α− = α
and (α+ = 0, α− = α), i.e. for Robin-Robin (µRR

n , blue line in Figures 5.4 and 5.5) and
Neumann-Robin (µNR

n , orange line) boundary conditions of type II. We then rewrite α as
α = c(1 + i) and let c vary between 10−2 and 103. For completeness, we show that it is
possible to deal with the case α+ 6= α− and compute the Robin-Robin eigenvalues (µRR

n ,

pink line) when α+ = c(1 + i) and α− = c

(
1

2
+ 3i

)
and let c vary between 10−2 and

103. The results for the location of the eigenvalues in C are presented in Figure 5.4.
The pure Neumann (λNN

n , green), Dirichlet-Neumann (λDR
n , red) and pure Dirichlet (λDD

n ,
purple) are represented as single points on these graphs. Once again, we observe a smooth
transition from pure Neumann to pure Dirichlet in the case of Robin-Robin conditions, and
a smooth transition from pure Neumann to Dirichlet-Neumann in the case of Neumann-
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Fig. 5.4: The first four eigenvalues of the LBO for different boundary conditions of type II,
when α = c(1+ i) and c ∈ [10−2, 103]. In the Robin-Robin case (blue) we have α± = α, and
in the Neumann-Robin case (orange), we have α+ = 0 and α− = α. In the Robin-Robin
case (pink), we have α+ = c(1 + i) and α− = c(1/2 + 3i)

Robin conditions. The main difference between these results and the results presented in
Subsection 5.2 is that this time the smooth transition occurs through the upper half of the
complex plane.

In particular, we observe that when c is small, the eigenvalues are very close to the pure
Neumann case. This can actually be predicted using the perturbation theory of linear
operators ((36)), as presented in Appendix B. In particular we can show that if λ is a
pure Neumann eigenvalue of multiplicity m and is separated from the other pure Neumann

eigenvalues by a distance d, and B d
2
(λ) represents the ball of radius

d

2
around λ, then if |α|

is smaller than a certain value there are a finite number of α-Robin-Robin eigenvalues with
total multiplicity m that lie within B d

2
(λ). This is illustrated in Figure 5.5, where two cases

are considered. The case of λ2, which has a pure Neumann eigenvalue of multiplicity 1, and
the case of λ3 and λ4, that have the same pure Neumann eigenvalue (equal to 2) and hence
represent an eigenvalue of multiplicity 2. In both cases, we have d = λNN

3,4 − λNN
2 ≈ 0.518.

Moving towards the left on the blue and orange curves in Figure 5.5 corresponds to
reducing the absolute value of α. Hence we can see from Figure 5.5a that in the case of pure
Neumann eigenvalue of multiplicity 1, for |α| small enough, there is a single Robin-Robin
eigenvalue inside Bd/2, while in the case of the eigenvalue of multiplicity 2 in Figure 5.5b,
for |α| small enough, we always have two Robin-Robin eigenvalues inside Bd/2, meaning
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Fig. 5.5: (Colour online) Illustration of the proximity of the Robin and pure Neumann
eigenvalues in the case of a pure Neumann eigenvalue of multiplicity 1 (a) and a pure
Neumann eigenvalue of multiplicity 2 (b).

that the finite number of Robin-Robin eigenvalues inside Bd/2 has a total multiplicity of 2,
as predicted by the theory in Appendix B.

6. Concluding remarks

The Laplace-Beltrami operator arising from the problem of diffraction by a quarter-plane
has been carefully studied, numerically and theoretically, from a spectral point of view.
Two types of boundary conditions have been considered, the boundary conditions of type I
for which the operator is self-adjoint, and the boundary conditions of type II for which the
operator ceases to be self-adjoint but remains m-sectorial. In the case of boundary conditions
of type I, we have shown that the spectrum of the operator is an infinite set of isolated real
positive eigenvalues with finite multiplicity. The relative position of these eigenvalues for
different boundary conditions of type I has been studied. In the case of boundary conditions
of type II, we have shown that the spectrum of the operator is an infinite set of isolated
complex eigenvalues with finite multiplicity, and that these eigenvalues are contained in
a sector of the complex plane. A constructive way of obtaining such a sector has been
described. Note that although the theory in Section 4 has been developed for any value of
the impedance parameters α±, most of the numerical results have been given for impedance
parameters α± with a positive real part. This is due to the fact that it becomes difficult
to order the eigenvalues for large negative values of this real part. However, our sector
estimate gives a good way of reducing the size of the region where we need to search.

Of course, the qualitative results obtained in this study are valid for any length of the cut
between 0 and 2π, corresponding to the problem of diffraction by a plane sector of arbitrary
angle. These qualitative results should also hold for arbitrary holes on the sphere with
mixed boundary conditions, corresponding to the problem of a cone with arbitrary cross
section. This knowledge will prove useful when trying to evaluate the diffraction coefficient
of such scattering problems, when mixed boundary conditions are being used.
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APPENDIX A: GREEN’S IDENTITY FOR S

A.1 Green’s identity on a sphere with a hole

Consider the surface of a sphere with a hole that represents a certain curved surface σ, such that
the boundary of the surface, ∂σ is oriented as described in Figure Ab. In order to apply Stokes’
theorem on σ, it needs to be oriented, i.e., we need to make a choice of normal that is compatible
with the right hand rule and the orientation of ∂σ. For this to work, we need to choose the normal
ñ of σ as in Figure Aa, i.e. by choosing ñ = er. Let us now consider a vector field F . We can
apply Stokes’ theorem to σ to get∫∫

σ

ñ · (∇× F ) dS =

∫
∂σ

F · dr . (A.1)

Let us now consider another vector field G. In our case, it can be shown that the divergence of G
restricted to σ, denoted ∇̃ ·G, can be expressed as

∇̃ ·G = ñ · (∇× (ñ×G)) . (A.2)

Now, we can apply Stokes’ theorem to the vector field F defined by F = ñ × G and so (A.1)
becomes ∫∫

σ

ñ · (∇× (ñ×G)) dS =

∫
∂σ

(ñ×G) · dr . (A.3)
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Now, let us parametrise ∂σ by a parameter s say so that ∂σ is defined by

r(s) = (r(s), θ(s), ϕ(s)) for s ∈ [s0, s1],

in the (er, eθ, eϕ) basis. Note that because we are on the sphere, we have r(s) = 1. The left hand
side (LHS) of (A.3) can be rewritten as∫

∂σ

(ñ×G) · dr =

∫ s1

s0

(ñ×G) · dr

ds
ds .

Upon writing t =
dr

ds
(representing a vector field tangent to ∂σ), and using the vector calculus

identity (ñ×G) · t = G · (t× ñ), we obtain∫
∂σ

(ñ×G) · dr =

∫ s1

s0

G · (t× ñ) ds.

Note that the quantity (t× ñ) is tangent to σ and perpendicular to ∂σ, so it represents the normal
to ∂σ within σ, let us call this quantity n, so that we have n = t×ñ and the LHS of (A.3) becomes∫

∂σ

(ñ×G) · dr =

∫ s1

s0

G · n ds .

Now using the definition of the divergence in (A.2), equation (A.3) becomes∫∫
σ

∇̃ ·G dS =

∫ s1

s0

G · n ds =
def

∫
∂σ

G · n ds .

This is an equivalent of the divergence theorem for this curved surface σ. Note that in this case,
n is oriented towards the centre of the hole as shown in the Figure Ab.

(a) (b)

Fig. A: (Colour online) Choice of normal to σ so that it is compatible with the orientation
of ∂σ in view of the application of Stokes’ theorem (a) and orientation of ∂σ normal and
tangent vectors n and t (b).

Note that even if n and t are three-dimensional vectors, they only depend on θ and ϕ and their
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er component is always zero. Hence they can also be considered as two-dimensional vectors in the
(eθ, eϕ) basis, and so, for a function u(θ, ϕ) defined on σ, the quantity ∇̃u · n makes sense, and

using the vector identity ∇̃ ·
(
v̄∇̃u

)
= v̄∆̃u + ∇̃u · ∇̃̄v for any u, v ∈ C∞(σ̄) and the divergence

theorem derived above, we have the Green’s identity

−
∫∫

σ

v̄∆̃u dS =

∫∫
σ

∇̃u · ∇̃̄v dS −
∫ s1

s0

v̄
(
∇̃u · n

)
ds. (A.4)

A.2 Application to S

Let us now consider the cut ∂S as a degenerate hole, where the lower and upper boundaries of the
hole have collapsed onto each other. The normal n remains well defined on ∂S, apart from the
end points. And in fact this normal is constant on S+, where it is denoted n+ and on S−, where
it is denoted n− as shown on Figure 3.1a. In fact, we clearly have n+ = eθ and n− = −eθ. We
can now parametrise S+ and S− with the position vectors r+ and r− and the parameter s+ and

s− by r+(s+) =
(

1,
π

2

−
, s+
)

for s+ ∈ [0, π/2] and r−(s−) =
(

1,
π

2

+
,
π

2
− s−

)
for s− ∈ [0, π/2].

Hence for S, the Green’s identity becomes

−
∫∫

S

v̄∆̃u dS =

∫∫
S

∇̃u · ∇̃̄v dS−
∫
S+

v̄
(
∇̃u · n+

)
ds+ −

∫
S−

v̄
(
∇̃u · n−

)
ds−, (A.5)

where the line integrals are defined by∫
S+

v̄
(
∇̃u · n+

)
ds+ =

∫ π/2

s+=0

v̄
(π

2

−
, s+
)(
∇̃u
(π

2

−
, s+
)
· n+

)
ds+

=
ϕ↔s+

∫ π/2

ϕ=0

v̄
(π

2

−
, ϕ
)(
∇̃u
(π

2

−
, ϕ
)
· n+

)
dϕ

and ∫
S−

v̄
(
∇̃u · n−

)
ds− =

∫ π/2

s−=0

v̄
(π

2

+
,
π

2
− s−

)(
∇̃u
(π

2

+
,
π

2
− s−

)
· n−

)
ds−

=
ϕ↔π

2
−s−

∫ 0

ϕ=π/2

v̄
(π

2

+
, ϕ
)(
∇̃u
(π

2

+
, ϕ
)
· n−

)
(−dϕ)

=

∫ π/2

ϕ=0

v̄
(π

2

+
, ϕ
)(
∇̃u
(π

2

+
, ϕ
)
· n−

)
dϕ .

In particular, for any function u, here is what is meant by a line integral:∫
S+

u d` =

∫ π/2

ϕ=0

u
(π

2

−
, ϕ
)

dϕ and

∫
S−

u d` =

∫ π/2

ϕ=0

u
(π

2

+
, ϕ
)

dϕ . (A.6)

APPENDIX B: PERTURBATION THEORY APPLIED TO THE LBO

The aim of this appendix is to show that for impedances of small enough modulus, the eigenvalues
of the LBO with boundary conditions of type II are close to the eigenvalues of a given LBO with
boundary conditions of type I. In particular, we will show that for small enough impedances,
µRR
n , µRN

n and µNR
n are close to λNN

n , µRD
n is close to λND

n and µDR
n is close to λDN

n . However, here
we shall only focus on the most general case of µRR

n , the other cases being very similar. In order to
do so, we shall apply the perturbation theory for linear operators. Let us start by defining a few
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important notions. Let consider D0 ⊂ C, and a family {h(x)}x∈D0 of sesquilinear forms acting on
a Hilbert space H. We say that the family {h(x)}x∈D0 is a holomorphic family of forms if (i) h(x)
is sectorial, densely defined and closed with domain independent of x, i.e. D(h(x)) = D and (ii) for
each u ∈ D, the function of x defined by h(x)(u) is a holomorphic function for x ∈ D0. Also, we
need to define the operator norm ‖.‖op as follows. Let T be an operator acting on H with domain
Dom(T ), then the operator norm of T is given by

‖T‖op = sup
u∈Dom(T ), u6=0

{‖T (u)‖H/‖u‖H} .

The main result of this section will be a consequence of the following theorem:

Theorem B.1. [Thm. VII.4.8 and Thm. VII.4.9 in (36)] Let {h(n)}n∈N be a sequence of

sesquilinear forms defined on a Hilbert space H. Let h = h(0) be densely defined with D(h) = D,

sectorial and closable. Let h(n) with n > 1 be relatively bounded with respect to h in the sense
that D ⊂ D(h(n)), and there exists a, b, c > 0 such that for u ∈ D we have

|h(n)(u, u)| 6 cn−1(a‖u‖2H + b<(h(u, u))).

Then the forms h(x) with D(h(x)) = D, defined for u, v ∈ D by

h(x)(u, v) =

∞∑
n=0

xnh(n)(u, v) ,

are well defined for |x| < 1/c and are sectorial and closable for |x| < 1/(b+c). Let h̃(x) denotes the
family of their closures. Then {h̃(x)} is a holomorphic family of forms and as such, this family is
associated to a family of m-sectorial operators {H̃(x)}. If we further assume that h is symmetric,
and hence associated to a self-adjoint operator H̃, then for any ζ ∈ ρ(H̃), the resolvent R(ζ, H̃(x))
exists and is a convergent power series of x for

|x| < (2‖(a+ bH)R(ζ,H)‖op + c)−1 .

Let us consider the LBO with Robin boundary conditions of type II on both sides of the cut. Let
the two closed sesquilinear forms h̃1 and h̃2 with D(h̃1) = D(h̃2) = H1(S) be defined as in Section
4.3 for u, v ∈ H1(S) by

h̃1(u, v) = 〈∇̃u, ∇̃v〉L2 and h̃2(u, v) = α+

∫
S+

uv̄ d`+ α−
∫
S−
uv̄ d` .

Recall that h̃1 is also symmetric and non-negative and associated to a self-adjoint operator H̃1 =
T̃NN. Let us now define the family of forms {h(ε)} for ε ∈ C by D(h(ε)) = H1(S) and

h(ε) = h̃1 + εh̃2 .

Note that for ε > 0, h(ε) is associated with a LBO with boundary conditions of type II, H̃(ε)
with impedances εα+ and εα−. Recall that we have proven in Subsection 4.3 that h̃2 is relatively
bounded with respect to h̃1 with

|h̃2(u, u)| 6 A‖u‖2L2 +B<(h̃1(u, u)),

for A and B given in (4.8). Hence we can apply theorem B.1, with a = A, b = B, and c = 0,

h = h(0) = h̃1, h(1) = h̃2 and h(n) = 0 for n > 2 to conclude that the family h̃(ε) forms a holomorphic
family of forms and is associated to a family of m-sectorial operators H̃(ε) for |ε| < 1/B (note from
(4.5) that B can be made as big as possible, so this is in fact true for all ε). Moreover, since h̃1
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is symmetric, we know that for any ζ ∈ ρ(H̃1), the resolvent R(ζ, H̃(ε)) exists and is a convergent
power series for

|ε| < (2‖(A+BH̃1)R(ζ, H̃1)‖op)−1 . (B.1)

Now, let λ ∈ σ(H̃1) be an eigenvalue of H̃1. As has been shown in Subsection 3.3, we know that λ
is real, positive, isolated and has a finite multiplicity, say m. Let d > 0 be such that |λ − λ′| > d
for all λ′ ∈ σ(H̃1)\{λ}. Let γ be the circle of centre λ and radius d/2 so that γ ⊂ ρ(H̃1) and let
ζ ∈ γ, we shall note Bd/2(λ) the resulting ball. According to ((36), V. Eqn. (4.9)), because H̃1 is
self-adjoint, we know that

‖(A+BH̃1)R(ζ, H̃1)‖op = A sup
λ′∈σ(H̃1)

|λ′ − ζ|−1 +B sup
λ′∈σ(H̃1)

|λ′||λ′ − ζ|−1

6 A(d/2) +B(2 + 2λ/d),

where we have used the fact that for λ′ ∈ σ(H̃1),

|λ′||λ′ − ζ|−1 = 1 + |ζ||λ′ − ζ|−1 6 1 + |λ− ζ||λ′ − ζ|−1 + λ|λ′ − ζ|−1 6 2 + 2λ/d.

Hence, provided we have

|ε| <
d

4A+ 4B(d+ λ)
,

the bound (B.1) is satisfied, and R(ζ, H̃(ε)) is well defined for all ζ ∈ γ, i.e. γ ⊂ ρ(H̃(ε)). We can
then define the well studied spectral projection operator P (ε) by

P (ε) =
1

2iπ

∫
γ

R(z, H̃(ε)) dz .

Note that since γ ⊂ ρ(H̃(ε)), γ separates its spectrum, and we can write σ(H̃(ε)) = S(ε) ∪ T (ε),
with S(ε) ∩ T (ε) = ∅ where S(ε) = σ(H̃(ε)) ∩ Bd/2(λ) and T (ε) = σ(H̃(ε))\S(ε). Moreover (see

(37), Thm. 11.1.5), we know that P (ε) is idempotent and that the restriction of H̃(ε) to the range
of P (ε) (denoted P (ε)(H)) has spectrum S(ε). And hence, if rank(P (ε)) = m, then S(ε) is made
of finitely many eigenvalues with total multiplicity m. But because the projections P (ε) depend
analytically on β, we have rank(P (ε)) = rank(P (0)) = m by ((37), Lemma 1.5.5), and so we have
proved the following theorem:

Theorem B.2. Suppose that λ ∈ ρ(H̃1) has multiplicity m and that d > 0 is such that |λ−λ′| > d
for all λ′ ∈ σ(H̃1)\{λ}. Denote the ball of radius d/2 around λ by Bd/2(λ). Then given β such that

β < d/(4A+ 4B(d+ λ)), H̃(β) has finitely many eigenvalues in Bd/2(λ) with total multiplicity m.

APPENDIX C: FINITE ELEMENT IMPLEMENTATION

In order to obtain the finite element formulation of our eigenvalue problem, we want to express
our solution u as a finite linear combination of shape functions ψj(θ, ϕ), j = 0 . . . N − 1, i.e., we
write

u =

N−1∑
j=0

ujψj , (C.1)

where uj are constant. Let us now consider one particular shape function ψi and take the inner
product of it with equation (2.4), i.e

〈−∆̃u, ψi〉L2 = λ〈u, ψi〉L2 .
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Using the Green’s identity (A.5) for S, this becomes〈
∇̃u, ∇̃ψi

〉
L2

+ α+〈u, ψi〉+ + α−〈u, ψi〉− = λ〈u, ψi〉L2 ,

where

〈u, v〉± =

∫
S±

uv̄ d` .

Now, using the sum decomposition (C.1) and the linearity of the inner products in their first
argument, we get

N−1∑
j=0

uj
〈
∇̃ψj , ∇̃ψi

〉
L2

+ α+uj〈ψj , ψi〉+ + ujα
−〈ψj , ψi〉 = λ

N−1∑
j=0

uj〈ψj , ψi〉L2 , (C.2)

So if we define the N ×N matrices A = (Aij) and M = (Mij) by

Aij =
〈
∇̃ψj , ∇̃ψi

〉
L2

+ α+〈ψj , ψi〉+ + α−〈ψj , ψi〉−

Mij = 〈ψj , ψi〉L2 ,

the expansion (C.2) can be rewritten as

N−1∑
j=0

Aijuj = λ

N−1∑
j=0

Mijuj ,

which, upon defining the vector u = (u0, u1, . . . , uN−1) becomes

Au = λMu,

which is a typical generalised eigenvalue problem. The matrix A is called the stiffness matrix,
while the matrix M is called the mass matrix. Note that α+ and α− being complex in general,
the matrix A and hence the vector u and eigenvalues λ can be complex.


