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Abstract 88 

Remote sensing is revolutionizing the way we study forests, and recent technological 89 

advances mean we are now able – for the first time – to identify and measure the crown 90 

dimensions of individual trees from airborne imagery. Yet in order to make full use of these 91 

data for quantifying forest carbon stocks and dynamics, a new generation of allometric tools 92 

which have tree height and crown size at their centre are needed. Here, we compile a global 93 

database of 108753 trees for which stem diameter, height and crown diameter have all been 94 

measured, including 2395 trees harvested to measure aboveground biomass. Using this 95 

database, we develop general allometric models for estimating both the diameter and 96 

aboveground biomass of trees from attributes which can be remotely sensed – specifically 97 

height and crown diameter. We show that tree height and crown diameter jointly quantify the 98 

aboveground biomass of individual trees, and find that a single equation predicts stem 99 

diameter from these two variables across the world’s forests. These new allometric models 100 

provide an intuitive way of integrating remote sensing imagery into large-scale forest 101 

monitoring programs, and will be of key importance for parameterizing the next generation of 102 

dynamic vegetation models.  103 
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Introduction 104 

Forests are a key component of the terrestrial carbon cycle (Beer et al., 2010; Pan et al., 105 

2011), making forest conservation of critical importance for mitigating climate change 106 

(Agrawal et al., 2011). Yet effectively managing forests as carbon sinks is predicated on the 107 

assumption that carbon stocks can be quantified with accuracy across extensive and often 108 

remote areas. Traditionally, forest carbon stocks have been assessed by measuring the 109 

diameter (and sometimes height) of trees in permanent field plots, and then using allometric 110 

equations to estimate biomass (Malhi et al., 2006; Pan et al., 2011; Anderson-Teixeira et al., 111 

2015). Recently, however, we have begun to see a move towards remote sensing as the 112 

primary tool for monitoring forest carbon (Saatchi et al., 2011; Baccini et al., 2012; Avitabile 113 

et al., 2016). Airborne laser scanning (ALS) is particularly promising in this regard (Asner & 114 

Mascaro, 2014; Asner et al., 2014), allowing the 3D structure of entire forest landscapes to be 115 

reconstructed in detail using high-frequency laser scanners mounted on airplanes or 116 

unmanned aerial vehicles. Importantly, advances in both sensor technology and computation 117 

mean we are now able – for the first time – to reliably identify and measure the crown 118 

dimensions of individual trees using ALS (Yao et al., 2012; Duncanson et al., 2014; 119 

Shendryk et al., 2016), marking a fundamental shift in the way we census forests. To 120 

facilitate this transition, we aim to develop allometric equations for estimating a tree’s 121 

diameter and aboveground biomass based on attributes which can be remotely sensed – 122 

namely tree height and crown diameter – enabling airborne imagery to be fully integrated into 123 

existing carbon monitoring programs (Fig. 1). 124 

While ALS opens the door to rapidly and accurately measuring the height and crown 125 

dimensions of millions of trees (Duncanson et al., 2015), it also poses the challenge of how 126 
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best to use these data to estimate aboveground biomass. Current allometries rely on stem 127 

diameter as a key input for estimating biomass (e.g., Chave et al. 2014). But because 128 

diameters cannot be measured directly through ALS, new approaches that have tree height 129 

and crown dimensions at their centre are needed. We see two possible solutions for 130 

integrating tree-level ALS data into biomass monitoring programs: the first is to use tree 131 

height and crown dimensions to predict diameters, allowing biomass to be estimated using 132 

existing allometric equations (Dalponte & Coomes, 2016). The second is to develop 133 

equations that estimate biomass directly from tree height and crown size, thereby bypassing 134 

diameter altogether. 135 

Approach 1: estimating diameter 136 

Theory based on the mechanical and hydraulic constraints to plant growth predicts that tree 137 

height (H, in m) should scale with diameter (D, in cm) following a power-law relationship 138 

with an invariant scaling exponent of 2 3⁄  (𝐻 ∝ 𝐷
2

3⁄ ; West et al., 1999). This would suggest 139 

that measuring tree height should be sufficient for estimating diameter. However, growing 140 

evidence indicates that this is unlikely to be the case (Muller-Landau et al., 2006): not only 141 

do H–D allometries vary considerably among and within species, as well as in relation to 142 

climate and stand structure (Banin et al., 2012; Lines et al., 2012; Hulshof et al., 2015; Jucker 143 

et al., 2015), but power-law relationships also fail to adequately capture the asymptotic nature 144 

of height growth (Muller-Landau et al., 2006; Banin et al., 2012; Feldpausch et al., 2012; 145 

Iida et al., 2012; Chave et al., 2014). Trees typically invest heavily in height growth when 146 

young to escape shaded understories – rapidly approaching their maximum height – but then 147 

continue to grow in diameter throughout their lives (King, 2005). This makes estimating the 148 

diameter of large trees challenging, as trees of similar height can have very different 149 
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diameters – which is problematic given that large-diameter trees hold most of the biomass 150 

(Slik et al., 2013; Bastin et al., 2015). In this context, information on crown size may prove 151 

key to accurately estimating a tree’s diameter. While height growth tends to slow rapidly in 152 

large trees, lateral crown expansion does not, requiring a continued investment in stem 153 

growth on the tree’s part to ensure structural stability and hydraulic function (Sterck & 154 

Bongers, 2001; King & Clark, 2011; Iida et al., 2012). As a result, crown width and stem 155 

diameter tend to be strongly coupled, even in large trees (Hemery et al., 2005). 156 

Approach 2: estimating aboveground biomass 157 

Estimating the diameter of individual trees from remotely sensed data is an appealing 158 

prospect: not only would it provide a way to quantify biomass stocks, but would also allow 159 

other forest attributes of interest to be reconstructed with ease (e.g., stem diameter 160 

distributions). However, it also presents a challenge from the point of view of biomass 161 

estimation, as biomass allometries typically have diameter as a squared term in the equation 162 

(Zianis et al., 2005; Chave et al., 2014; Chojnacky et al., 2014), meaning that even small 163 

errors in diameter predictions can strongly influence the accuracy of biomass estimates. A 164 

better approach may therefore be to estimate a tree’s aboveground biomass directly from 165 

crown architectural properties which can be measured from airborne imagery, without the 166 

need to first predict diameter. Specifically, both tree height (Hunter et al., 2013; Chave et al., 167 

2014) and crown dimensions (Henry et al., 2010; Goodman et al., 2014; Ploton et al., 2016) 168 

are known to relate strongly to aboveground biomass, although it remains to be tested 169 

whether they can be used to accurately estimate biomass without needing to also account for 170 

stem diameter. 171 
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Here we compile a global dataset consisting of 108753 trees for which stem diameter, height 172 

and crown diameter have all been measured, including 2395 trees which have been harvested 173 

to measure aboveground biomass. The dataset is representative of the world’s major tree-174 

dominated biomes and spans a huge gradient in tree size (Fig. 2). We use these data to 175 

develop allometric equations that enable the precise and unbiased estimation of a tree’s 176 

diameter and aboveground biomass based on its height and horizontal crown dimensions, and 177 

use the following questions to guide our processes: (i) Can a tree’s diameter be estimated 178 

accurately based on its height alone, or do we also need to account for its crown dimensions? 179 

(ii) Can a single universal equation be used to model diameter, or do different scaling 180 

relationships among forest types, biogeographic regions and tree functional types need to be 181 

accommodated for? (iii) Can a tree’s aboveground biomass be estimated directly from its 182 

height and crown diameter, thereby eliminating the need to first predict its diameter?  183 
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Materials and methods 184 

ALLOMETRIC DATABASE 185 

We compiled a global database of trees for which stem diameter (D, in cm), height (H, in m) 186 

and crown diameter (CD, in m) were all measured. Trees were selected for inclusion in the 187 

database based on the following criteria: (i) only trees with D ≥ 1 cm and H ≥ 1.3 m were 188 

considered; (ii) trees from managed plantations and agroforestry systems were excluded; (iii) 189 

trees known or presumed to be severely damaged were removed (e.g., broken stems or major 190 

branches; see Fig. S1); (iv) only trees whose geographic location was recorded were retained; 191 

and (v) from a taxonomic perspective trees had to, at a minimum, be identifiable as either 192 

angiosperms or gymnosperms (note that tree ferns and palms were excluded from the 193 

analysis). Our search yielded a total of 108753 trees which met the above requirements. For 194 

2395 of these, total oven-dry aboveground biomass (AGB, in kg) was additionally measured 195 

by harvesting and weighing trees. The database spans a large range of tree sizes (D: 1.0–196 

293.0 cm; H: 1.3–72.5 m; CD: 0.1–41.0 m; AGB: 0.1–76063.5 kg), captures a wide spectrum 197 

of tree forms and functional types (1492 tree species from 127 families), and covers the major 198 

forest types and climatic conditions found in the world’s forests (see Fig. 2 for an overview 199 

of the database). A full list of data sources and associated measurement protocols is provided 200 

in Appendix S1 of Supporting Information. The database is publicly available through 201 

figshare (https://dx.doi.org/10.6084/m9.figshare.3413539.v1), with data from the Alberta 202 

Permanent Sample Plots (https://www.agric.gov.ab.ca/app21/forestrypage) and the 203 

International Cooperative Programme on Air Pollution Effects on Forests (http://icp-204 

forests.net/page/data-requests) archived separately and available upon request through the 205 

above links. 206 

https://dx.doi.org/10.6084/m9.figshare.3413539.v1
https://www.agric.gov.ab.ca/app21/forestrypage
http://icp-forests.net/page/data-requests
http://icp-forests.net/page/data-requests
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Forest biome classification 207 

Scaling relationships between D, H and CD are strongly influenced by climate (Lines et al., 208 

2012; Hulshof et al., 2015), as well as varying among species (Poorter et al., 2006) and 209 

geographic regions (Banin et al., 2012). To capture this degree of variation – which we 210 

expect to be of key importance to accurately estimating both D and AGB – each tree in the 211 

database was assigned to one of five biome types based on its geographic location: boreal 212 

forests, temperate coniferous forests, temperate mixed forests, woodlands and savannas 213 

(which combines temperate and tropical savannas, as well as Mediterranean woodlands) or 214 

tropical and subtropical forests (biome classification follows Olson et al., 2001). In the same 215 

way, trees were also assigned to one of six biogeographic regions: Australasia, Afrotropics, 216 

Nearctic, Indo-Malaya, Neotropics or Palearctic. Transitions among forest biomes reflect 217 

strong climatic gradients (Whittaker 1975; Stephenson 1998; Fig. 2b), whereas biogeographic 218 

realms define regions which share a common evolutionary history (Udvardy, 1975). Olson et 219 

al.'s (2001) map of the world’s terrestrial ecoregions, which defines the geographic 220 

distribution of the world’s major biome and biogeographic regions, is available for download 221 

from http://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world. 222 

APPROACH 1: ESTIMATING DIAMETER 223 

Model development  224 

To determine how to most accurately estimate a tree’s diameter based on its crown 225 

architectural properties, we compared a set of regression models in which D was expressed as 226 

a function of either H, CD or the compound variable H × CD (which tests whether both 227 

height and crown size are needed to predict D). We chose to model the combined effect of H 228 

and CD using a compound variable (as opposed to including the two predictors separately in 229 

http://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
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the model) to avoid issues with collinearity resulting from the non-independence of H and 230 

CD (Dormann et al., 2013). Furthermore, preliminary analyses revealed that H × CD was as 231 

good (if not better) a predictor of D than a model with H and CD as separate explanatory 232 

variables (Table S2).  233 

Typically, allometric equations are derived by fitting a linear regression directly to raw data 234 

(which in most cases have been log-transformed). Yet this approach will tend to 235 

underestimate the slope of a bivariate line when the independent variable is measured with 236 

error (also known as regression dilution bias; Fuller, 1987; Warton et al., 2006). In the case 237 

of forest inventory data this systematic bias is made worse by the inherently unbalanced size 238 

distribution of trees, as small stems – which vastly outnumber large ones – come to dominate 239 

the signal of the regression (Duncanson et al., 2015). As a solution to this problem, 240 

Duncanson et al. (2015) proposed fitting allometric models to binned data as opposed to raw 241 

values. Because this method reduces tree-level variation in allometric attributes to a mean 242 

value, it has the drawback of inevitably underestimating the true uncertainty of the model. 243 

However, a preliminary analysis of the data revealed it to be the only approach able to 244 

adequately capture underlying allometric scaling relationships (see Appendix S2 for a 245 

detailed discussion). As a compromise, we therefore chose to adopt Duncanson et al.'s (2015) 246 

binning method to estimate allometric relationships, but also develop a framework for 247 

robustly quantifying and propagating model uncertainty when working with binned data (see 248 

“Model uncertainty and error propagation” section below). 249 

We calculated the mean H, CD and H × CD for each of 50 stem diameter logarithmic bins of 250 

constant width (logarithmic binning was chosen to better capture the right-skewed 251 
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distribution of D). Linear log-log models were then fit to the binned data using least-squares 252 

regression (as implemented in the R statistical software; R Core Development Team, 2013): 253 

ln(𝐷) = 𝛼 + 𝛽ln(𝐻) + ε  (1) 

ln(𝐷) = 𝛼 + 𝛽ln(𝐶𝐷) + ε  (2) 

ln(𝐷) = 𝛼 + 𝛽ln(𝐻 × 𝐶𝐷) + ε  (3) 

where α and β are parameters to be estimated from the data and ε is an error term [which is 254 

assumed to be normally distributed, with a mean of zero and a standard deviation σ, 255 

𝑁(0, 𝜎2)].  256 

Models 1–3 can be thought of as global allometric equations, as they assume that scaling 257 

relationships between D, H and CD are invariant across forest types, biogeographic regions 258 

and tree functional groups (e.g., angiosperms and gymnosperms). To determine the extent to 259 

which regional or group-specific allometries improve the accuracy of D estimates compared 260 

to those of a global model, we used mixed-effects models to develop two further equations. 261 

First, the relationship between D and the independent variable (e.g., H × CD) was allowed to 262 

vary among forest types nested within biogeographic regions (i.e., random intercept and slope 263 

model, where forest type and biogeographic region were treated as nested random effects). In 264 

the second model, the relationship between D and the independent variable was further 265 

allowed to vary among angiosperm and gymnosperm trees (i.e., separate α and β estimates 266 

were calculated for each functional group/forest type/biogeographic region combination). 267 

Note that in order to fit these models, the data binning processes was repeated and separate 268 

mean values of H, CD and H × CD were calculated for each combination of functional group, 269 

forest type and biogeographic region. 270 
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Generating predictions 271 

Allometric models, such as those described above, can be used to estimate D for any tree 272 

whose H and CD are known. Using Model 3 as an example, predicted diameter values (Dpred) 273 

are obtained as follows: 𝐷𝑝𝑟𝑒𝑑 = exp[𝛼 + 𝛽ln(𝐻 × 𝐶𝐷) + 𝜀]. Assuming ε is normally 274 

distributed [i.e., 𝑁(0, 𝜎2)], the mean of exp(𝜀) can be approximated by exp(𝜎2 2⁄ ), where 275 

𝜎2 is the mean square error of the regression (Baskerville, 1972). An unbiased estimate of D 276 

can therefore be calculated using the following equation: 277 

𝐷𝑝𝑟𝑒𝑑 = exp[𝛼 + 𝛽ln(𝐻 × 𝐶𝐷)] ×  exp [𝜎2

2⁄ ]  (4) 

Model validation 278 

To evaluate and compare the predictive accuracy of the different D models, we: (i) divided 279 

the database into a training set (90% of the data) and a validation set (remaining 10% of the 280 

data, used exclusively to evaluate model performance). Trees assigned to the validation 281 

dataset were selected following a size-stratified random sampling approach which aimed to 282 

capture the full range of D in the database; (ii) D models were fit to the training dataset using 283 

the binning approach described above; (iii) fitted equations were used to predict D for all 284 

trees in the validation dataset [as outlined in equation (4)]; and (iv) the predictive error of 285 

each model was quantified by comparing predicted and observed D values (Dpred and Dobs, 286 

respectively) of trees in the validation dataset (see below for a description of the model-287 

performance metrics used). Steps (i–iv) were repeated 100 times to avoid the randomization 288 

procedure in step (i) having an undue effect on the model evaluation process. 289 

For each D model we calculated two measures of average error: the root mean square error 290 

(RMSE, in cm) and the relative systematic error (or bias, in %).  291 
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RMSE = √
1

𝑁
∑(𝐷𝑜𝑏𝑠 − 𝐷𝑝𝑟𝑒𝑑)

2
𝑁

𝑖=1

 

 

 

Bias =
1

𝑁
∑ (

𝐷𝑜𝑏𝑠 − 𝐷𝑝𝑟𝑒𝑑

𝐷𝑜𝑏𝑠
)

𝑁

𝑖=1

× 100 

 
 

Additionally, a third model performance statistic was used to compare the predictive 292 

accuracy of the D models across functional groups (angiosperms and gymnosperms), forest 293 

types and biogeographic regions. Following the approach of Chave et al. (2014), we 294 

calculated the tree-level coefficient of variation (CV) in D for trees of functional group i, 295 

growing in forest type j and in biogeographic region k as follows: 296 

CV𝑖𝑗𝑘 =
RMSE𝑖𝑗𝑘

1
𝑁

∑ 𝐷𝑜𝑏𝑠𝑖𝑗𝑘
𝑁
𝑖=1

 
 

 

where RMSEijk is the RMSE of trees belonging to functional group i, growing in forest type j 297 

and in biogeographic region k, whereas the denominator corresponds to the mean observed D 298 

for this same group of trees. Standardizing the RMSE by the mean D is a necessary step in 299 

order to compare model errors across functional groups, forest types or biogeographic 300 

regions, as errors in D are strongly dependent on tree size (Colgan et al., 2013).  301 

Model uncertainty and error propagation 302 

As discussed previously, while data binning is well suited to estimating average allometric 303 

scaling relationships, it inevitably underestimates the true variability in these relationships 304 

among individual trees. Specifically, the data binning approach will tend to underestimate σ – 305 

the residual standard deviation – which makes quantifying and propagating uncertainty a 306 
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challenge. In a linear modelling framework 𝜎 = √
∑(𝑦𝑖−𝑦̂𝑖)2

𝑛−2
, where n is the number of 307 

observations, yi is the ith observation of the response variable, and 𝑦̂𝑖 is the corresponding 308 

predicted value obtained from the model. The reason why data binning generally 309 

underestimates σ is that the difference between observed and predicted values (i.e., the 310 

residuals, 𝑦𝑖 − 𝑦̂𝑖) is calculated not for individual trees, but for mean values obtained by 311 

averaging across multiple trees. However, by using an independent dataset (the 10% of trees 312 

set aside for model validation), we can compare predicted and observed estimates of D 313 

generated for individual trees to get a much more realistic estimate of the true value of σ for a 314 

given model (which we refer to as σv): 315 

𝜎𝑣 =
√∑ (𝑙𝑛(𝐷𝑜𝑏𝑠) − 𝑙𝑛(𝐷𝑝𝑟𝑒𝑑))

2

𝑛 − 2
 

 

 

Using this simple approach we were able to generate realistic estimates of the predictive 316 

uncertainty of models fit using the data binning method (see Fig. S3). To enable users to 317 

robustly propagate uncertainty when using the equations developed here, we report σv values 318 

for all fitted models. Furthermore, in Appendix S5 we provide R code for replicating the 319 

entire analysis. 320 

Scaling-up from diameter to aboveground biomass 321 

Approach 1 aims to predict D from crown attributes, with the idea that D estimates can then 322 

be fed into existing biomass equations. To quantify the extent to which replacing field-323 

measured D values with predicted ones influences the accuracy of AGB estimates, we used 324 

Chave et al.'s (2014) general biomass equation as a baseline. In Chave et al. (2014) AGB is 325 

expressed as the following function of D, H and wood density [ρ, in g cm
-3

; which we 326 
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obtained from the global wood density database of Chave et al. (2009) and Zanne et al., 327 

(2009)]: 𝐴𝐺𝐵 =  0.0673 × (𝐷2 × 𝐻 × 𝜌)0.976 ×  exp [0.3572

2⁄ ]. Using this equation, we 328 

estimated AGB for trees in the database with a known biomass (i.e., trees that had been 329 

destructively harvested and weighed) using both field-measured and predicted D values as 330 

inputs to the biomass model. Only trees with D ≥ 5 cm were used for this purpose (n = 1859 331 

trees with field-measured AGB), as trees smaller that this threshold contribute negligibly to 332 

forest carbon stocks and were not used to calibrate Chave et al.'s (2014) equation. By 333 

comparing observed AGB values with those predicted using Chave et al.'s (2014) equation, 334 

we were then able to determine whether the underlying D models described previously can be 335 

used to generate accurate biomass estimates. Additionally, this also allowed us to compare 336 

the predictive accuracy of Approaches 1 and 2 – the latter of which aims to estimate AGB 337 

directly from H and CD (see following section). 338 

APPROACH 2: ESTIMATING ABOVEGROUND BIOMASS 339 

Instead of estimating D first, a better approach to predicting the biomass of individual trees 340 

from crown architectural attributes might be to relate AGB directly to H and CD. To test this, 341 

we used data for trees with measured AGB to explore a number of alternative models relating 342 

AGB to H and/or CD. Preliminary analyses revealed the compound variable H × CD to be a 343 

far superior predictor of AGB than either H or CD alone. We therefore focus on the following 344 

log-log regression model of AGB: 345 

ln(𝐴𝐺𝐵) = 𝛼 + 𝛽ln(𝐻 × 𝐶𝐷) + ε  (5) 

Model development and validation followed the same steps described for Approach 1. As for 346 

previous equations, the model was fit to binned mean values of H × CD (as opposed to raw 347 
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data). To allow a comparison with Approach 1, only trees with D ≥ 5 cm were used to 348 

develop the model. We further tested whether modelling angiosperms (n = 1069) and 349 

gymnosperms (n = 790) separately would improve model accuracy, as these two functional 350 

groups differ strongly in crown architecture (Poorter et al., 2012; Hulshof et al., 2015) as 351 

well as wood density (Chave et al., 2009). Given the relatively small number of trees with 352 

measured AGB values, we did not explore the extent to which the relationship between AGB 353 

and H × CD varies among forest types or biogeographic regions. The predictive accuracy of 354 

equation (5) was compared against that of AGB models which include D as a predictor (i.e., 355 

Approach 1) on the basis of RMSE and bias.  356 
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Results 357 

APPROACH 1: ESTIMATING DIAMETER 358 

Of the candidate models we tested for estimating D, ones relying on H or CD alone as 359 

predictors of D proved unsuitable. Despite exhibiting relatively low RMSE (13.7 cm), a 360 

height-only model tended to systematically overestimate D (bias = 24.7%). This occurred 361 

because D–H relationships were non-linear on a log-log scale, as H tended to asymptote in 362 

large trees. As a result, a power-law tended to overestimate D for small and medium-sized 363 

trees, while severely underestimating that of large ones (Fig. S4). Conversely, a model with 364 

only CD as a predictor of D had higher RMSE (16.6 cm), but showed lower overall 365 

systematic bias (-4.5%). However, the average bias masks a tendency of the crown diameter-366 

only model to overestimate D for large trees, while underpredicting the size of smaller stems 367 

(Fig. S4). In contrast to the previous two models, H × CD proved a much better predictor of 368 

D (Fig. 3). The best-fit global D model was: 369 

𝐷𝑝𝑟𝑒𝑑 =  0.557 × (𝐻 × 𝐶𝐷)0.809 ×  exp [0.0562

2⁄ ]  (6) 

Equation (6) had both lower RMSE (9.7 cm) and average systematic bias (-1.2%) compared 370 

to models based on H or CD alone. Importantly, the model showed no evidence of over- or 371 

underpredicting D across a wide range of tree sizes (Fig. 3b). Using the independent 372 

validation dataset, we estimated σv [i.e., the standard deviation of ln(Dobs) – ln(Dpred)] of the 373 

model to be 0.45. 374 

While the global D model presented in equation (6) was able to produce unbiased estimates 375 

of D across a wide range of species, climate zones and tree sizes (Fig. 3), scaling 376 

relationships between D and H × CD did vary among both forest types and functional groups 377 
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(Fig. 4). Incorporating these differences in the modelling processes further improved the 378 

precision of D estimates (Fig. 5 and Table S2). In particular, accounting for the different 379 

scaling relationships of angiosperms and gymnosperms reduced the RMSE of the model to 380 

8.1 cm, the average CV to 35.8% (from 43.3% in the global D model), and σv to 0.35 (Table 381 

S2). These gains in precision were especially evident when attempting to predict D for 382 

angiosperm trees in boreal and temperate coniferous forests, which tend to be dominated by 383 

gymnosperms (Fig. 5b). A full list of group-, forest type- and region-specific D equations is 384 

provided in Appendix S4. 385 

APPROACH 2: ESTIMATING ABOVEGROUND BIOMASS 386 

AGB was strongly related to H × CD, with a linear log-log relationship holding across more 387 

than six orders of magnitude variation in tree mass (Fig. 6). Scaling relationships between 388 

AGB and H × CD varied consistently among functional groups, with gymnosperms 389 

exhibiting higher scaling constants (α = 0.109 vs 0.016) but smaller scaling exponents (β = 390 

1.790 vs 2.013) compared to angiosperm trees (Fig. 6). The best-fit AGB model which 391 

accounted for different scaling relationships among angiosperms and gymnosperms was: 392 

𝐴𝐺𝐵𝑝𝑟𝑒𝑑 =  (0.016 + 𝛼𝐺) × (𝐻 × 𝐶𝐷)(2.013+𝛽𝐺) ×  exp [0.2042

2⁄ ]  (7) 

where αG and βG are functional-group dependent parameters which represent the difference in 393 

the scaling constant α and scaling exponent β between angiosperm and gymnosperm trees. 394 

For gymnosperms αG = 0.093 and βG = –0.223, whereas for angiosperms both parameters are 395 

set to zero. The estimated σv of the model was 0.69. 396 
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COMPARING APPROACHES 1 AND 2 397 

AGB estimates obtained using Chave et al.'s (2014) biomass equation and field-measured D 398 

values as inputs showed a close agreement with observed AGB values (RMSE = 0.86 Mg; 399 

Fig. 7a), but had a tendency to overestimate AGB (bias = 27.7%). As expected, replacing 400 

field-measured D values with ones predicted using the global D model [i.e., equation (6), 401 

corresponding to Approach 1] increased the RMSE of the model predictions to 1.78 Mg (Fig. 402 

7b). However, the average systematic bias in the AGB predictions was little affected (bias = 403 

30.1%, the overestimation arising from the use of the biomass function, not the global D 404 

model). This suggests that diameter estimates obtained using the global D model can be 405 

scaled up to biomass without introducing a systematic bias. In contrast to Approach 1, using 406 

equation (7) to estimate AGB directly from H × CD (i.e., Approach 2) resulted in 407 

substantially lower average bias in AGB estimates, regardless of tree mass (bias = -4.3%; Fig. 408 

7c). Furthermore, Approach 2 had the advantage of reducing the RMSE of the model 409 

predictions to 1.70 Mg.  410 
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Discussion 411 

We developed general allometric models for estimating both the stem diameter and 412 

aboveground biomass of trees based on crown architectural properties which can be remotely 413 

sensed: tree height and crown diameter. Here we discuss how these allometric models can be 414 

used to integrate remote sensing imagery – particularly ALS data – into forest monitoring 415 

programs, allowing carbon stocks to be mapped with accuracy across forest landscapes and 416 

shedding light on the processes which govern the structure and dynamics of forest 417 

ecosystems. 418 

STEM DIAMETER ALLOMETRIES FOR REMOTE SENSING IMAGERY 419 

We found that estimating stem diameter required accounting for both height and crown size – 420 

the latter of which proved essential for differentiating between trees of similar height but 421 

having substantially different trunk sizes (King, 2005; King & Clark, 2011). Using a simple 422 

metric which combines these two allometric dimensions – H × CD – we were able to derive a 423 

global equation for estimating stem diameter which proved robust across a large range of tree 424 

sizes, forest types and tree species (Fig. 3). Our results highlight how allocation to height 425 

growth and lateral crown expansion are strongly coordinated in trees (Sterck & Bongers, 426 

2001; King, 2005; Iida et al., 2012), and illustrate how these developmental constraints can 427 

be exploited for the purposes of estimating stem diameter. 428 

While we did find that a single allometric function can be used to estimate diameter without 429 

introducing systematic bias, incorporating different scaling relationships among forest types, 430 

biogeographic regions and functional groups into the models helped improve the predictive 431 

accuracy of the allometric equations (Figs 4 and 5; Table S2). Particularly important in this 432 

respect was accounting for differences between angiosperms and gymnosperms (Fig. 5b). 433 
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This is not surprising given the contrasting crown architecture of these two groups: 434 

gymnosperms generally exhibit strong apical dominance and invest heavily in height growth, 435 

whereas angiosperm trees have a greater ability to plastically adapt the shape and size of their 436 

crown to suit their competitive environment (Poorter et al., 2012; Hulshof et al., 2015). These 437 

differences in crown architecture – coupled with clearly distinct leaf biochemical profiles – 438 

also mean that angiosperm and gymnosperm trees can be easily distinguished using a variety 439 

of remote sensing products (e.g., aerial photographs, hyperspectral sensors and ALS; 440 

Dalponte et al. 2012). Consequently, we suggest that users select group-specific diameter 441 

equations (which we provide in Appendix S4) wherever possible, as these can be employed 442 

with little or no need for additional field data. As our ability to remotely map tree species 443 

improves (e.g., through the development of spectral libraries derived from hyperspectral 444 

sensors; Asner, 2013), it is conceivable that species-specific diameter equations could also be 445 

utilized in the future. Similarly, other aspects known to influence crown architecture (e.g., 446 

tree packing density; Jucker et al., 2015) could also be incorporated to further refine the 447 

models we develop here. 448 

The diameter allometries we develop here open the door to a more general and robust 449 

framework for monitoring forest carbon stocks using ALS. Currently, the standard approach 450 

for estimating carbon stocks from ALS data involves calculating summary statistics from 451 

ALS point clouds for a given pixel of land (e.g., top canopy height) and relating these to 452 

carbon estimates obtained from permanent field plots in a regression framework (Asner & 453 

Mascaro, 2014; Asner et al., 2014). Despite recent attempts to generalize this “area based” 454 

approach (e.g., Asner & Mascaro 2014), most models for estimating carbon stocks from ALS 455 

summary statistics are highly site-specific and can only be applied with confidence to the 456 

particular patch of forest they were calibrated for. Working at tree-level provides an intuitive 457 
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solution to the issue of developing a general approach for mapping forest carbon stocks, and 458 

would allow a direct comparison to field-based aboveground carbon estimates. This “tree-459 

centric” approach is not without its limitations, the biggest of which is the implicit 460 

assumption that individual trees can be reliably identified and measured from ALS point 461 

clouds (something which can be challenging in dense, multi-layered canopies). However, 462 

recent years have seen substantial progress in this respect, as both ALS instruments and the 463 

algorithms used to delineate trees from ALS data have improved considerably (Popescu et 464 

al., 2003; Yao et al., 2012; Duncanson et al., 2014; Paris et al., 2016; Shendryk et al., 2016). 465 

For example, Paris et al. (2016) recently developed a segmentation method which was able to 466 

correctly delineate the crowns of 97% and 77% of canopy dominant and understorey trees, 467 

respectively, as well as accurately measuring the crown dimensions of all segmented trees. 468 

Equally promising is Shendryk et al.'s (2016) algorithm which segments trees from the 469 

bottom up (mimicking the approach used to process terrestrial laser scanning data; Calders et 470 

al. 2014). As ALS technology continues to improve, “tree-centric” carbon monitoring 471 

programs are becoming not only feasible, but oftentimes preferable to traditional “area 472 

based” approaches (Duncanson et al., 2015; Dalponte & Coomes, 2016). 473 

In addition to mapping carbon stocks, characterising the relationships between stem diameter 474 

and crown dimensions also has important implications for advancing our understanding of 475 

forest dynamics. The most obvious application of the diameter allometries developed here is 476 

for characterizing tree size distributions from airborne imagery, something which has proved 477 

challenging using traditional “area-based” approaches (Maltamo & Gobakken, 2014). Tree 478 

size distributions are an emergent property of forest ecosystems – arising from demographic 479 

processes and competition for space among individual trees (Enquist et al., 2009; Kohyama 480 

et al., 2015) – and are of key interest for understanding forest dynamics, structure and 481 
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responses to disturbance (Coomes et al., 2003; Enquist et al., 2009). Intriguingly, recent work 482 

suggests that scaling relationships between diameter and crown size govern how trees utilize 483 

canopy space and compete for light, thereby having a direct influence on tree size 484 

distributions (Taubert et al., 2015; Farrior et al., 2016). ALS data, coupled with allometric 485 

equations for converting crown dimensions to diameter distributions, would allow us to 486 

empirically test this theory across large spatial scales and diverse forest types. In a similar 487 

vein, diameter allometries provide a simple solution for integrating ALS data into individual-488 

based models of forest dynamics (e.g., Shugart et al. 2015), allowing these models to be more 489 

easily parameterized and validated.  490 

ESTIMATING ABOVEGROUND BIOMASS FROM CROWN DIMENSIONS 491 

Using the subset of trees that were destructively harvested and weighed, we showed that AGB 492 

was strongly related to tree height and crown size (Fig. 6). These results give weight to recent 493 

reports which have highlighted how accounting for crown size can substantially improve 494 

AGB estimation, especially in the case of large trees where a considerable proportion of the 495 

biomass is stored in large branches (Henry et al., 2010; Goodman et al., 2014; Ploton et al., 496 

2016). The strong link between crown dimensions and AGB has important implications for 497 

“tree-centric” carbon mapping approaches, as it suggests that AGB can be estimated directly 498 

from remotely-sensed measurements of tree height and crown width without needing to first 499 

predict diameter (Fig. 7c). This is particularly appealing as it reduces the number of steps in 500 

the AGB estimation process (each of which carries a certain degree of error), and also 501 

eliminates the need to select an equation from the literature for scaling from diameter to AGB. 502 

Our analysis revealed clear differences in the AGB scaling relationships of angiosperms and 503 

gymnosperms (Fig. 6), presumably reflecting differences in both crown architecture and 504 
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wood density among these two groups (Chave et al., 2009; Poorter et al., 2012; Hulshof et 505 

al., 2015). It may well be that AGB scaling relationships also vary systematically among 506 

forest types or biogeographic regions, and that accounting for these differences could further 507 

improve the predictive accuracy of the biomass allometries presented here. Unfortunately, the 508 

relatively modest sample size of trees with measured AGB at our disposal meant we were 509 

unable to robustly test these assumptions. Despite recent efforts to compile comprehensive 510 

allometric databases (e.g., Chave et al. 2014; Falster et al. 2015), the number of trees with 511 

measured AGB remains relatively small, geographically biased and heavily skewed towards 512 

smaller stems. This is even more so when attempting to find trees that have been felled and 513 

weighed and whose crown dimensions have also been recorded. Future studies developing 514 

AGB equations should take care to also record the crown dimensions of harvested trees (e.g., 515 

Henry et al., 2010; Goodman et al., 2014; Ploton et al., 2016). In this regard, perhaps the 516 

most promising solution for bolstering existing allometric databases is terrestrial laser 517 

scanning, which captures tree architecture in exquisite detail and provides a non-destructive 518 

method for accurately estimating AGB (Calders et al., 2015). Most importantly, this would 519 

provide access to biomass data for large trees (e.g., ≥ 10 Mg), which tend to be 520 

disproportionately rare in allometric databases – including the one we have assembled here 521 

(only 2.4% of measured trees had a mass ≥ 10 Mg; see Fig. 2c).  522 

SEEING THE FOREST AND THE TREES 523 

Accurate assessments of forest carbon stocks are essential for initiatives to mitigate climate 524 

change – such as the UN’s programme for Reducing Emissions from Deforestation and 525 

Forest Degradation (REDD+) – to be implemented successfully (Agrawal et al., 2011). Yet 526 

monitoring carbon stocks across large and sometimes remote areas of forest poses a real 527 
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challenge, particularly in countries where national-scale forest inventory programs are not in 528 

place. In this context, remote sensing technologies such as ALS promise to revolutionize the 529 

way we census forests (Asner et al., 2014). It is our hope that the allometric equations 530 

developed here can help us move towards a more general and robust approach for monitoring 531 

forests from the air.  532 
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Figure legends 708 

Fig. 1: Schematic diagram illustrating how airborne laser scanning (ALS) imagery can be 709 

integrated into forest inventory programs. State-of-the-art algorithms that detect and measure 710 

individual tree crowns from ALS point clouds are combined with existing field data to 711 

estimate the diameter and aboveground biomass of remotely sensed trees. 712 

Fig. 2: Overview of the allometric database. Panel (a) shows the geographic coverage of the 713 

database in relation to the world’s biomes (map adapted from Olson et al., 2001). Circle size 714 

reflects the number of trees measured at each location (on a logarithmic scale). Panel (b) 715 

highlights differences in mean annual precipitation and temperature among forest types. 716 

Climate data were obtained from the WorldClim database (Hijmans et al., 2005), which 717 

consists of gridded annual mean values covering the period between 1950-2000 (data 718 

available from: http://www.worldclim.org/current). In (c) violin plots show the size 719 

distribution – in terms of diameter and aboveground biomass – of trees in the database. The 720 

number of records available for each forest type is displayed on the right. 721 

Fig. 3: Goodness-of-fit for the global diameter model [i.e., equation (6) in the main text], 722 

tested on an independent random sample of the data corresponding to 10% of measured trees 723 

(n = 10875). Panel (a) compares predicted and observed diameter values, with the dashed line 724 

corresponding to a 1:1 relationship. The density of overlapping points is represented by a 725 

colour gradient which ranges from blue (low point density) to red (high point density). Panel 726 

(b) reports the mean relative error (i.e., 
𝐷𝑝𝑟𝑒𝑑−𝐷𝑜𝑏𝑠

𝐷𝑜𝑏𝑠
× 100) for different diameter size classes, 727 

with the bars delimiting the interquartile range (thick lines) and 95% limits (thin lines) of the 728 

errors.  729 
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Fig. 4: Relationship between stem diameter and the product of tree height and crown 730 

diameter (H × CD). Panel (a) shows the distribution – on a logarithmic scale – of the raw 731 

data (in grey) and of the mean H × CD values in each diameter size class (black circles). 732 

Panel (b) illustrates fitted relationships between diameter and H × CD for each forest type 733 

separately, while (c) reports the slopes of these relationships (± 95% confidence intervals) for 734 

angiosperms and gymnosperms separately. 735 

Fig. 5: Comparison of model performance between the global diameter model [i.e., equation 736 

(6) in the main text] and (a) a model that allows scaling relationships to vary among forest 737 

types and biogeographic regions, and (b) one where angiosperms and gymnosperms are also 738 

modelled separately. The coefficient of variation (CV) of the absolute errors (± 95% range 739 

across 100 simulations) is reported for angiosperms (open symbols) and gymnosperms 740 

(closed symbols) according to forest type and biogeographic region. Boxplots along each axis 741 

capture the distribution of the model errors, while the dashed line indicates a 1:1 relationship. 742 

Fig. 6: Relationship between aboveground biomass and the product of tree height and crown 743 

diameter. Gymnosperm (filled circles; n = 1049) and angiosperm trees (empty circles; n = 744 

1346) are shown separately. For illustrative purposes, 536 trees with a stem diameter of less 745 

than 5 cm are also shown. 746 

Fig. 7: Aboveground biomass (AGB) estimation accuracy. Panels (a–c) show predicted 747 

versus observed AGB values for trees greater than 5 cm in diameter (n = 1859). In panel (a), 748 

AGB was estimated using Chave et al.'s (2014) equation (where AGB is expressed as a 749 

function of diameter, height and wood density). Panel (b) illustrates the predictive accuracy 750 

of Chave et al.'s (2014) equation when field-measured diameters are replaced with ones 751 

predicted using the global diameter model (i.e., Approach 1). Panel (c) corresponds to a 752 
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model in which AGB is expressed directly as a function of tree height and crown diameter 753 

(i.e., Approach 2). For panels (a–c), the dashed line corresponds to a 1:1 relationship, while 754 

the solid line is a regression spline fit to the data points to highlight how predictive accuracy 755 

varies with tree size. The RMSE and bias of each set of predictions is reported in the lower 756 

right-hand corner. Panel (d) shows the probability density distribution of the absolute errors 757 

(i.e.,AGBpred – AGBobs) for each AGB function.  758 
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Supporting information 759 

Additional supporting information may be found in the online version of this article: 760 

Appendix S1: Database generation 761 

Appendix S2: Data binning 762 

Appendix S3: Diameter model comparison 763 

Appendix S4: Region-, forest type- and group-specific diameter equations  764 

Appendix S5: R code for implementing data binning approach 765 


