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Abstract 

 Arrhythmogenic effects of the gap junction inhibitor heptanol (0.05 mM) were examined 

in Langendorff-perfused mouse hearts. Monophasic action potential recordings were obtained 

from the left ventricular epicardium during right ventricular pacing. Regular activity was 

observed both before and after application of heptanol in all of the 12 hearts studied during 8 

Hz pacing. By contrast, induced ventricular tachycardia (VT) was observed after heptanol 

treatment in 6 out of 12 hearts using a S1S2 protocol (Fisher’s exact test, P < 0.05). The 

arrhythmogenic effects of heptanol were associated with increased activation latencies from 

13.2 ± 0.6 to 19.4 ± 1.3 ms (ANOVA, P < 0.001) and reduced conduction velocities (CVs) 

from 0.23 ± 0.01 to 0.16 ± 0.01 ms (ANOVA, P < 0.001) in an absence of alterations in 

action potential durations at x = 90% (38.0 ± 1.0 vs. 38.3 ± 1.8 ms), 70% (16.8 ± 1.0 vs. 19.5 

± 0.9 ms), 50% (9.2 ± 0.8 vs. 10.1 ± 0.6 ms) or 30% (4.8 ± 0.5 vs. 6.3 ± 0.6 ms) 

repolarization (APDx) or in effective refractory period (ERPs) (39.6 ± 1.9 vs. 40.6 ± 3.0 ms) 

(all P > 0.05). Consequently, excitation wavelengths (λ, CV x ERP) were reduced from 9.1 ± 

0.6 to 6.5 ± 0.6 mm (P < 0.01) but critical intervals for re-excitation (APD90 – ERP) were 

unaltered (-1.1 ± 2.4 vs. -2.3 ± 1.8 ms; P > 0.05). Together, these findings demonstrate for 

the first time that inhibition of gap junctions alone using a low heptanol concentration (0.05 

mM) was able to reduce CV, which alone was sufficient to permit the induction of VT using 

premature stimulation by decreasing λ, which therefore appears central in the determination 

of arrhythmic tendency.  

 



Introduction 

 An orderly spread of action potentials through the heart is critical for normal electrical 

function and its disruption can lead to cardiac arrhythmias (1). Experiments in pre-clinical 

models has advanced our understanding of the electrophysiological mechanisms underlying 

arrhythmogenesis using genetic and pharmacological approaches (2-26). Experiments in 

mouse systems have shed light on the role of gap junctions in ventricular conduction and 

arrhythmogenesis, but have also led to some disagreements. Heterozygous Cx43
+/-

 mice 

showed 45 to 50% decrease in Cx43 expression, but the degree of conduction velocity (CV) 

slowing was variable. CV was either unchanged (27-32) or decreased by 23 to 44% (33-35). 

Other experiments used a pharmacological approach, demonstrating ventricular 

arrhythmogenesis associated with decreased CV using 2 mM heptanol (7). This agent inhibits 

gap junctions specifically at concentrations up to 1 to 2 mM (36, 37) but at ≥ 2 mM also 

inhibits sodium channels (36, 38). It was unclear the extent to which the conduction defects 

and arrhythmogenesis observed could be attributed to loss of gap junction coupling alone.  

 Therefore, the aims of the present experiments are to examine the possible role of 

abnormal gap junction function in ventricular arrhythmogenesis, by applying heptanol at a 

low concentration that specifically targets gap junctions (0.05 mM). At this concentration, it 

was found that heptanol did not elicit spontaneous arrhythmias during regular pacing, but 

increased the incidence of ventricular tachycardia induced by a S1S2 protocol. This was 

associated with increased activation latencies in an absence of alterations in either action 

potential durations or effective refractory periods. The present findings suggest that loss of 

gap junction function alone was sufficient to produce ventricular arrhythmogenesis.  

 

Materials and Methods 



Solutions 

The experiments described in this study used Krebs-Henseleit solution (composition 

in mM: NaCl 119, NaHCO3 25, KCl 4, KH2PO4 1.2, MgCl2 1, CaCl2 1.8, glucose 10 and 

sodium pyruvate 2, pH 7.4) that had been bicarbonate-buffered and bubbled with 95% O2–

5% CO2 (39). Heptanol (Sigma, Dorset, UK; density: 0.82 g ml
–1

) is soluble in aqueous 

solutions up to 9 mM (The Merck Index, New Jersey, USA), and was diluted using Krebs-

Henseleit solution to produce a final concentration of 0.05 mM.  

 

Preparation of Langendorff-perfused mouse hearts 

Wild-type mice of 129 genetic background between 5 and 7 months of age were used 

in this study. They were maintained at room temperature (21 ± 1°C) amd subject to a 12:12 h 

light / dark cycle with free access to sterile rodent chow and water in an animal facility. The 

experiments described here were compliant with the UK Animals (Scientific Procedures) Act 

1986. The procedures for the preparation of Langendorff-perfused mouse hearts are as 

follows. Mice were killed by cervical dislocation in accordance with Sections 1(c) and 2 of 

Schedule 1 of the UK Animals (Scientific Procedures) Act 1986. The hearts were rapidly 

excised and immediately submerged in ice-cold Krebs-Henseleit solution. Cannulation of the 

aorta was achieved using a tailor-made 21-gauge cannula that had been prefilled with ice-

cold buffer. Using a micro-aneurysm clip (Harvard Apparatus, UK), the heart was securely 

attached to the perfusion system. Retrograde perfusion was initiated at a rate of 2–2.5 ml min
-

1
 using a peristaltic pump (Watson–Marlow Bredel pumps model 505S, Falmouth, Cornwall, 

UK) with the perfusate passing through 200 and 5 μm filters successively and heated to 37°C 

using a water jacket and circulator before reaching the aorta. The hearts that regained their 

pink colour and spontaneous rhythmic activity were studied further (approximately 90%). 



The remaining 10% were discarded. Perfusion took place for a further 20 minutes to 

minimise any residual effects of catecholamine released endogenously, before 

electrophysiology of the hearts was studied.  

 

Stimulation protocols 

Electrical stimulation was achieved using paired platinum electrodes (1 mm interpole 

distance) placed at the right ventricular epicardium. This took place at 8 Hz, using square 

wave pulses 2 ms in duration, with a stimulation voltage set to three times the diastolic 

threshold (Grass S48 Stimulator, Grass-Telefactor, Slough, UK) immediately after the start of 

perfusion. The S1S2 protocol was used to assess arrhythmogenicity and identify re-entrant 

substrates. This consisted of a drive train of eight regularly paced S1 stimuli separated by a 

125 ms basic cycle length (BCL), followed by premature S2 extra-stimuli every ninth 

stimulus. The S1S2 interval was first set to 125 ms and then successively reduced by 1 ms 

with each nine stimulus cycle until arrhythmic activity was initiated or refractoriness was 

reached, whereupon the S2 stimulus elicited no ventricular response.  

 

Recording procedures 

Monophasic action potentials (MAPs) recordings from the left ventricular epicardium 

were obtained using a MAP electrode (Linton Instruments, Harvard Apparatus). MAPs from 

the left ventricular endocardium were obtained using a custom-made MAP electrode that was 

made from two strands of 0.25 mm Teflon-coated silver wire (99.99% purity; Advent 

Research Materials, UK). The tips of the electrode were galvanically-chlorided to eliminate 

DC offset. The stimulating and recording electrodes were maintained at constant positions, 

with an inter-electrode distance of 3 mm. This allowed conduction velocities (CVs) to be 



determined from the activation latencies. All recordings were performed using a baseline 

cycle length (BCL) of 125 ms (8 Hz) to exclude rate-dependent differences in action potential 

durations (APDs). MAPs were pre-amplified using a NL100AK head stage, amplified with a 

NL 104A amplifier and band pass filtered between 0.5 Hz and 1 kHz using a NL125/6 filter 

(Neurolog, Hertfordshire, UK) and then digitized (1401plus MKII, Cambridge Electronic 

Design, Cambridge, UK) at 5 kHz. They were then analysed using Spike2 software 

(Cambridge Electronic Design, UK). MAP waveforms that did not match the previous 

established stringent criteria for MAP signals were rejected (40). They must have stable 

baselines, fast upstrokes, with no inflections or negative spikes, and a rapid first phase of 

repolarization. 0% repolarization was measured at the peak of the MAP and 100% 

repolarization was measured at the point of return of the potential to baseline (40-42).  

The following parameters were obtained from the experimental records: (1) 

Activation latency, defined as the time difference between the stimulus and the peak of the 

MAP; (2) CV, as the ratio of the inter-electrode distance to the activation latency. As the 

latter distance was kept constant, CVs were inversely proportional to the corresponding 

activation latencies; (3) APDx, the time difference between the peak of the MAP and x = 30, 

50, 70 and 90% repolarization; (4) ERP, defined as the longest S1S2 interval at which the S2 

extrastimulus failed to initiate a ventricular signal during PES; (5) Excitation wavelength, λ, 

given by CV x ERP; (6) Critical intervals for re-excitation given by APD90 – ERP. 

 

Statistical analysis 

All values were expressed as mean ± standard error of the mean (SEM). Categorical 

data were compared with Fisher’s exact test (one-tailed). Different experimental groups were 



compared by one-way analysis of variance (ANOVA). P < 0.05 was considered statistically 

significant. P < 0.05, 0.01 and 0.001 were denoted by *, ** and ***, respectively. 

 

Results 

Ventricular arrhythmogenicity and its relationship to action potential activation and 

recovery properties were examined before and after introduction of 0.05 mM heptanol in 

Langendorff-perfused mouse hearts. The right ventricular epicardium was electrically 

stimulated using either regular 8 Hz or S1S2 pacing (2, 3, 5, 7, 13). Monophasic action 

potential (MAP) recordings were obtained from the left ventricular epicardium. The 

stimulating and recording electrodes were maintained at a constant distance of 3 mm, which 

permitted conduction velocities (CVs) to be estimated from the respective activation 

latencies. Ventricular tachycardia (VT) was defined as a series of five or more action 

potentials with coupling intervals closer than the basic cycle length (BCL).  

 

Heptanol at 0.05 mM exert ventricular pro-arrhythmic effects during S1S2 but not regular 

pacing 

 The initial experiments conducted during regular pacing demonstrated consistent 

ventricular activity in the absence of spontaneous arrhythmias in all of the 12 hearts studied 

whether before or after introduction of 0.05 mM heptanol or after removal of heptanol from 

the perfusate (Fig. 1a and 1b). The second set of experiments then applied a S1S2 pacing 

protocol, which imposed extrasystolic S2 stimuli following trains of regular S1 pacing 

stimuli. The S1S2 interval was initially at the BCL and subsequently reduced by 1 ms with 

each cycle until the S2 stimuli produced either arrhythmic activity or refractoriness. The latter 

indicating that the ERP was reached. None of the hearts studied demonstrated evidence of 



inducible arrhythmias before application of the test agent (Fig. 2a). By contrast, it was 

possible to induce ventricular tachycardia (VT) after application of heptanol (Fig. 2b). The 

incidences of inducible VT before and after introduction of heptanol, and after its withdrawal 

from the perfusing solution are summarized in Fig. 2c, showing that heptanol exerted 

significant pro-arrhythmic effects, as the extrastimuli were able to induce VT in 6 out of 12 

hearts (asterisk, Fisher’s exact test, P < 0.05). 

 

Pro-arrhythmic effects of heptanol were associated with decreased CVs in an absence of 

alterations in APDs or ERPs 

 Previous studies in mouse models have associated increased arrhythmogenicity with 

reduced CVs, prolonged or shortened APDs and reduce ERPs (2, 3, 5, 7, 13). These values 

were therefore obtained from the experimental recordings described above. Thus, heptanol 

increased activation latencies from 13.2 ± 0.6 to 19.4 ± 1.3 ms (Fig. 3a; ANOVA, P < 0.001) 

and reduced CVs from 0.23 ± 0.01 to 0.16 ± 0.01 ms (Fig. 3b, P < 0.001), without altering 

APD90 (38.0 ± 1.0 vs. 38.3 ± 1.8 ms; Fig. 3c), APD70 (16.8 ± 1.0 vs. 19.5 ± 0.9 ms; Fig. 3d), 

APD50 (9.2 ± 0.8 vs. 10.1 ± 0.6 ms; Fig. 3e), APD30 (4.8 ± 0.5 vs. 6.3 ± 0.6 ms; Fig. 3f)  or 

ERPs (39.6 ± 1.9 vs. 40.6 ± 3.0 ms; Fig. 3g). 

 

Pro-arrhythmic effects of heptanol were associated with decreased excitation wavelengths 

despite unaltered critical intervals 

 Decreases in excitation wavelengths (λ, CV x ERP) and increases in critical intervals for 

re-excitation (APD90 –ERP) have been associated with increased arrhythmogenicity (7, 43). 

Accordingly, these parameters were calculated for our hearts. Heptanol reduced λ from 9.1 ± 



0.6 to 6.5 ± 0.6 mm (Fig. 4a, P < 0.01) without altering critical intervals (-1.1 ± 2.4 vs. -2.3 ± 

1.8 ms; Fig. 4b). 

 

Discussion 

Sudden cardiac death (SCD) is a significant problem and is responsible for around 

60,000 deaths in the U.K. (44), 200,000 deaths in the U.S. (45) and 4 to 5 million deaths 

globally (46) per year. It is likely to arise from the development of malignant ventricular 

arrhythmias, whose electrophysiological mechanisms remain incompletely understood. 

Mouse hearts have been used to study arrhythmogenesis as they are amenable to both genetic 

and pharmacological manipulation. 

 Propagation of the action potentials (APs) through the working myocardium depends on 

sodium channel activation followed by gap junction conduction. Gap junctions are hexameric 

proteins made of connexins mediate intercellular coupling by allowing passive electrotonic 

spread of ions and of larger molecules (47). Their resistances contribute to axial resistance 

and modulate conduction velocity (CV) (48, 49). Cx43 is the isoform found in ventricles, and 

the effects of Cx43 loss on ventricular conduction and arrhythmogenesis have been 

extensively studied in mouse models (27-35, 50, 51), but with significant disagreement 

between the studies (30). Thus, cardiac-restricted Cx43 inactivation followed by crossing 

with Cre recombinase produced mosaic mice, in which Cx43 was decreased by up to 95% 

when compared to wild-type (50). Other experiments found that heterozygous Cx43
+/-

 mice 

showed 45 to 50% decrease in Cx43 expression. In these mice, CV was either unchanged 

(27-32) or decreased by 23 to 44% (33-35). These studies suggest different parameters, such 

as interstitial volume (52), width of the perinexus, intracellular calcium concentrations, 

perfusate composition and osmolarity (30), have additional effects on cardiac conduction. 



Pharmacological methods have also been used to study the role of gap junctions in 

arrhythmogenesis. Thus, previous experiments reported that 2 mM heptanol exerted 

significant pro-arrhythmic effects by decreasing conduction velocities (CVs) without 

influencing action potential durations (APDs), but increased effective refractory periods 

(ERPs) (7). These changes led to reduced excitation wavelength (λ, CV x ERP) consistent 

with the increased likelihood of reentry. Heptanol is an agent that reversibly inhibits gap 

junctions at concentrations up to 1 mM and also sodium channels ≥ 2 mM (36, 38). It was 

therefore not possible to determine the relative contributions of gap junction uncoupling vs. 

reduced sodium channel function in the reduction of CV and the ventricular 

arrhythmogenesis observed. Furthermore, 2 mM heptanol produced not only CV slowing but 

also increased ERPs. The latter observation is consistent with its effects on sodium channel 

kinetics of producing a depolarizing shift of the activation curve and hyperpolarizing shift of 

the inactivation curve, which would reduce the sodium window current (38). Whilst increased 

ERP alone is expected to be anti-arrhythmic by increasing λ, regional increases in ERP could 

theoretically predispose to reentry by producing both refractory obstacles around which 

action potentials can circulate and areas of unidirectional conduction block (53). 

Therefore, the present experiments were conducted to determine whether heptanol at a 

concentration that specifically gap junctions (0.05 mM) (36, 38) could produce pro-

arrhythmic effects. Indeed, its application resulted in an increased incidence of inducible but 

not spontaneous arrhythmias, which was associated with increased activation latencies and 

decreased CVs, in an absence of alterations in APDs or ERPs. Together, these changes led to 

decreased excitation wavelength (λ) despite leaving critical intervals unaltered. These results 

complement previous findings that inhibition of both gap junctions and sodium channels at 2 

mM heptanol resulted in a greater degree of CV slowing compared to the low concentration 

used here, and increased ERPs. Under these conditions, both spontaneous and provoked 



ventricular tachycardia (VT) were observed. In the present study, gap junction inhibition 

alone using 0.05 mM heptanol did not elicit spontaneous VT during regular pacing. 

As the aim of this study was to examine the effects of reducing gap junction coupling, 

it was therefore appropriate to use the MAP method. The latter has been extensively used to 

study cardiac electrophysiology in animal systems (9, 54, 55). For future experiments, 

measurement of magnetic signals has been useful for characterizing cardiac structural 

abnormalities (56-58) and recently, functional mapping could be achieved using 

magnetocardiography in mouse models, and its use in assess abnormal cardiac 

electrophysiology in mice therefore warrant future investigation (59).  

In conclusion, this paper demonstrated that gap junction inhibition by heptanol alone 

was sufficient to reduce both CV without affecting APD or ERP, and the consequent decrease 

in λ was likely responsible for the arrhythmogenesis observed.  

 

Figure legends 

Figure 1. Stable monophasic action potentials (MAPs) obtained during regular 8 Hz pacing 

before (a) and after introduction of 0.05 mM heptanol (b). 

Figure 2. Refractory outcomes observed before introduction of the test agent (a) and induced 

ventricular tachycardia after introduction of 0.05 mM heptanol (b) during S1S2 pacing. 

Figure 3. Heptanol (0.05 mM) increased activation latencies (a) and reduced conduction 

velocities (CVs) (b) without affecting action potential durations at 90% (c), 70% (d), 50% (e) 

or 30% (f) repolarization (APDx), or effective refractory periods (ERPs) (g). 

Figure 4. Heptanol (0.05 mM) reduced excitation wavelengths (λ, CV x ERP) (a) without 

altering critical intervals for re-excitation (CI, APD90 – ERP) (b). 
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