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Abstract. Crystallisation pathways are explored by direct analysis of the 
potential energy landscape for a system of Lennard-Jones particles with periodic 
boundary conditions. A database of minima and transition states linking liquid 
and crystalline states is constructed using discrete path sampling and the entire 
potential energy landscape from liquid to crystal is visualised. We demonstrate 
that there is a strong negative correlation between the number of atoms in the 
largest crystalline cluster and the potential energy. In common with previous 
results we find a strong bias towards the growth of FCC rather than HCP 
clusters, despite a very small potential energy dierence. We characterise three 
types of perfect crystals with very similar energies: pure FCC, pure HCP, and 
combinations of FCC and HCP layers. There are also many slightly defective 
crystalline structures. The eect of the simulation box is analysed for a supercell 
containing 864 atoms. There are low barriers between some of the dierent 
crystalline structures via pathways involving sliding layers, and many dierent 
defective structures with FCC layers stacked at an angle to the periodic box. 
Finally, we compare a binary Lennard-Jones system and visualise the potential 
energy landscape from supercooled liquid to crystal.
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1. Introduction

Crystallisation is the formation of an ordered solid from a disordered liquid. The average  
waiting time between such events is much longer than the timescale of the process 
itself, so it constitutes a rare event. In terms of the energy landscape, a rare event is a 
process where the eective barrier height is much greater than the thermal energy of 
the system. Rare events are dicult to study experimentally and in conventional simu-
lations. In simulations the problem is obtaining sucient statistics, while in experi-
ments, it may be dicult to characterise details of the rapidly-occurring process. These 
details are important, as it is the structure and dynamics in the region of the transient 
critical nucleus that are most relevant to theories of crystal nucleation. Crystal nuclei 
form spontaneously in a supersaturated solution, but redissolve rather than grow, 
unless their size exceeds a critical value. The probability that a critical nucleus forms 
spontaneously, and the speed at which it subsequently grows, determine the crystal 
nucleation rate. Crystallisation can be studied experimentally with colloidal suspen-
sions, which form mesoscopic models for atomic systems. In these systems, confocal 
microscopy [1] allows trajectories of individual particles to be followed and detailed 
studies of crystallisation are possible [2].

A number of innovative simulation techniques have been developed to study rare 
events. These techniques include parallel replica dynamics [3], umbrella sampling 
[4], accelerated molecular dynamics [5], metadynamics [6, 7], temperature acceler-
ated dynamics [8], transition path sampling [9–11], forward-flux sampling [12, 13] 
and adaptive kinetic Monte Carlo [14]. The approach we will use here, discrete path 
sampling (DPS) [15–17], was developed as an analogue of transition path sampling, 
coarse-grained in terms of stationary points of the potential energy surface, which 
are determined by geometry optimisation techniques. The reasons for applying this 
technique to a well-studied problem, the crystallisation of the Lennard-Jones fluid, are 
two-fold. Firstly, we wish to demonstrate the application of the DPS approach to bulk 
systems. The technique can then be used for systems that do not crytsallise easily and 
where order parameters are unknown. This development requires the introduction of 
structural alignment algorithms to identify isomers and structural similarities in peri-
odic boundary conditions. Secondly, DPS gives us the opportunity to visualise the full 
potential energy landscape from liquid to crystal and to examine each region in detail. 
In the liquid region, we examine stacking preferences during nucelation and in the crys-
tal region, we study the eect of periodic boundary conditions on the crystal structures 
and the pathways between them.

1.1. Potential energy landscapes

A potential energy surface (PES), or landscape (PEL), represents the potential energy 
of a given system as a function of all the relevant atomic or molecular coordinates 
[18]. Usually the most interesting parts of a potential energy surface are the station-
ary points, where all the components of the gradient vector are zero. These stationary 
points include minima and transition states. At a local minimum any small change in 
the internal coordinates results in an increase in energy. The minimum with lowest 
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energy is known as the global minimum. Equilibrium thermodynamic properties depend 
only on the relative potential energies of the local minima on the PES and the volumes 
of configuration space associated with them. However, relating the potential energy 
surface to dynamics requires information about the connections between dierent min-
ima. Geometrically, the lowest-energy pathway between two directly connected minima 
proceeds via a transition state and corresponding steepest-descent pathways. Here we 
employ the Murrell and Laidler definition of a transition state, namely a stationary 
point with a single negative Hessian eigenvalue [19].

For small clusters, it is possible to perform an exhaustive search of the PES for sta-
tionary points [20]. However, the number of minima for a system of N atoms increases 
exponentially [21, 22] with N, making exhaustive searches of the PES for large systems 
impossible. Instead, we must consider incomplete databases of minima and transition 
states that are representative of the region of the PES explored by the system under 
experimental conditions.

The thermodynamics of the system are determined by the entire PES. However, 
the superposition approach [22–26] may be applied to obtain properties from a repre-
sentative sample of local minima. Similarly, global kinetics can be analysed in terms of 
transitions between individual minima using statistical rate theories for the minimum-
to-minimum rate constants [18].

The structure and dynamics of atomic and molecular clusters, the folding of pro-
teins, and the phenomenology of glasses, can all be examined in terms of the underlying 
potential energy landscape [18]. Global optimisation to determine the lowest minimum 
is a well established technique [27]. Analysing the energy landscape is also an important 
tool for crystal structure prediction, in finding both the lowest energy crystal and any 
competing low-energy structures. In the present work, we will explore, not just the low-
energy crystalline region of the landscape, but also pathways to this region from the 
liquid state. Studying the potential energy landscape allows us to focus more directly 
on structural properties and on the connections between dierent morphologies.

1.2. Discrete path sampling (DPS)

A discrete path is defined as a connected sequence of local minima and the intervening 
transition states that connect them geometrically, as opposed to the dynamical trajec-
tories sampled in transition path sampling. DPS and related methods [28–31] employ 
geometry optimisation techniques to construct a database of connected sequences of 
stationary points that link two chosen end point states (or regions) in configuration 
space. Pathways between two dierent states are examined by looking directly at the 
potential energy landscape. The DPS method has previously been employed to study 
isomerisation in model atomic and molecular clusters [15, 16], and to examine folding 
[32–35], misfolding [36] and conformational changes [37] in peptides and proteins.

The discrete path sampling approach was designed to find an initial connected path 
between two endpoints and then to systematically generate the most kinetically relevant 
discrete paths from this initial path, enlarging the database of connected stationary 
points. A discrete path between two distant minima can be constructed iteratively. 
First, a double-ended transition state (TS) search is undertaken, characterising trans-
ition states on the pathway between the two minima [15, 16]. The resulting TS guesses 
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are tightly converged using single-ended geometry optimisation techniques [38, 39].  
The two local minima each TS connects are then identified using local minimisation. The  
transition states and minima are added to a database and the search begins again.  
The process is continued with new pairs of end-point minima to bridge the gaps until 
a complete path is formed. We used the missing connection algorithm [40] to choose  
successive pairs of minima for the connection attempts. This approach uses Dijkstra’s 
algorithm [41] to identify the sequence of minima on the ‘shortest path’ in terms of miss-
ing connections, where a suitable metric is defined to quantify the path ‘lengths’ [40].

1.3. Crystallisation of the Lennard-Jones fluid

Systems of particles interacting via a Lennard-Jones (LJ) potential have been widely 
studied as models that capture the essential aspects of the underlying physics of crys-
tallisation, while retaining a simple functional form. There is a considerable body of 
numerical data available and the phase diagram is well known. At low temperature the 
stable form is a face-centred cubic (FCC) crystal, and there is a metastable hexagonal-
close-packed crystal (HCP) with very similar free energy. However, there is also a 
metastable body-centred-cubic (BCC) structure with higher free energy, which may 
play a role in nucleation and crystallisation under certain conditions [42, 43]. The 
equilibrium volume for BCC is larger than for the close-packed HCP and FCC, and 
this lattice is not stable. However, it was recently found that the formation of a close-
packed structure can be prevented if the system is relaxed from a BCC structure with 
varying volume. A new metastable phase is formed, with a distorted BCC structure, 
I4̄3d symmetry, and an equilibrium volume only slightly smaller than for BCC [44].

Crystallisation in bulk Lennard-Jones systems has been studied by ‘brute-force’ 
molecular dynamics as well as a number of dierent rare-event methods [45], including 
umbrella sampling [42, 43, 46, 47], forward-flux sampling [48], and transition interface 
path sampling [49, 50]. It has been shown [42, 43, 47, 49, 50] that small clusters form 
with some BCC structure. As the clusters grow, the surfaces retain BCC character, but 
the cores transform into FCC packing. Otswald’s ‘step’ rule [51] states that the phase 
closest in free energy to the fluid is formed first, even if this is not the most stable state, 
in agreement with this observation. It is also possible to interpret the increase in BCC 
character at the surface as an increase in FCC particles within the core, due to the 
greater stability of the bulk FCC phase [50]. Polymorph selection during the growth 
step has also been studied [43], and BCC crystallites were found to be favoured over 
FCC at high pressure. Raising the temperature, i.e. running simulations at low super-
cooling, prevents the cross-nucleation of HCP within the FCC crystallites [43].

HCP and FCC stacking are characterised by close-packed layers of triangularly 
arranged spheres. The two structures have the same density and dier only in the 
stacking sequence. Other stacking sequences are also possible with combinations of 
of FCC and HCP layers, and such structures are commonly identified as random 
hexagonally close-packed (rHCP) structures. Although they have almost the same 
density, energetic factors such as long-range interactions can lead to a preference 
for one structure over another, and there are also small entropic dierences [52]. 
In fact, for the Lennard-Jones potential, and even for monodisperse hard-sphere 
systems, there is a strong preference for FCC stacking during crystal growth, and 
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hence in the formation of crystals, despite little energetic or entropic gain. The 
preference for FCC packing also appears to depend on how the close-packed crystal 
is generated, suggesting a mechanical instability acting during crystal formation 
[53]. It has been shown that close-packed structures form with equal probability. 
However, the FCC structure is mechanically more stable and less often destroyed 
in the continuing dynamical growth process, as newly arrived atoms impact upon 
the structure [53].

1.4. System details

We consider a supercell containing 864 atoms interacting via the Lennard-Jones poten-
tial with a number density of 1.2 in reduced Lennard-Jones units of σ−3, for a cubic box 
with periodic boundary conditions. The cuto for the potential is at σ2.5 . This periodic 
box allows the formation of both a perfect face-centred cubic (FCC) crystal and a per-
fect hexagonal close-packed (HCP) crystal. Simulating at constant volume allows us to 
study the eect of the periodic box on the crystal structures formed and the pathways 
between crystal structures. An NPT study of the PEL would be possible but much 
more computationally intensive, and in the present contribution we focus on the organ-
isation of the potential energy landscape, rather than rates and nucleation barriers.

When examining the PEL, it is desirable to consider a small supercell, as there  
is an exponential increase in the number of local minima with the number of atoms  
[22, 21]. Large systems can be decomposed into weakly interacting subsystems, which 
can mask information when considering properties [54–56]. However, a study of crystal-
lisation via nucleation requires a system big enough to accommodate the critical nucleus 
without the risk of forming nuclei that percolate through the periodic box. Previous 
studies of crystallisation in Lennard-Jones systems suggest a critical nucleus of between 
100 and 200 atoms with approximately 30% undercooling [50, 57]. Hence, our system 
is big enough to study precritical clusters, but will produce artifacts in terms of growth 
after the formation of the critical nucleus, as structure can propagate readily across 
the periodic boundaries. It has been suggested that the most important and detectable 
finite-size eects, i.e. a much higher nucleation rate, are absent for systems with more 
than 1000 atoms [58], although some discrepancy could occur in systems of up to a 
million atoms [59], particularly at low undercooling.

1.5. DPS methodology

Discrete pathways were found by connecting successive minima in the trajectory using 
the doubly-nudged [60] elastic band [61] approach for double-ended searches to locate 
transition state candidates. These candidates were subsequently refined using hybrid 
eigenvector-following [38, 39, 61]. This approach, implemented in the OPTIM program 
[62], finds a pathway between two successive minima in the quenched trajectory, which 
can involve a single transition state or a series of transition states and intervening 
minima. The limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm 
of Liu and Nocedal [63, 64] was used for the local minimisations. An optimisation was 
deemed to have converged when the root-mean-square gradient fell below 10−6 reduced 
units. The PATHSAMPLE program [65] is a driver for OPTIM, directing the construction 
and refinement of a stationary point database formed from the connected discrete paths.

http://dx.doi.org/10.1088/1742-5468/2016/07/074001
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1.6. Permutational alignment

Alignment of endpoints is critically important to obtain pathways via geometry optim-
isation [66]. The alignment, minimising the Euclidean distance in 3N dimensions, of 
N distinguishable atoms in two dierent configurations is easily achieved using a qua-
ternion procedure [67]. However, there is no longer a deterministic solution to this 
problem when atoms are indistinguishable, i.e. they can be permuted. A sequence of 
steps is necessary. Firstly, the Euclidean distance metric is minimised for each set 
of permutable atoms. For a fixed centre of coordinates and a fixed orientation, the 
distance between two configurations can be minimised using a shortest augmenting 
path algorithm [68]. This minimisation is then followed by overall translational and 
rotational alignment. The sequence of permutational and translational/orientational 
alignment can produce a dierent result depending on the initial orientation. To find 
the global minimum for the Euclidean distance it may be necessary to start from a 
number of random initial orientations. For a system with periodic boundary conditions, 
such as the bulk Lennard-Jones model considered here, arbitrary overall rotations are 
not allowed, but cell symmetries must be considered. The alignment process described 
above was repeated for configurations corresponding to all 48 symmetry operations 
of the octahedral supercell to find the smallest distance between two minima. It is 
important to note that for any condensed phase described by a periodic supercell, there 
is no well-defined centre of coordinates. The resulting lowest value for the Euclidean 
distance is for a given centre of coordinates. However, for aligning structures to obtain 
pathways, it is often sucient to use the atoms in the primary supercell to define the 
centre of coordinates.

It is important to recognise a previously-encountered structure and it is also nec-
essary to recognise permutation-inversion isomers whenever they are encountered. 
For bulk systems, the identification of identical structures and isomers requires a 
dierent procedure and is separate from any alignment involving an arbitrary ‘cen-
tre of coordinates’. An attempt is made to overlay the structures by first translating 
one of them to align a particular pair of atoms, one from each configuration. We 
then compare the positions of the other atoms in the two structures, calculating 
the shortest distances between pairs. Equivalent isomers are identified by a ‘zero’ 
overall distance within a given tolerance. As soon as one atom cannot be matched 
in the other structure and the overall distance between the two structures is larger 
than the ‘zero’ threshold, the test can be aborted. The test is then repeated for all 
possible initial partners, and it is sucient to compare every possible partner in one 
configuration with a single atom in the second configuration. The whole process was 
also repeated for all symmetry operations of the cubic box. Using this procedure we 
find that matching identical structures or permutational isomers is an ecient and 
robust process.

The above alignment procedures may seem onerous but are generally less computa-
tionally expensive than operations that involve evaluating the potential, and they can 
greatly reduce the computational expense of finding connected pathways, especially for 
large systems with many equivalent atoms.

1.7. Disconnectivity graphs

http://dx.doi.org/10.1088/1742-5468/2016/07/074001
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For an N-atom system, the potential energy is described by a 3N-dimensional function, 
which is hard to visualise. A disconnectivity graph analysis focuses on the local minima 
and the transition states that connect them [69, 70]. Disconnectivity graphs are tree 
graphs, and we describe dierent patterns of organisation informally by analogy. In 
particular, a ‘palm-tree’ structure corresponds to a landscape with a well-defined global 
minimum, which can be reached by traversing relatively low downhill barriers between 
successive minima where there are relatively large systematic changes in potential 
energy [70]. Palm tree landscapes represent a universal form for ‘structure-seeking’ or 
‘self-organising’ systems [71]. Protein folding, ‘magic numbers’ in mass spectra, self-
assembly, and crystallisation can generally be attributed to a ‘palm tree’, funnelled 
landscape, where a few low energy structures can be located from an exponentially 
large number of alternatives. We expect nucleation and growth in a crystal to be char-
acterised by such a landscape.

Disconnectivity graphs show the energy of each individual minimum, and also 
include information covering the connections between minima via the highest trans-
ition state on the lowest energy pathway between two minima. The detail of the full 
pathway, and hence the mechanism for a transition, is not shown directly, but is con-
tained in the underlying database.

2. Results

In the following sections, we will describe the energy landscape obtained from discrete 
path sampling for the 864-atom Lennard-Jones supercell defined above. Having found 
an initial path between the liquid and crystalline states we then explored the land-
scape in the crystal/nucleation region around it. In section 2.1 we will use order para-
meters to examine the resulting database of structures, and we describe in detail the 
configurations found in the low potential energy region in section 2.2. We will discuss 
further refinement of the database after the formation of an initial path in section 2.3, 
and compare our results to previous studies of crystallisation in Lennard-Jones solids 
in section 2.4. In section 2.5 we analyse a particular nucleation trajectory in more 
detail, examining the path that makes the largest kinetic contribution in our database 
of structures.

Figure 1 shows the database formed once an initial path has been found between 
two well-separated states, one obtained by minimisation from the well-equilibrated 
liquid phase, the other the FCC crystal. This initial search was followed by some lim-
ited refinement to remove high barriers between the lowest-energy minima, using the 
FREEPAIRS method implemented in PATHSAMPLE [65]. In this procedure, pairs of 
minima are selected for connection attempts based on the ratio of the free energy bar-
rier to the free energy dierence between the minima [34]. Approximate free energies 
are calculated using the harmonic normal mode frequencies. In the initial path forma-
tion, we did not distinguish periodic-cell isomers, but it was necessary to do so at this 
point, as a number of permutational isomers appeared in the initial database. There are 
34 219 minima and 46 036 transition states within the connected region of configuration 
space that we have sampled, and all these stationary points are included in figure 1. 

http://dx.doi.org/10.1088/1742-5468/2016/07/074001
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In total 86 071 minima and 76 070 transition states are contained within the database, 
but the remaining stationary points are disconnected. The two endpoint minima are 
labelled on the disconnectivity graph as ‘liquid’ and ‘FCC’. The low-energy structures 
are clearly distinguished, and apart from a number of outlying minima, which we will 
discuss further in section 2.3, the landscape appears to be funnelled towards the low 
energy structures, as expected for ecient crystallisation. There is also only one main 
funnel, suggesting that there is little competition between structures until the low-
energy region is reached.

2.1. Order parameters

In constructing the initial discrete path between endpoints and expanding the 
database of minima and transition states, we have tried not to bias the simula-
tion in any way. There is no order parameter or preconceived reaction coordinate. 
Our initial guess for every connection attempt between minima uses the shortest 
Euclidean distance, i.e. the shortest distance that each atom has to move to get 
from one structure to another. The connection attempts start with linear interpola-
tion and refinement of this interpolation to produce a connected series of minima 
and transition states generally moves the configurations a long distance from the 
initial straight line path. No additional structural information was used in the 
search for pathways. However, having formed an initial pathway and a database of 
structures, we can check the sampling and hence, the validity of the methods used, 
by analysing the structures.

The local environment around each individual atom can be classified as liquid or 
crystalline by first examining the location of the particle’s neighbours. A bond orien-
tational order parameter qlm is defined for each particle [72], using spherical harmonics 
and the Nb neighbours within a radial distance rc:

( )∑ θ φ=
=

q
N

Y
1

, .lm
b j

N

lm ij ij
1

b

 (1)

qlm describes the local environment around each individual particle. Crystallinity can 
be identified by a long-range repetition of this local order and hence, the next step is 
to determine the similarity of the environments around two neighbouring particles. 
This similarity can be quantified by taking the normalised scalar product of a chosen 
vector, q6m, with a cuto, dc, to determine if the particles have the same structural 
signature. A particle is then identified as crystalline if the number of structural connec-
tions is larger than a cuto value, nc. We define the values of these cutos as follows: 
rc  =  1.3909, dc  =  0.6 and nc  =  7. This method can be used to identify crystalline clus-
ters with varying shapes and sizes, and to determine the size of the largest solid-like 
cluster (or crystallite), Nclust, in each configuration [73]. In figure 1, each minimum is 
colour-coded according to the value of Nclust. A clear distinction can be seen between 
the liquid regions ( <N 50clust , red ⇒ orange) at high potential energy and the crystalline 
regions ( >N 800clust , blue) at low potential energy. Nclust, as defined above, uses stan-
dard cutos, which are usually applied to dynamical configurations that incorporate 
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and hence many structures appear to be perfectly crystalline.

The size of the largest crystalline cluster has been used as an order parameter to 
drive simulations of nucleation, for example in transition interface path sampling [50] 
and forward-flux sampling [48]. Several studies have suggested that a combination of 
the nucleus size and the degree of crystallinity of the nucleus may be a better order 
parameter [49, 74], but measures of crystallinity can perform dierently under dierent 
conditions of temperature and pressure [75]. Local crystallinity has also been combined 
with the potential energy of the system as a second reaction coordinate [76]. In view of 
this debate and our large sample of potential energy minima, we show the relationship 
between the potential energy of a particular configuration and the size of the largest 
crystalline cluster contained within the configuration in figure 2. There is a clear corre-
lation between these two parameters, and at least for the Lennard-Jones system, Nclust 

Figure 1. Disconnectivity graph showing the potential energy landscape for a bulk 
Lennard-Jones system of 864 atoms with periodic boundary conditions. Discrete 
path sampling was used to construct an initial path between a liquid-like state 
and an FCC crystal. The two endpoints are labelled and the graph shows all the 
connected minima and transition states found in the formation of a complete path. 
The minima displayed in the graph are coloured according to the size of the largest 
crystalline cluster, Nclust. Fully crystalline structures with =N 864clust  are shown in 
blue and structures with no atoms in crystalline environments are shown in red.
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does indeed appear to be a reasonable order parameter, driving the system towards 
lower potential energy. The influence of the finite box size, 864 atoms, is also evident 
in this figure. There is a rapid drop in potential energy for crystal structures that fit 
precisely into the periodic box.

2.2. Low-energy structures

Bond orientational order parameters averaged over a particle and its nearest neigh-
bours can identify locally crystalline structures as FCC, HCP, BCC or icosahedral. The 
crystal packing around each individual particle can be characterised according to the 
stacking of neighbouring atoms around the central particle. The qlm vectors for each 
particle are replaced by an average over this atom and its nearest neighbours. The 
averaging narrows the distribution of order parameters, and a distinct combination 
of third order invariants w4 and w6 of the averaged complex vectors q̄lm can be found 
for each type of stacking [77], see table 1. FCC and HCP lattices are well defined by 
this scheme, but the w4 distribution for a BCC structure is broad [50]. An I4̄3d phase 
recently discovered for the LJ system [44] may form part of the BCC distribution and 
roughly falls into the uncharacterised region of the w4/w6 parameter space. Such struc-
tures have previously been referred to as ‘else’ [50] and will be labelled here as BCC2.

Figure 3 focuses on the bottom of the potential energy landscape and four distinct 
low-energy crystals with very similar potential energies can be identified. In this figure, 
the graph is coloured according to the degree of HCP order, i.e. the number of particles 
within the configuration surrounded by an HCP environment. Minima with fully HCP-
ordered configurations are blue, and minima with no HCP order, which in this case 
are in fact FCC-ordered, are shown in red. The four perfect crystals (illustrated at the 
bottom of figure 3) are pure FCC, pure HCP, and two combinations of FCC and HCP 
stacking: (FCC  +  2HCP)/3 and (2FCC  +  HCP)/3. In fact, these are the only possible 
stacking combinations that fit precisely into the periodic box. Finding all four perfect 

Figure 2. Potential energy as a function of the size of the largest crystalline cluster 
(Nclust) for local minima of the LJ864 system sampled between liquid and crystalline 
states.
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crystals, despite starting with only the FCC crystal as an endpoint in the simulation, 
provides some confidence that the sampling has been eective.

Another well-defined funnel is visible on the left of figure 3, at slightly higher poten-
tial energy. Structures within this funnel also contain HCP and FCC layers, but have 
a stacking combination that does not percolate correctly across the periodic boundary 
and hence has slightly imperfect stacking. The structure found at the bottom of this 
funnel is also shown in figure 3. A layered cluster of atoms (green) in dierent environ-
ments, identified by the order parameter as BCC or BCC2, is required to compensate 
for the stacking error.

Each perfect crystal is found at the bottom of a funnel containing many other very 
similar minima with slightly imperfect structures. These minima dier only in a few 
shorter and longer interparticle distances. These are not visible defects, but imperfec-
tions can be identified if very strict order parameters are used.

Relatively low-energy pathways exist between the pure FCC and pure HCP crys-
tals. In fact, due to the finite box size, these two structures can interconvert by the 
sliding of four adjacent planes of atoms, two in one direction and two in the opposite 
direction. This sliding mechanism is exactly the process chosen in [78] as a Monte Carlo 
move to interconvert the two structures. As FCC-HCP interconversions are possible at 
relatively low potential energy, we would expect to find all rHCP structures within the 
same funnel in the corresponding disconnectivity graph.

2.3. Refining the database

Once an initial pathway between the two endpoints has been discovered, we can focus 
on refining the resulting database of stationary points. Our goal is to obtain a more 
complete sample of the configuration space between the liquid and crystalline regions. 
Figure 1 reveals a significant degree of kinetic frustration in the database. Such frustra-
tion is not unusual after the formation of the initial path. The frustration may well be 
artificial and can occur when local minima are found during attempts to make discrete 
paths. These minima are added to the database, but lie behind high barriers where 
low-barrier paths actually exist but have not yet been identified [34, 36]. Selected 
connection attempts can be made to remove artificial frustration; minima are selected 
according to the barrier height divided by the energy dierence to the product minima 
(often the global minimum), analogous to a measure of frustration. This procedure cor-
responds to the UNTRAP database refinement keyword in the PATHSAMPLE program, 
as described elsewhere [36, 79].

Table 1. Third order invariants w4 and w6 are constructed from averaged local 
order parameters [77].

w4 w6

fcc −0.159 32 −0.013 16
hcp 0.134 10 −0.012 44
bcc 0.159 32 0.013 16
icos — −0.169 75

Note: In the ideal case a combination of the two values can be used to distinguish 
between all the relevant structures.
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The outlying minima are isolated and not contained within separate funnel struc-
tures, which is a good indication of artificial frustration. The high-energy barriers gen-
erally connect to the main funnel through the liquid state and, even if they correspond 
to distinct crystal structures, we would expect interconversions to be possible at poten-
tial energies well below the liquid states. In fact, no distinct structures were identified, 
and all the outlying minima contain HCP and FCC stacking to varying degrees. Hence 
lower energy barriers to the main funnel must exist.

Running the UNTRAP procedure in PATHSAMPLE [65] connected many of these 
low-lying minima to the main funnel, and lower energy pathways were easily identified 
in many cases. However, some problems occurred with the calculation of distances 
between structures defined under periodic boundary conditions. Firstly, we would like 
to make a connection attempt, i.e. search for a discrete path, between the outlying 

Figure 3. Disconnectivity graph for the low potential energy, crystalline, region of 
LJ864. The four distinct perfect crystals are shown, as well as an rHCP structure, 
which does not percolate across the periodic boundary. The minima are coloured 
according to the number of atoms in HCP environments, with ideal HCP crystals 
and FCC crystals coloured blue and red, respectively. The structures show atoms 
in FCC, HCP, BCC and BCC2 environments in red, blue, green and dark green, 
respectively.
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minimum and the minimum in the main funnel separated by the shortest Euclidean 
distance from this structure. Unfortunately the distance calculation is computationally 
expensive when permutations are accounted for, and with around 25 000 minima in the 
main funnel, it becomes time consuming to check them all to find the shortest distance. 
Secondly, we find a number of seemingly perfect FCC structures that are separated 
from the pure FCC crystal by very large distances, comparable to the distance between 
a liquid and crystal structure. Thirdly, crystalline minima with small localised defects 
are very close in configuration space to the corresponding ideal structure. However, 
permutational alignment can result in many atoms having to move a small amount 
between the two structures, rather than just the necessary moves in the defective area.

The first problem can be addressed by characterising the structure of minima in 
the main funnel, using order parameters such as those described in section 2.1. The 
distance calculation can then be limited to minima with similar structures to find the 
most appropriate partner. It is important to note that structural information is only 
used to select this partner, and there was no structural bias in the search for a dis-
crete path between minima. A new keyword for this method, METRICUPAIR, has been 
implemented in PATHSAMPLE [65].

Some seemingly ideal FCC structures do not have the same energy as the perfect 
FCC structure in the main funnel and hence, imperfections must exist. Tightening the 
three cuto criteria in the calculation of Nclust reveals small regions of imperfect crys-
talline environments. Examining the structures shows that these imperfections arise 
because the FCC lattice is not commensurate with the periodic box. The FCC stacking 
cannot percolate correctly, and some slightly smaller and other slightly larger lattice 
spacings are required, leading to imperfections. Once recognised, it is easy to charac-
terise these structures by the angle of the lattice relative to the periodic box, and this 
angle can then be used as an additional order parameter for choosing a partner mini-
mum in the main funnel. Figure 4 shows an example of such a ‘shifted’ FCC structure, 
where a non-zero angle between the stacking planes and the periodic box outline is 
clearly visible. We find structures at a whole range of angles to the periodic box, but 
the most common examples correspond to angles of �0  and values below �7 , at small 
angles to the periodic box. It seems likely that such structures will appear whenever 
bulk systems are represented using periodic boundary conditions. However, they do not 
appear to have been discussed before, to the best of our knowledge.

In the third case, if there is a small defective area, the change in the centre of 
coordinates can cause a misalignment of the two structures. All three problems also 
highlight an issue with the Euclidean distance method, particularly when used with 
an arbitrary centre of coordinates, which arises with periodic boundary conditions. 
The shortest distance between two structures may not bear much relation to the most 
kinetically relevant pathway. If we aim to sample the landscape widely, rather than 
simply making a direct connection between two structures, this guess for the initial 
interpolation avoids bias and is a reasonable choice. However, when we are removing 
artificial frustration and looking for connections between low-energy crystal structures 
it is no longer necessary to sample in this way and we need a better method for per-
mutational alignment.

It would be possible to extend the method described in section 1.6, which is cur rently 
used to test for exact matches and isomers, to calculate distances for every possible 
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alignment of two pairs of atoms, one from each structure. Aligning atoms rather than 
the centre of coordinates is particularly appropriate for crystalline structures, as any 
exactly matching crystalline regions are unlikely to change on the pathway from one 
structure to another. However, the method was previously used to find an exact match. 
If instead, we want to find the closest match to another structure, we can no longer 
abort the test as soon as one atom does not match, and the process becomes computa-
tionally prohibitive.

Instead, we have adopted a compromise approach, focusing on finding a short dis-
tance between structures rather than the shortest possible distance. The atom match-
ing method proceeds as described in section 1.6 for exact matches, but a test does 
not abort when one atom does not match. Instead, a count of the number of atomic 
matches is maintained as the process cycles over dierent pairs of atoms and dierent 
box orientations. If any alignment has fewer matches than the current maximum the 
test is immediately aborted. Also, if several dierent pairs of atoms have been aligned 
in one orientation, but no improvement is found in the number of matches, the process 
jumps to the next orientation. In this way, we can find permutational alignments where 
crystalline regions are matched without costly distance calculations. A new keyword, 
ATOMMATCHDIST, has been implemented in the PATHSAMPLE and OPTIM programs for 
this procedure [62, 65]. Once the initial alignment has been found, it is not necessary to 
realign structures during the connection attempt and the search proceeds much more 
eciently, with no further need to check for the presence of permutational isomers.

Figure 5 shows the resulting potential energy landscape after much of the artificial 
frustration has been removed. There are now 142 069 connected potential energy min-
ima and approximately 300 000 minima in the database. Structures that contain at 
least 67% FCC stacking are labelled according to a colour scale, which shows the angle 
of the stacking to the periodic box. A lattice angle of zero (red) indicates a lattice that 
is commensurate with the box. Structures with angles between zero to �45  are present 
in the database, but only the smaller, more commonly occurring angles are selected in 
the visualisation.

Figure 4. An FCC structure with layers stacked at an angle to the periodic box 
(outlined in grey).
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2.4. Growth of crystalline clusters

In figure 6, we examine the average composition of the largest crystalline cluster as 
a function of the cluster size for comparison with previous results [50]. Cluster sizes 
between 1 and 200 are shown, corresponding to the region where a critical nucleus is 
forming and where most of the structures in our database can be found. The top panel 
shows the structural composition of the entire largest cluster. Our initial path was 
constructed between a minimum quenched from the equilibrium liquid and a perfect 
FCC crystal. However, the average composition of the cluster, in terms of the relative 
proportion of FCC and HCP, is in good agreement with [50]. As the cluster size grows 
to 100 atoms, FCC stacking becomes increasingly favourable, and a corresponding 
decrease is seen in the degree of HCP packing. Extrapolation of the results would sug-
gest that this discrepancy grows from an original 1 : 1 distribution. The proportion of 
BCC and BCC2 atoms remains fairly constant at 0.2 for all cluster sizes, with an equal 
contribution from atoms in the two environments.

The proportion of FCC atoms is higher than the value reported for the overall 
cluster in previous work [50], and actually more closely resembles the results obtained 
previously for the cluster core. The bottom figure shows our results for the core, i.e. 
nonsurface particles. The cluster cores are even more strongly FCC dominated, with 
80% of particles in an FCC environment. There are several possible explanations for 
this dierence, including a systematic bias, and further simulations may be necessary 
to ensure that we have adequately sampled routes to other crystal structures. Another 
possibility is that atoms strongly aected by thermal noise, such as those on the surface 
of the cluster, are identified as BCC in real-space trajectories, but when the instanta-
neous configuration is quenched to a local minimum the particles relax to more stable 
FCC environments. As atoms are surrounded by further crystalline environments, their 
positions become more well-defined, and their environments are now recognised as 
FCC. In simulations of soft [80] and hard [81] colloids, crystal nuclei have been found 
to exist within a cloud of pre-ordered surface particles that are highly correlated with 
their nearest neighbours but not within a crystal structure. Boundaries are fuzzy and 
it is unsurprising that the surface of a crystalline cluster should be ill-defined and very 
dependent on the chosen parameters.

2.5. Pathways

For every minimum in the database, we calculate a mean waiting time for any trans-
ition to occur using the harmonic normal mode approximation and transition state the-
ory [17]. There are a number of possible transitions out of an individual minimum and 
we can associate a branching probability with each one. Using this information we can 
evaluate phenomenological rate constants for the overall transition and also determine 
the contribution made to these rate constants by a particular discrete path [15–17].  
The discrete path that makes the largest contribution to the rate constant when inter-
vening minima are treated in the steady state approximation can be extracted from a 
DPS database using a network formulation [33] and Dijkstra’s shortest-path algorithm 
[41]. We refer to such discrete paths as the ‘fastest’ paths, noting that the analysis also 
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Figure 5. Disconnectivity graph showing the potential energy landscape of the 
LJ864 system. Geometry optimisation was employed within the discrete path 
sampling framework to obtain an initial discrete path between the liquid and a 
FCC crystal. The resulting database of minima and transition states was then 
systematically refined to remove most of the artificial frustration. Minima with at 
least 67% atoms in FCC environments are coloured according to the angle of the 
FCC lattice relative to the periodic box. The other minima are shown in black.
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includes a factor corresponding to the conditional occupation probability of the starting 
minimum [15–17].

The ‘fastest’ paths are useful as a focus for further landscape exploration. They 
also provide individual trajectories, with known kinetic importance, for analysis. Here 
we will examine the evolution of the ‘fastest’ path from the initial liquid state to a 
perfect crystal, extracted from our current database. Figure 7 shows the size of the 
largest crystalline cluster, i.e. the order parameter Nclust, plotted against individual 
steps (minima) on the discrete path. We observe the formation of a critical nucleus 
with approximately 100 atoms before growth rapidly propagates across the periodic 
boundary. Figure 8 shows the last finite crystalline cluster. The FCC stacking at the 
core of the cluster is clearly identified, and there is some HCP stacking as well as a 

Figure 6. The average proportion of particles located in FCC, HCP and, BCC 
and BCC2 environments plotted as a function of the size of the largest crystalline 
cluster, for both the whole cluster and the cluster core. The figures show cluster 
sizes from 1 to 200, the region where a critical nucleus is forming.
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number of BCC and BCC2 atoms at the cluster surface. To obtain the ‘fastest’ path, 
we have directed the system to start from the liquid and form a perfect crystal, rather 
than forming any crystal structure. We see an interesting eect as a slightly defective 
crystal forms first and then the defects anneal out to form a perfect (2FCC  +  HCP)/3 
crystal.

Figure 9 is a disconnectivity graph based on the ‘fastest’ path. The graph is coloured 
according to Nclust and the formation of the critical nucleus occurs within the orange 
region of the graph. A rapid drop in potential energy follows as the system crystallises 
and growth occurs across the periodic boundary. Such rapid drops have been seen in 
other systems [82].

2.6. Binary Lennard-Jones

There has been recent interest in studying the interplay between glass formation and 
crystallisation [83–85]. Binary Lennard-Jones (BLJ) mixtures, which are good glass-
formers and do not crystallise easily, are good candidates for such a study. Of the two 
most popular models, the Wahnström model [86] crystallises more easily [87] than the 
Kob–Andersen model [88]. For a model similar to the Wahnström model, nucleation 
has been studied and compared with the single-component fluid [50].

Here, using the techniques developed for the pure Lennard-Jones fluid described 
above, we sample the potential energy landscape between the supercooled liquid and 
crystal for a 60-atom BLJ mixture of the Kob–Andersen variety. We start from a 
sample of the potential energy landscape previously obtained [56] for the supercooled 
liquid at a temperature of 0.76 and use DPS to connect the supercooled regime to 
the lowest-energy crystal [89]. The resulting landscape is shown in a disconnectivity 
graph in figure 10, with minima coloured according to the size of the largest crystal-
line clust, Nclust. As expected, Nclust is not a natural order parameter for this system 
and one advantage of our method is that no order parameter is used to drive the 
simulation.

3. Conclusions

We have sampled the potential energy landscape of a bulk Lennard-Jones system, 
exploring the configuration space between the fluid and crystalline states. Starting from 
a single liquid and a single crystalline minimum, we have used geometry optimisation 
within the discrete path sampling framework to create an initial path between these two 
states, without the use of any reaction coordinate, and without requiring any structural 
analysis to guide the simulation. Hence we have demonstrated the successful applica-
tion of discrete path sampling to bulk systems. We also explore the configuration space 
between supercooled liquid and crystal for a good glass-forming binary Lennard-Jones 
system, and provide a visualisation of the potential energy landscape.

For the single-component Lennard-Jones potential, we also study the eect of the 
periodic box on the crystal structures formed. The initial exploration of the potential 
energy landscape identified four perfect crystal structures, as well as a large number 
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of defective crystals. There are certain combinations of HCP and FCC layers (rHCP 
configurations) that do not percolate the periodic box. We also identified FCC packings 
that appear perfect, but involve small changes in the internuclear distances because the 
stacking is not commensurate with the periodic box.

Figure 7. The size of the largest crystalline cluster, the order parameter Nclust, is 
illustrated for individual minima on the ‘fastest’ discrete path.
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Figure 8. The last crystalline cluster on the ‘fastest’ path, before a rapid growth 
process forms a fully crystalline structure. Atoms in crystalline environments are 
shown by large coloured spheres. Atoms surrounded by FCC, HCP, BCC and 
BCC2 stacking are shown in red, green, dark blue and light blue, respectively. 
Atoms in liquid-like environments are indicated by small blue dots.
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