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The generation of indirect combustion noise by compositional inhomogeneities is
examined theoretically. For this, the compact-nozzle theory of Marble & Candel
(J. Sound Vib., vol. 55 (2), 1977, pp. 225–243) is extended to a multi-component gas
mixture, and the chemical potential function is introduced as an additional acoustic
source mechanism. Transfer functions for subcritical and supercritical nozzle flows
are derived, and the contribution of compositional noise is compared to entropy noise
and direct noise by considering an idealized nozzle downstream of the combustor exit.
It is shown that compositional noise is dependent on the local mixture composition
and can exceed entropy noise for fuel-lean conditions and supercritical nozzle flows.
This suggests that the compositional indirect noise requires potential consideration
with the implementation of low-emission combustors.
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1. Introduction

The importance of engine-core noise as a relevant contributor to the overall
noise emission from aircraft has been recognized, particularly for low-power engine
conditions during landing and approach. Engine-core noise in aircraft gas turbines is
commonly divided into direct and indirect noise (Strahle 1978; Candel et al. 2009;
Dowling & Mahmoudi 2015). Direct combustion noise is a source of self-noise, and
describes the generation of acoustic pressure fluctuations by unsteady heat release
in the combustion chamber. In contrast, indirect combustion noise represents an
induced noise-source mechanism that arises from the interaction between non-acoustic
perturbations exiting the combustion chamber and downstream engine components.
The indirect noise generation by temperature inhomogeneities arising from hot
and cold spots is referred to as entropy noise (Candel 1972; Marble & Candel
1977), and indirect noise from vorticity fluctuations is referred to as vorticity noise
(Cumpsty 1979). Once sound has been generated, its propagation through the engine
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core depends on mean-flow gradients and geometric properties, which distort, diffract
and reflect the acoustics. An additional noise mechanism, which is commonly
neglected in the core-noise analysis, results from the modulation of the jet-noise
sources by mean-flow deformations and perturbations exiting the engine core (Ihme
2017).

Direct combustion noise was examined through experimental measurements to
obtain fundamental understanding about the noise-source mechanisms and the effect
of fuel mixtures and operating conditions on the acoustic radiation (Hurle et al.
1968; Singh et al. 2005), through theoretical analysis to determine the correlations
for acoustic power, spectral density, and peak frequency (Rajaram & Lieuwen 2003;
Candel et al. 2009), and through computational modelling using direct methods and
acoustic analogies (Zhao & Frankel 2001; Ihme, Pitsch & Bodony 2009).

Contributions of indirect noise to the overall core-noise emission have been
examined theoretically and experimentally. These studies focused on separating the
contributions to noise from the direct transmission and entropy noise. Different
techniques have been employed to determine the transfer functions, including
the compact-nozzle theory (Marble & Candel 1977), the effective nozzle-length
method (Stow, Dowling & Hynes 2002; Goh & Morgans 2011), linear nozzle
element techniques (Moase, Brear & Manzie 2007; Giauque, Huet & Clero 2012),
and expansion methods (Duran & Moreau 2013), among others. These theoretical
investigations were supported by experimental studies. Bake et al. (2009) conducted
measurements on an entropy-wave generator to investigate entropy noise by varying
the mass flow rate, nozzle Mach number, heating power, and nozzle geometry. These
investigations were extended by Kings & Bake (2010) to examine the indirect noise
mechanisms arising from vorticity fluctuations. These studies showed that indirect
combustion noise requires consideration in the analysis of engine-core noise and can
exceed the contribution from direct noise.

Common to all of these previous theoretical and experimental investigations,
however, is the restriction to a single-component gas mixture without considering
effects of inhomogeneities in mixture composition on the indirect noise generation.
In particular, compositional inhomogeneities can arise from incomplete mixing, air
dilution, and variations in the combustor exhaust-gas compositions. The presence
of compositional noise as an additional indirect noise-source mechanism was
first identified analytically by Ihme (2017). The objective of the present work is
to extend this analysis by quantifying the importance of this combustion noise
mechanism in subcritical and supercritical nozzles. To this end, the equations for
multi-component gas mixtures are considered, and compositional fluctuations are
expressed as a function of the mixture fraction. Following Marble & Candel (1977),
the compact-nozzle theory is used to derive transfer functions for different nozzle
conditions. A parametric study is conducted to compare the relative contributions
between compositional noise, entropy noise, and direct noise.

2. Theoretical analysis

The present analysis is concerned with the flow of a multi-component gas mixture
through a nozzle. The following assumptions on the nozzle flow are made: (i) the
flow is quasi-one-dimensional, i.e. the variables change because of area variations but
depend only on the axial coordinate; (ii) the gas is ideal with frozen internal energy
modes so that the heat capacity only depends on the mixture composition; (iii) the gas
is composed of Ns species Yi with chemical potentials µi; (iv) the flow is chemically
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frozen, thus, all species are expressed in terms of mixture fraction, Z, Yi = Yi(Z);
(v) perturbations have a low frequency, i.e. the Helmholtz number is small, He� 1,
therefore, the flow is quasi-steady and the compact-nozzle assumption is valid; (vi) the
nozzle is isentropic except across the shock for the supercritical nozzle flow.

Assumptions (ii)–(iv) imply that the gas constant, R, is a function of the mixture
fraction, because R = R

∑Ns
i=1 Yi(Z)/Wi, where Wi is the molar mass and R is the

universal gas constant. Likewise, the specific heat capacity is a function of the mixture
fraction, cp = γ /(γ − 1)R(Z), and γ is constant. The frozen-flow assumption (iv) is
valid if the Damköhler number is small, i.e. Da = τflow/τchem < 1, where τflow is the
flow time scale and τchem is the characteristic chemical time scale. This condition can
be reformulated as He/(M ω τchem) < 1, where M is the Mach number and ω is the
perturbation frequency. For expanding nozzle flows, the chemical time scale becomes
large due to the reduction of the temperature and the reduced chemical reactivity of
three-body recombination reactions (Keck & Gillespie 1971). Body forces, viscous-
diffusive, Soret and Dufour effects are neglected due to the nozzle flow conditions
at high Reynolds numbers.

2.1. Governing equations
In a multi-component chemically frozen gas, the differential of the total sensible
enthalpy is defined as dht = dh + u du and the sensible enthalpy is a function
of species composition and temperature, dh = cp dT + ∑Ns

i=1 hi dYi. With this and
assumptions (i)–(v), the first-order perturbations of the total enthalpy, mass flow rate,
and entropy read, respectively (Williams 1985),

dht

ht
= 2

2+ (γ − 1)M2

[
dT
T
+ (γ − 1)

M
c

du+ c′p
cp

dZ
]
, (2.1a)

dṁ
ṁ
= dρ
ρ
+ du

M c
, (2.1b)

ds
cp
= dT

T
− γ − 1

γ

dp
p
+
(

c′p
cp
−Ψ

)
dZ, (2.1c)

where T is the temperature, u is the velocity, c is the speed of sound, ρ is the density,
s is the entropy, p is the pressure, and γ is the ratio of specific heat capacities. The
symbol ′ denotes differentiation with respect to Z, i.e. c′p = dcp/ dZ; M = u/c; Z is
the mixture fraction; µi = µ0

i + RT ln(pi/p0) is the chemical potential of the ith
species (Job & Herrmann 2006). The superscript ‘0’ denotes the standard condition,
and Ψ = (1/cpT)

∑Ns
i=1 (µi/Wi)Y ′i is the chemical potential function, comparing

the chemical potential to the sensible enthalpy. Note that Ψ is a function of the
thermochemical state, Ψ =Ψ (p, T, Z); however, the dependency (p, T, Z) is dropped
for brevity. The chemical potential is the partial derivative of the Gibbs function, G,
with respect to the number of moles of the ith species, ni, at constant temperature
and pressure, i.e. µi = (∂G/∂ni)T,p,nj 6=i .

The conservation of mass, energy, entropy and species provides the set of governing
equations, which are expressed as jump conditions across the compact nozzle

JdṁKb
a = 0, JdhTKb

a = 0, JdsKb
a = 0, JdZKb

a = 0, (2.2a−d)

where the indices a and b denote the conditions at the inlet and outlet of the nozzle,
respectively (figure 1). The system of governing equations is closed by the differential
form of the state equation dp/p= dρ/ρ + (R′/R) dZ + dT/T .
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(a) (b) (c)

FIGURE 1. Acoustic, π, entropy, σ , and compositional, ξ , wave decomposition in a
(a) subcritical nozzle, (b) supercritical nozzle and (c) supercritical nozzle with a normal
shock wave. Incoming waves are denoted by solid arrows; outgoing waves are denoted by
dashed arrows. In the compact-nozzle assumption, the nozzles are viewed as black boxes,
depicted as dashed boxes, with properties evaluated at the inlet, a, and outlet, b. The flow
region downstream of the shock wave is labelled c. Mth is the Mach number at the throat.

The jump conditions (2.2) combined with the state equation provide five relations
for the five unknowns dp, dρ, dT , du and dZ. The entropy, ds, can be used as an
alternative thermodynamic variable through the Gibbs relation (2.1c). Furthermore,
R′ and Y ′i , appearing in the derivative of cp and the definition of Ψ , are not state
variables, because they depend on the chemical composition, which will be discussed
in § 3. In a choked nozzle, the variables are constrained by the condition that the
mass flow rate attains a maximum, ṁ∗ = √γAthpt/(

√
RTt)[(γ + 1)/2]−(γ+1)/[2(γ−1)],

where the superscript ∗ indicates the sonic condition and the subscript ‘th’ denotes
the condition at the throat. Equating the sonic mass flow rate to the mass flow rate
(2.1b), dṁ∗/ṁ∗ = dṁ/ṁ= 0 yields the additional condition

ds
2cp
+ 1

2
Ψ dZ − du

M c
+ γ − 1

2γ
dp
p
= 0. (2.3)

The left-hand side of (2.3) is equal to the perturbation Mach number, dM = du/c −
M dc/u, where dc = c/2[(R′/R) dZ + dT/T], which, therefore, is zero throughout the
compact choked nozzle.

2.2. Nozzle transfer functions
In the linear limit, the acoustic pressure mode is governed by a wave equation,
whereas entropy and mixture-fraction modes are governed by convection equations
(when the species diffusion is neglected). Extending the fundamental mode decom-
position of Chu & Kovásznay (1958) to the mixture fraction, it is inferred that these
three modes are decoupled. Therefore, a characteristic decomposition can be employed.
Hence, four independently evolving waves at each side of the nozzle are identified,
as shown in figure 1, which correspond to the downstream and upstream propagating
acoustic waves, the convective entropy wave and the convective compositional wave,
respectively,

π± = 1
2

(
dp
γ p
± du

c

)
, σ = ds

cp
, ξ = dZ. (2.4a−c)

A nozzle transfer function is defined as the ratio between a single output, such
as an outgoing acoustic wave, and a single input, such as an incoming entropy or
compositional wave. The objective is to derive analytical transfer-function expressions
for the indirect noise by compositional fluctuations, which is done by considering
a subcritical nozzle, a supercritical nozzle, and a supercritical nozzle with a normal
shock.
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Subcritical nozzle Supercritical nozzle

π+b /π
+
a

2(1+Ma)Mb

(1+Mb)(Ma +Mb)

[
2+ (γ − 1)M2

b

]
[
2+ (γ − 1)MaMb

] 2+ (γ − 1)Mb

2+ (γ − 1)Ma

π+b /σa
(Mb −Ma)Mb

(1+Mb)
[
2+ (γ − 1)MaMb

] 1
2

Mb −Ma

2+ (γ − 1)Ma

π+b /ξa

(γ − 1)(Ψb −Ψa)
[
2+ (γ − 1)M2

b

]
MaMb

(γ − 1)(1+Mb)(Ma +Mb)[2+ (γ − 1)MaMb]

+ Mb[2(Ψa −Ψb)+ (γ − 1)(ΨaM2
b −ΨbM2

a)]
(γ − 1)(1+Mb)(Ma +Mb)[2+ (γ − 1)MaMb]

1
2(γ − 1)

[
2+ (γ − 1)Mb

2+ (γ − 1)Ma
Ψa −Ψb

]

TABLE 1. Transfer functions for subcritical and supercritical nozzles. The transfer
functions π+b /π

+
a and π+b /σa were derived by Marble & Candel (1977).

2.2.1. Subcritical nozzle
Using the wave decomposition (2.4) and noting that σa=σb=σ and ξa= ξb= ξ , the

linearized equations for enthalpy and mass flow rate, (2.1a) and (2.1b), can be written
as

dht

ht
= 2(γ − 1)

2+ (γ − 1)M2

[
(1+M)π+ + (1−M)π− + σ +Ψ ξ

γ − 1

]
, (2.5a)

dṁ
ṁ
=
(

1+ 1
M

)
π+ +

(
1− 1

M

)
π− − σ −Ψ ξ. (2.5b)

Substituting (2.5) into (2.2) provides a linear set of algebraic equations that relates the
four incoming waves (π+a , σa, ξa,π

−
b ) to the four outgoing waves (π−a , σb, ξb,π

+
b ). After

algebraic manipulations, the transfer functions between the acoustic wave leaving the
nozzle and the acoustic, entropy, and compositional waves entering the nozzle can be
derived (Ihme 2017), and the resulting expressions are presented in table 1.

2.2.2. Supercritical nozzle
For a supercritical nozzle flow (figure 1b), the inputs are three incoming waves

(π+a , σa, ξa) and the outputs are five outgoing waves (π−a , σb, ξb, π
+
b , π

−
b ). Similar to

the subcritical nozzle, σa = σb = σ and ξa = ξb = ξ due to the jump conditions (2.2).
As explained in § 2.1, the perturbation of the mass flow rate provides two conditions

σ +Ψaξ +
[

Ma(γ − 1)− 2
Ma

]
π+a +

[
Ma(γ − 1)+ 2

Ma

]
π−a = 0, (2.6a)

σ +Ψbξ +
[

Mb(γ − 1)− 2
Mb

]
π+b +

[
Mb(γ − 1)+ 2

Mb

]
π−b = 0. (2.6b)

By relating outgoing and ingoing waves, the transfer functions are obtained and are
summarized in table 1. The relations for the outgoing wave π−b , needed in § 2.2.3,
can be derived by antisymmetry, substituting Mb→−Mb into the transfer functions
for π+b .
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2.2.3. Supercritical nozzle with shock wave
It is assumed that the pressure at the nozzle exit is such that a shock wave occurs

downstream of the choked condition. The disturbances (π+b , π−b , σ , ξ ) impinge on the
shock wave and move its position by a first-order perturbation to the velocity, δusw
(figure 1c). To calculate the outgoing waves downstream of the shock wave (π+c , σc),
noting that ξc= ξ because the flow is frozen, the following procedure is implemented
(Marble & Candel 1977). First, the flow variables are expressed in the reference frame
attached to the shock wave by a Galilean transformation ub− δusw and uc− δusw, which
defines the effective Mach number Mb,sw = Mb(1 − δusw/ub). Second, the Rankine–
Hugoniot relations for velocity, pressure and density are linearized by considering the
linearized effective Mach number, dMb,sw = dMb − Mbδusw/ub, where dMb = 0 for a
choked flow (see (2.3)) and dMbδusw is neglected because it is of higher order. These
read, respectively,

duc

uc
− dub

ub
= ub

uc

[
4

(γ + 1)M2
b
− uc

ub
+ 1
]
δusw

ub
, (2.7a)

dpc

γ pc
− dpb

γ pb
=−pb

pc

4M2
b

(γ + 1)
δusw

ub
, (2.7b)

dρc

ρc
− dρb

ρb
=−ρb

ρc

(γ + 1)M2
b[

1+ 1
2 (γ − 1)M2

b

]2

δusw

ub
. (2.7c)

Equations (2.7a), along with the linearized continuity equation, provide the perturbed
flow state after the shock wave (duc, dpc, dρc) and the shock-wave velocity, δusw.
Finally, the wave decomposition (2.4) and Gibbs relation for the density, dρ/ρ =
dp/(γ p) − ds/cp − Ψ dZ are applied. With this, the outgoing acoustic and entropy
waves after the shock read, respectively,

π+c =
(

1+ 2M2
c Mb +M2

b

1+ 2M2
bMc +M2

b

)
π+b +

(
1− 2M2

c Mb +M2
b

1+ 2M2
bMc +M2

b

)
π−b , (2.8a)

σc = σ − (Ψc −Ψb)ξ +
[
(γ − 1)(M2

b − 1)2

M2
b(2+ (γ − 1)M2

b)

]
(π+c +π−c −π+b −π−b ). (2.8b)

Note that uc, pc and ρc in (2.7) depend on the Mach number downstream of the shock
wave, Mc, which, in turn, is related to the Mach number upstream of the shock wave,
Mb, through the normal shock-wave relation

M2
c =

M2
b(γ − 1)+ 2

2γM2
b − (γ − 1)

. (2.9)

The transfer functions π+c /π
+
a , π+c /σa and π+c /ξa can be derived by substituting the

transfer functions for π+b and π−b for a choked nozzle into (2.8a). It is interesting to
note that the difference in the chemical potential function in (2.8b), (Ψc −Ψb)ξ , is a
further source of entropy across the shock wave.

2.3. Comments on the theoretical analysis
The indirect noise generated by compositional inhomogeneities is physically due to
the transfer of chemical potential energy into acoustic energy through the accelerating
flow. From the transfer functions and transmission relations that were derived in the
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previous sections, the following limits are worth considering. First, when Ma→Mb,
the compositional noise tends to zero because Ψa→Ψb (table 1). Second, in the limit
of a constant chemical potential function, Ψa = Ψb, it can be shown that the ratio
between compositional noise and entropy noise for all the three cases tends to the
same limit Ψ . This limit physically signifies that the indirect noise ratio is independent
of the flow conditions, and is only a function of the thermodynamic and compositional
state at the inlet, under the compact-nozzle assumption.

3. Results

The analysis developed in the previous section is applied to a flow-path configuration
to quantify the relative contribution of compositional noise to the overall combustion
noise. For this, we consider an idealized configuration in which the combustor
exhaust-gas composition enters the nozzle. This exhaust-gas composition is represented
by the solution of a series of one-dimensional strained diffusion flames (Peters 2000)
that include the equilibrium composition, typically observed at low-power cruise
conditions, and highly strained combustion conditions representative of high-load
operation. The flame solutions are generated by considering n-dodecane (C12H26), a
kerosene surrogate, as fuel and air in the oxidizer stream at operating conditions of
295 K and ambient pressure. The flame structure is parameterized by the mixture
fraction, with Z = 0 corresponding to the oxidizer stream and Z = 1 corresponding to
the pure fuel stream. The flame structure is obtained from the steady-state solution of
the conservation equations for continuity, species, and energy, which are solved using
the CANTERA software package (Goodwin, Moffatt & Speth 2016). The reaction
chemistry is described by a 24-species mechanism (Vie et al. 2015), which provides
an accurate flame representation at these conditions.

The degree of straining, i.e. the deviation from equilibrium, is characterized by
the scalar dissipation rate, χ = 2α|∇Z|2, where α is the diffusivity of the mixture
fraction, and χ is evaluated at the stoichiometric condition, corresponding to a
value of Zst = 0.063. Large values of χst correspond to high-strain-rate conditions,
in which the diffusive transport of heat away from the flame exceeds the heat
release. Flame extinction occurs when χst exceeds the quenching limit. The present
study considers three flames with different conditions. The structure of each of
these flames, together with the chemical potential function and the specific Gibbs
energy, are shown in figure 2 for (a,d) χst = 0.1 s−1 (quasi-unstrained condition near
equilibrium), (b,e) χst = 21 s−1 (intermediately strained flame condition), and (c, f )
χst = 50 s−1 (highly strained flame at condition near extinction). The results are
presented as a function of the transformed mixture-fraction coordinate Z/(Z + Zst),
which divides the plot evenly between lean (Z < Zst) and rich (Z > Zst) conditions.

These flame solutions can be interpreted as an idealized representation of the gas
composition exiting the combustor. The combustor operates at a global equivalence
ratio φ, corresponding to a mean mixture fraction Z, with Z = φZst/[Zst(φ − 1)+ 1]
(Peters 2000). The corresponding thermochemical state is then taken from the flame
solution of figure 2. In addition to temperature fluctuations, which are known to
generate entropy noise, incomplete mixing, turbulence, and other unsteady effects
give rise to fluctuations in Z. This has the potential to produce compositional noise
downstream of the combustor. To assess the compositional noise that is generated, the
combustor exhaust composition for a given value of Z is isentropically compressed
through an ideal nozzle, keeping the mean mixture composition frozen at this flame
state. Since gas-turbine combustors typically operate at subsonic conditions, without
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FIGURE 2. Representation of one-dimensional diffusion flame in mixture-fraction
composition space for three different scalar dissipation rates. (a,d) χst = 0.1 s−1

(quasi-unstrained condition near equilibrium), (b,e) χst = 21 s−1 (intermediately strained
flame condition), and (c, f ) χst= 50 s−1 (highly strained flame at condition near extinction).
(a–c) Flame structure, showing temperature T (solid black lines), oxygen mass fraction YO2

(blue dot-dashed lines), n-dodecane mass fraction YC12H26 (red dashed lines), and water
mass fraction YH2O (magenta dotted lines). (d–f ) Chemical potential function Ψa (solid
black lines) and specific Gibbs energy of the mixture, g=∑i (µi/Wi)Yi (dashed red lines).
Zst is the stoichiometric mixture fraction. Operating conditions: C12H26/air combustion,
Tfuel = Tox = 295 K, p= 1 bar.

loss of generality, it is assumed that Ma = 0. The transfer functions of table 1 and
the shock-wave case (§ 2.2.3) are then evaluated over the full mixture-fraction space
and a range of relevant nozzle-exit Mach numbers.

The transfer-function ratios between compositional noise, direct noise, and entropy
noise for different nozzle flows and combustor exhaust compositions are presented
in figure 3. Figures 3(a–c) and 3(d–f ) show the ratio of the transfer functions
between compositional and direct noise and between compositional and entropy noise,
respectively, for an ideally expanded nozzle. Figure 3(g–l) shows the corresponding
results for the nozzle flow with shock wave.

From these results, it can be seen that the transfer function for the compositional
noise depends on nozzle-exit condition, gas composition and dissipation rate. This
is most pronounced for fuel-lean and supersonic conditions. The dependence of
the compositional noise on the gas mixture at fuel-lean conditions is particularly
noteworthy because it corresponds to the typical operating regime of modern
gas-turbine engines. This sensitivity is a direct result of stronger variations of the
mixture composition and inherent differences in the chemical potential at fuel-lean
conditions. This suggests that variations in the equivalence ratio, for instance during
the engine operation, or the consideration of low-emission combustor concepts, can
lead to noise modulation by induced compositional noise, in addition to direct and
entropy noise.

Effects of increasing scalar dissipation rate are mainly evident for fuel-lean
conditions, which is attributed to the leakage of reactants and incomplete combustion,
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FIGURE 3. Transfer-function ratios for (a–c) compositional noise to direct noise;
(d–f ) compositional noise to entropy noise; (g–i) compositional noise to direct noise after
a shock wave; and ( j–l) compositional noise to entropy noise after a shock wave. The
columns correspond to the three combustor exit conditions of figure 2. The vertical red
dashed line indicates the condition of an equivalence ratio of φ = 0.3.

thereby reducing the chemical potential function. Figure 2 shows the variation of
the chemical potential function as well as the specific Gibbs energy as a function
of the mixture fraction. It can be seen that the variation in g, and correspondingly
the magnitude of Ψ , are largest at fuel-lean conditions. While this broadening
effect is most easily seen in physical space, it also has a weaker sensitivity in
mixture-fraction space, leading to the differences with respect to χst. Simulations
at higher pressure conditions show that the pressure has a secondary effect on
the magnitude of the transfer function (results not shown). This is likely because
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differences in the chemical potential vary weakly with the temperature and pressure
because the chemical composition of the flame is not strongly changing along these
paths, and the chemical potential depends logarithmically on the pressure. At extreme
temperatures and pressures, where dissociation of diatomic gases occurs, the sensitivity
to the thermodynamic state is likely to be much stronger.

To connect these results to practical applications, we provide an estimate of
the ratio of composition noise to entropy noise by multiplying the corresponding
transfer-function ratios with the factor ξa/σa = δZa/(δTa/Ta). This factor is estimated
by considering that the mixture composition at the combustor exit reaches equilibrium
with a mean temperature of Ta = 1085 K, corresponding to an equivalence ratio of
φa = 0.3 and mean mixture fraction of Za = 0.0197 at the condition shown in
figure 2(a). The mixture-fraction distribution at the combustor exit is represented,
to a first approximation, by a beta-distribution, β(z). The fluctuation magnitude
is estimated as δZa =

√
ζZa(1− Za), where ζ ∈ [0, 1] is a coefficient for the

mixedness (Dimotakis & Miller 1990). In a combustor in which the mixing is
nearly completed with ζ = 10−4, the temperature fluctuation can be evaluated from
δTa = {

∫ 1
0 [T(z) − Ta]2β(z) dz}1/2, where T(z) is the flame solution from figure 2(a).

Hence, one finds that ξa/σa = 0.015, indicating that the noise ratio at subsonic
condition is below 0.1. However, this ratio increases to values of 0.5 (supercritical
nozzle) and exceeds values of 5 (supercritical nozzle with shock), as shown by the
red dashed lines in figure 3. This suggests that the compositional noise can become
a relevant contributor to indirect combustion noise at these conditions.

4. Conclusions and discussion

By modelling inhomogeneities in the gas composition exiting the combustor and
entering a nozzle, the compositional noise is identified as a source of indirect
combustion noise. To describe this source mechanism, the compact-nozzle theory
is extended to consider a multi-component gas mixture and the chemical potential
function. This theory is applied to subcritical and supercritical nozzle flows. It is found
that the compositional noise exhibits a strong dependence on the mixture composition,
and can become comparable to – and even exceed – direct noise and entropy noise
for supercritical nozzles and lean mixtures. This suggests that compositional noise
may require consideration with the implementation of low-emission combustors,
high-power-density engine cores, or compact burner concepts (Hultgren 2011; Chang,
Lee, Herbon & Kramer 2013).

The present analysis employed the compact-nozzle theory, which relies on
simplifications that are not strictly valid for He > 0 (see § 2). Therefore, the
compact-nozzle assumption can be relaxed to consider effects of finite nozzle-length
and wave phase differences, as discussed in § 1. In addition, multi-dimensional
high-fidelity numerical simulations provide further opportunities to assess the
importance of compositional noise, which is the subject of ongoing research.

This analysis also stipulates the need for experimental investigations to measure
compositional noise and obtain a firm evaluation of the level of compositional
inhomogeneities at the combustor exit in gas-turbine engines. Since the product
species of CO2, H2O, and CO are leading contributors to the chemical potential
function, gas-sampling probes, tunable diode laser absorption spectroscopy, and other
intrusive and non-intrusive techniques, could be employed to quantify the spatial and
temporal evolution of compositional inhomogeneities.
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