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ABSTRACT 

Orthopaedic surgery lends itself well to advances in technology. An area of interest and ongoing 

research is that of the production of scaffolds for use in trauma and elective surgery. 3D printing 

provides unprecedented accuracy in terms of micro- and macro-structure and geometry for scaffold 

production. It can also be utilised to construct scaffolds of a variety of different materials and more 

recently has allowed for the construction of bio-implants which recapitulate bone and cartilage 

tissue. This review seeks to look at the various methods of 3DP, the materials used, elements of 

functionality and design, as well as modifications to increase the biomechanics and bioactivity of 

3DP scaffolds. 
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INTRODUCTION  

3D printing (3DP), synonymous with rapid-prototyping as well as additive manufacturing, is the 

process whereby a 3D rendered image is used to create physical models. It has become a widely 

accepted and predictable method of creating bespoke prostheses, models for operative planning 

and simulation as well as scaffolds for tissue engineering.  

Initially a 3D model is constructed through computer-aided design or modelling software. The 

rendering is subsequently divided into finely sliced cross sections which are consequently printed. 

There are a variety of methods of 3DP. These include selective laser sintering (SLS), 

stereolithography (SLA), fused deposition modelling (FDM) and direct metal laser sintering (DMLS) 

[1].  

SLS uses a carbon dioxide laser to coalesce and thereby sinterize the printing material through the 

application of both thermal and laser energy. The powdered printer material is thereby heated to 

melting point causing the particles to fuse together to form a shape in a thin slice-by-slice manner 

[2]. DMLS is a similar process that uses an Ytterbium laser to fuse metal powder into a solid part by 

melting it locally. 

SLA uses photopolymerisation, whereby each successive slice of the 3D model is constructed 

through exposure of the printing material to ultraviolet or visible light. The printing material used is 

commonly a photoreactive liquid resin which, when it solidifies, generates a structure with the 

appropriate 3D micro- and macrostructure required [3]. 

FDM relies on extrusion of a thermoplastic filament through a temperature controlled extruder. The 

resultant semimolten polymer is then sequentially lowered and the next layer placed on top as it 

dries. This is the most commonly used method in most commercial systems [4].  

In the context of tissue engineering, this provides a paradigm leap. The precision, reproducibility and 

ability to construct a unique and patient specific implant are paramount in the success of this 

method.  



In the context of orthopaedic tissue engineering, the primary role of 3DP is to construct scaffolds. 

These act as templates for cell migration, adhesion and eventual maturation within an existing or 

surgically created defect. According to Hutmacher [5] a scaffold should be capable of the five 

following criteria: 

1. Display properties of bioresorption within the tissues they inserted into 

2. Display properties of biocompatibility within the tissues they inserted into 

3. They should display the biochemical properties necessary for cell attachment, growth and 

differentiation 

4. They should have the appropriate porosity (pore size, pore shape and interconnecting pore 

size) to allow for the construction of an interconnected porous network for cell growth and nutrient 

exchange 

5. They have the appropriate 3D shape and structure to adequately match the defect into 

which they are being implanted 

In addition to this, in the context of scaffolds for bone and cartilage defects, it should also create a 

stable interface with the host bone without formation of scar tissue. It should also allow for 

mechanical properties similar to bone or cartilage as well as being able to be appropriately sterilised 

prior to implantation.  

Of obvious importance are the biomechanical properties of the scaffold used. Regardless of the 

material used, the more rigid and solid a scaffold is, the abler it will be to sustain the mechanical 

forces required of it. Inversely the more porous and flexible a scaffold is, the more likely it is to allow 

integration and proliferation of cells. As such, there needs to be a compromise between these two 

for a successful scaffold to be constructed. 

Returning to porosity, the minimum pore size acceptable for appropriate bone ingrowth is 100-150 µ 

m, with most current fabricated scaffolds having porosity between 150-500µm. 

Conventionally, scaffolds were constructed via several methods including particulate leaching [6], 

freeze drying [7], foaming [8], emulsification [9], thermally induced phase separation [10] and 

electrospinning [11].  

The main problem with all of these technologies was the inability to precisely control shape, porosity 

and adequate biochemical properties which all define the scaffolds capability for defect integration 

and cell integration. 3DP overcomes these issues.  

 

METHODS 

One author reviewed the relevant literature. A total of 102 Articles were found of which 65 met the 

criteria for use. 

 



PRINCIPLES 

There exist several reasons why a bone or cartilaginous defect, whether post-traumatic, intra-

operative or pathological, may fail to heal appropriately. In these cases, the previous gold-standard 

has been the utilisation of autologous bone grafting, since these are inherently osteogenic (i.e. 

contain living cells able to proliferate and differentiate), osteoinductive (i.e. the ability to induce 

progenitor cells to differentiate into mature cells lines) and osteoconductive (can generate new 

bone by acting as a scaffold for bone ingrowth). The principles are similar for a cartilaginous graft. 

There is, however, a 30% complication rate associated with autologous grafts, including, donor site 

morbidity and pain, increased infection risk and likelihood of haematoma development. The risks of 

allograft are similar with the added risks of disease transmission from the donor to recipient. They 

also have to undergo various processes including irradiation, lyophilisation or freeze-drying to 

remove any immunogenic or pathogenic proteins [12]. 

This has paved the way for the development of synthetic grafts, with 3DP allowing for 

unprecedented accuracy in terms of scaffold micro- and macrostructure. This review aims to assess 

the research in progress with the variety of materials being used.  

 

MATERIALS  

 

Titanium and Other Metal Alloys 

No material is more synonymous with orthopaedic reconstructive surgery than metal. This is not 

without good reason, metals have outstanding mechanical-strength and resilience, making them 

excellent choices for load bearing orthopaedic implants with tolerable longevity.  

Titanium and its alloys are a wonderful example of this, with its inherent biocompatibility and 

enviable mechanical properties. Li et al [13] utilised 3DP technology (in their paper a hybrid 

combining features of DLMS and FDM which they have termed “3D fiber deposition”) to construct 5 

different titanium alloy scaffolds with varying porosity. There were low porosity (3DFL- 200 µm fibre 

spacing), middle porosity (3DF- 500 µm fibre spacing), high porosity (3DFH – 800 µm fibre spacing), 

double-layered (3DFDL – 500 µm fibre spacing) and gradient porosity (3DFG – 800 to 200 µm bottom 

to top fibre spacing). Three of each type of scaffold (of 4x7x8mm3) were subsequently inserted into a 

cage made of titanium. 

These were subsequently implanted into decorticated transverse processes of the lumbar spines of 

10 goats, with bone formation monitored over time through the use of fluorochrome markers. 12 

weeks following implantation, they removed the implants and studied the degree of bone formation 

present. The constructed scaffolds were found to be biocompatible, with no evidence of toxicity or 

peri-implant inflammation evident. They also found that 3DP allowed for accurate porosity.  

They found that the scaffold with the smallest pore size (3DFL) had the least bony ingrowth with that 

with the highest porosity (3DFH) had the most. Of note, the difference between 3DF and 3DFH were 

not statistically significant, showing that porosity is important up to a certain point (i.e. 500 µm is 



nearly as effective as 800 µm in terms of bone ingrowth). Of note, the double layered construct 

(3DFDL) demonstrated greater bone ingrowth than 3DF, owing to it larger surface area for bony 

ingrowth, despite similar porosity). 

As such, it seems likely, that in titanium implants, a pore size of 500 µm is ideal in terms of retaining 

some rigidity and thereby mechanical strength whilst allowing for near optimal bony ingrowth. A 

double layered structure is also beneficial by increasing the surface area available. They found that 

there was little bony contact or formation near the allow surface itself, due to the biological 

inertness of titanium. It may therefore be beneficial to coat the scaffolds with ceramic or HA to 

increase the bioactivity [14, 15]. 

Another exciting advantage of 3DP is that the implant is not required to be homogenous in terms of 

shape: It can be printed to fit a specific defect. Sumida et al. [16] have done interesting work which 

demonstrates that their 3DP titanium mesh devices for bone-augmentation had significant 

advantages over commercial titanium meshes which must be bent intra-operatively. They found that 

the custom made devices, constructed through DLMS, provided shorter operative times, with a 

lower degree of post-operative infection in the custom-made implant group as well. They also 

required fewer screws for fixation than the conventional mesh group. 

Titanium is a metal and, as a metal, it relies on the basic principles of metallurgy. One of these is that 

the temperature at which the metal is heated during the smelting and cast process is integral to 

defining the characteristics of that metal. Work by Gagg et al. [17] looks into the effects of sintering 

temperature on the biomechanics and morphology of a titanium implant. One factor is shrinking. 

This is inherent to the process of DLMS. The study found that this was reduced to approximately 21% 

at temperatures of 1110oC or below, but in excess of 33% above temperatures of 1110oC. They 

concluded that this can be estimated prior to printing and prepared for.  

The effect on mechanical strength was also assessed. They found that there was very little change in 

the young’s modulus across all temperatures, and that this was more dependent on porosity than 

sintering temperature. The yield strength, however, was demonstrably higher with a higher sintering 

temperature. They therefore concluded that a sintering period of around 2 hours with a minimum of 

1300oC was ideal in terms of enhancing the biomechanical properties of the implant.  

Most of the studies we have examined are based on DLMS printing, however, FDM is another 

important area of research and development. The argument for this technology is that it has 

enhanced control of the fabrication process with subsequent accuracy of both macro and 

microstructure. They created a “slurry” of Titanum alloy (Ti6Al4V) and methylcellulose and stearic 

acid as binders and dispersants, with 66% titanium powder concentration. The slurry was then 

extruded through plastic syringes onto the platform to create a scaffold layer by layer. After the fibre 

deposition was completed, the scaffold was then dried at room temperature followed by heating at 

50oC and subsequent sintering at 1250oC.   

The study proposes a number of advantages of this method over DLMS alone. They found it was 

more accurate in terms of the production of complex geometry through the variability of fibre 

spacing, layer thickness and fibre orientation. They also relate that there the structure has the 

sufficient strength and rigidity to maintain its shape during construction, not requiring any 

suspension or support. Finally, they relate that the technology can be used with a variety of 



materials, so the same machine can theoretically be used for titanium, ceramic or polymers or a 

hybrid composite.  

An alternative technique uses FDM to construct a sacrificial wax template, which is subsequently 

filled with titanium slurry through conventional powder metallurgy techniques [18]. The researching 

team then went on to culture pre-osteoblast cells with cell proliferation determined by DNA 

analysis. They found that a compaction pressure of 250MPa and sintering temperature of 1300oC 

(similar to the studies mentioned above) yielded the highest strength scaffolds. The porosity was 

developed at 66.8% (equivalent to average pore sizes between 400-500 µm) which yielded a Young’s 

modulus of almost 20.5 GPa in the axial direction and almost 4.35 in the transverse direction, 

significantly higher than trabecular bone (between 0.1-10.4 GPa) [19]. They obtained encouraging 

results, with adequate growth of pre-osteoblast cells on the surface of their scaffolds. This is 

therefore another very promising technique.  

As mentioned earlier, titanium is a biologically inert material. As such an ideal scaffold would utilise 

titanium’s inherent mechanical properties but enhance the biological activity through application of 

more active media. Lopez et al. [20] electrodeposited their titanium scaffolds with Calcium 

phosphate (CaP) to increase their biological activity. This was carried out to augment the 

osteoconductive properties of the implant by reducing inertness and increasing surface area. 

Furthermore, they seeded their implants with mesenchymal stem cells (MSC) harvested from the 

femur of 4 week-old rats. After 3 days the MSC impregnated scaffolds were implanted into the 

dorsal subcutaneous pouches of rats. They inserted uncoated titanium scaffolds, CaP coated 

scaffolds and finally the MSC impregnated CaP coated scaffolds. 

To typify their scaffolds, the average scaffolds porosity was 50% with consequent pore sizes of 1000 

µm, larger than most of our previously discussed studies. This lead to a compressive strength of 

almost 95 MPa and Young’s modulus of 12.5GPa. Unfortunately, despite the promising hypothesis of 

increased cell growth and osteoinduction on the coated and particularly MSC impregnated scaffolds, 

all scaffolds demonstrated similar results, with the presence of fibrous tissue encapsulation with 

orientated collagen fibres and mineralisation. However, this mineralisation lacked osteocyte 

lacunae, present in mineralised bone tissue. This may be explained by the relatively short sampling 

date (4 weeks post implantation). 

Work by Maleksaeedi et al. [21] utilised similar methods to our previous studies (FDM printing of a 

titanium/PVA mixture followed by sintering by an argon laser at 1000-1350oC). Where their work 

differs, is in the modification of their internal channels and thereby pores. They firstly coated the 

titanium with the more hydrophilic titanium oxide, using hydrothermal treatment. This reduced the 

biological inertness of titanium. The scaffold was then electrochemically coated with a 

hydroxyapatite precipitation. They demonstrated that this increased the bioactivity and surface area 

of the scaffold, however they failed to test the in-vivo/vitro effects of their scaffolds, stating that the 

technique requires further validation on animal models. 

As demonstrated above, titanium is a very versatile and appropriate choice for scaffolding. It is, 

however, not the only one. Lai et al. [22] constructed a scaffold consisting of poly lactide-co-

glycolide (PLGA), beta-tricalcium phosphate (TCP) and magnesium (Mg). This was fabricated using 

low temperature rapid-prototyping (FDM), yielding macropores of 450 µm and micropores between 

2.5-90 µm with an overall porosity of 85% on micro-computed tomography study. They yielded a 



Young’s modulus of 104MPa in the 15% Mg scaffolds. They impregnated the scaffolds with 

osteoblasts and demonstrated favourable proliferation of cells in their scaffolds after a 7 day culture. 

Of note this results were only favourable in the scaffolds containing Mg and not those which were 

constructed purely of TCP-PLGA. As such they were able to conclude that Mg demonstrates 

favourable osteoinductive properties, a property lacking in titanium alloys. 

 

Bioglasses 

Historically, bioglasses have been limited in their use as scaffolds due to their lower mechanical 

strength and resistance to fatigue failure. It is only recently that bioglasses have been constructed 

with similar compressive strengths to trabecular and cortical bone.  

What has been known is that bioglasses integrate well with host bone and soft tissue [23] as 

established by the advent of 45S5 bioglasses by Hench. They also demonstrate favourable qualities 

in terms of cell migration and proliferation [24]. This is in a large part due to the inherent properties 

of the bioglass construct to react leading to the formation of calcium compounds on their surface 

(largely HA or amorphous calcium phosphate) as well as their ability to alter the ionic composition of 

tissue leading to osteogenesis [25] and angiogenesis [26]. Their composition can also be altered to 

adjust their degradability.  

In terms of porosity, an overall porosity of >50% with pores of 100 µm is desirable [27,28]. Other 

methods of bioglass formation lack the accuracy and flexibility of 3DP. These include thermally 

induced bonding, polymer foam replication and freeze casting of suspensions.  

In terms of 3DP, this is still an area in its infancy. SLS and FDM methods have both been described in 

the literature. In terms of the FDM method they found that after 20 days in simulated body fluid the 

scaffolds developed HA layer on their surface, however mechanical strength and degradation was 

not disclosed [29]. They found, however, that the technique allowed for enhanced precision, with 

lines of 30mm possible. In terms of the SLS printed scaffolds, they were able to attain an anisotropic 

structure with overall compressive strength similar to cortical bone (136MPa) [30].  

Whilst the compressive strength of the scaffolds is similar to that of cortical bone, their use 

continues to be limited by their relative brittleness and resultant propensity toward fatigue failure. 

An area of future development seems to be through the advent of bioglass scaffolds with a polymer 

coating. This improves the brittleness of the bioglass composite by enhancing energy dissipation. 

Until this time, this author cannot recommend their use in load bearing orthopaedic implants.   

 

Bioceramics 

CaP ceramics have the inherit properties of being osteoconductive, biocompatible as well as 

degrading over time. HA scaffolds, produced from coral are a prime example of organic materials 

and synthetic CaP scaffolds can be produced through 3DP with the attendant accuracy allowing 

them to mimic the microstructure of trabecular bone. 



In terms of in vivo studies, both Tsurga [31] and Holmes [32] suggest a pore size of at least 200 µm 

with 400 optimum, in order to allow for the average osteon size of 223 µm and need for capillary 

bed formation. This needs to be married with the need for mechanical strength, which decreases 

with increased porosity, hence 300mm is the ideal pore size recommended [33]. Work by Fierz et al. 

[34], focusing specifically on HA scaffolds, corroborates 300mm as the ideal pore size. 

In terms of 3DP, both SLS and FDM techniques have been employed. Habibovic et al. [35] used SLS 

techniques to construct brushite and monetite implants of differing geometries. These were 

consequently implanted into the transverse processes of L1-4 in 12 Dutch goats as well as 

intramuscularly. Their results were highly promising in terms of osteoinduction at 12 weeks in both 

monetite and brushite. Unfortunately, the overall compressive strength of the brushite was almost 

21.7MPa and that of the monetite was 8.3MPa. Despite these factors, the implants did not fail in the 

goat transverse processes at 12 weeks.  

They also found a higher rate of conversion of their implants into HA intramuscularly. This 

phenomenon is also described in an earlier study [36] and is thought to be attributed to the 

increased fluid exchange in soft tissue.  This problem can be overcome by altering the composition 

of the CaP compound to alter the overall biodegradation of the implant. 

HA itself is a very well-known and often used bioceramic in orthopaedic implants and both it and 

TCP have remarkably good biocompatibility and biodegradability osteoconductive properties. Work 

by Becker at al. [37] has comparted scaffolds constructed from both, through an FDM technique. 

Both systems had an internal central canal to allow vascular or nerve transmission, aiding the 

osteogenic properties. These were then implanted intramuscularly into healthy rat specimens. These 

were then compared to the control, bovine HA. Overall, their CT scan densometry results 

demonstrated higher osteoinduction and density in the printed HA group. They also found the 

addition of a central canal was of benefit in increasing the vascularity and hence viability of the new 

bone formed. 

Addition of further compounds to the CaP ceramic matrix has also been explored. Recent work by 

Zhou et al. [38] has explored the addition of calcium sulphate based powder to CaP ceramics. They 

established significant improvements in powders constructed through this technique, with 

demonstrably higher compressive strength with increasing CaP:CaSO4 ratio. In terms of the type of 

CaP used, Hydroxyapatite (HA):CaSO4 powders showed better results than beta- tricalcium 

phosphate (β-TCP):CaSO4 powders, corroborating the results of the study above. 

Addition of zinc and silica oxide to CaP ceramics has also been explored. Work by Field et al. [39] 

looked at the addition of these oxides to TCP based scaffolds through a combination of FDM and SLS 

processes. Their results demonstrated that additions of these oxides through sintering onto the TCP 

scaffolds lead to an up to 2.5 fold increase in compressive strength as well as enhanced osteogenesis 

and scaffold mineralization. Other studies have also demonstrated that zinc increases alkaline 

phosphatase activity, leading to increased bone turnover and growth [40, 41]as well as increased 

bone ingrowth in scaffolds [42]. 

Addition of polymers appears to be a logical step in the construction of scaffolds, as bone is a 

composite of HA and collagen. In terms of composites, the ceramic is either HA or TCP (beta-

tricalcium phosphate) or a combination of the two. These are then combined with bovine, porcine or 



equine type 1 collagen. The commercially available products aren’t at present 3DP, however this is 

most likely the future of 3DP scaffold technology as it most closely mimics bone, by creating 

scaffolds with inherent mechanical strength as well as improved energy distribution, leading to 

improvements in fatigue failure. 

 

Polymers 

Both natural and synthetic polymers have been utilised in the production of scaffolds. In terms of 

natural polymers this includes collagen (and its hydrolysed product –gelatin), chitin, chitosan, starch 

and chondroitin sulphate. Synthetic polymers include PCL (poly--caprolactone), PLA (poly-lactic 

acid), PGA (poly-glycolic acid) and PBT (polybutylene terephthalate) [43].   

Most of the current literature is based on Starch as a polymer. Starch-based polymers demonstrate 

good overall degradation and porosity with increasing cellular migration and proliferation, which is 

desirable. Lam et al [44] used a starch-based polymer composite to construct their scaffolds through 

FDM type techniques. They were able to demonstrate adequate porosity and compressive strengths 

through this method, with evident cell migration and biocompatibility of their scaffolds.  

Their analysis of post-processing of scaffolds demonstrated that scaffolds with a circular pore design 

shrunk more than elliptical pores. They also found that treatment at 100oC for 1hr after printing 

helped to maintain the integrity of the scaffold, making the structure more resistant to hydrolysis 

and enzymatic degradation. In terms of mechanical properties, they discovered that the cylindrical 

shape of the scaffolds was significantly stiffer and stronger in terms of compressive strength, relative 

to bar and rod shaped scaffolds. Once again increasing porosity led to a reduction in stiffness. 

Unfortunately, they did not disclose the optimal porosity to attain cell migration and growth whilst 

maintaining mechanical strength.  

Similarly, SLS techniques have been employed in order to fabricate starch-based composites. In a 

study by Samoria et al. [45] they compared the particle sizes. Smaller particles led to a denser and 

less porous scaffold with higher mechanical strength and young’s modulus. Once again, this 

demonstrates that a compromise must be made between strength and porosity. 

FDM has also been used to fabricate synthetic grafts. An example of this is in work by Seyednejad et 

al. [46] constructed PCL based and a hydroxymethylglycolide-PCL (PHMGCL) polymer scaffold which 

were consequently implanted into subcutaneous pouches of ten female mice. They found, not only 

that FDM attained accurate macro and micro-structural properties, but also that the PHMGCL 

degraded faster in tissue with a more profound tissue integration than the PCL grafts, showing that 

adding particular groups to existing polymers might enhance their bioactivity and hence success as a 

scaffold. 

PBT is another synthetic polymer which has been used to fabricate scaffolds using FDM. Tellis et al. 

modelled their scaffolds on samples taken from the medial femoral condyle of an adult male hound 

[47]. They arranged the porosity of their scaffolds based on the bone of the dog and ensured that it 

closely followed that of human femoral neck trabecular cadaveric bone (71-84%) [48, 49]. They 

made a total of 90 scaffolds and looked at four different scaffold types by varying the geometry of 

the raster angles by creating alternating raster angle values leading to complex and less complex 



scaffold geometries. They found that the complex interconnected pore structure group had 

significantly less compressive strength than that of the simple linear pore structure group, with 

decreases in mechanical strength in both with increasing porosity. As such, a highly organised and 

almost uniform scaffold pattern might be preferable to maintain mechanical strength. They also 

concluded that saline soaking did not affect the mechanical strength as much as in PCL based 

polymer scaffolds, making it preferable in en-vivo use.  

True biomaterials 

It stands to reason that the most viable and biologically active scaffold will contain components of 

human cartilage or bone, either at a macro- or microscopic level. Rapid prototyping has engendered 

a paradigm leap in the construction of such scaffolds. 

Work by Fedorovich et al. [50] demonstrates the potential application of 3DP true-biological 

scaffolds. They used an FDM type technique to create hydrogel scaffolds seeded with bone marrow 

stromal cells (BMSCs). They found that the majority of the extruded cells survived in similar 

quanitities to non-extruded cells. Furthermore, the cells were also able to differentiate and 

proliferate along their osteoblast lineage.  

Building upon this technology, work by Discher et al. [51] demonstrate that the scaffold stiffness will 

alter the proliferation, growth and also lineage commitments of stem cells, most likely through 

piezoelectric properties as discussed in this review. The most commonly used scaffolds, hydrogels 

such as alginate or Luthrol, are far less stiff and mechanically weaker than normal bone, thereby 

limiting load-bearing of the graft, until they are replaced by bone or cartilage.  

One way of altering the biomechanics and bioactivity of the hydrogel groups is through covalent UV 

cross-linking [52], as well as modification with matrix-metalloproteinase (MMP) sites, which will 

degrade at different rates depending on biological activity within host tissue, allowing degradation 

to coincide with cartilage or bone growth [53]. Further work has demonstrated that modification of 

hydrogels with adhesive sequences which mimic host tissue, encourage integration [54], as well as 

addition of CaP microparticles to promote bone formation [55]. Addition of growth factors will also 

encourage cell differentiation and growth, and will be discussed later in the review.   

Whilst this demonstrates the viability of bone scaffolds, one area that has been fraught with 

difficulty in terms of repair is cartilage. This is due to the notoriously poor vascularity of host tissue, 

creating an environment unsuitable to scaffold integration and consequent cell growth and 

proliferation. Work by Shipley et al. [56] utilized cartilage cells from the donor patient and seeded 

these in a hydrogel scaffold, created using FDM type 3DP. The scaffolds were then enriched with 

nutrient rich culture media and at the same time waste material was removed, obviating the need 

for host blood supply. Through a series of tests and ultimately homogenization of their culture 

media and optimization of cell density and scaffold geometry, they were able to demonstrate that 

this is a promising technique for the future of cartilage repair.  

This work has paved the way for more recent work by Roach et al. [57] looking at 3DP to construct 

osteochondral grafts for repair of a large femoral condyle defect in dogs. They used a number of 

techniques to ascertain the geometry of the defects, namely mode-ultrasound, MRI, CT, 

cryosectioning and stereophotogrammetry. They then constructed 3D models for their scaffolds 



which were made to take up at least 70% of the defect area. The PDMS (poly-dimethylsiloxane) 

scaffolds were subsequently 3DP, through an FDM technique. This plastic scaffold was then used to 

construct a negative mould into which a natural polymer, agarose, was inserted. The agarose was 

impregnated with chondrogenic media containing canine chondrocytes. Their data is still pending, 

but demonstrates yet another exciting application of 3DP in bio-scaffolds.  

 

Additional modifications  

 

Pizoelectricity 

Pizoelectricity refers to the inherent properties of some materials to generate an electrical charge in 

response to mechanical stress and deformation. In terms of bone, this was first described in 1955 

[58], whereby a mechanical stimulus leads to an electric one that promotes bone growth and 

remodeling according to Wolff’s law. In fact, bone can be considered to be the archetypical 

piezoelectric tissue. One of the most studied conductive polymers for tissue and biomedical 

engineering is polypyrrole (PPy) and others include Polyaniline (PANI), poly-3,4-

ethylenedioxythiophene (PEDOT), carbon nanotubes (CNTs), poly-vinylidene fluoride (PVDF) and 

vinylidene fluoride (VDF). They all function via inducing electrical signals to the cells via 

mechanoelectrical transduction, i.e. once a mechanical stimulus is applied [59].  

In terms of application, PVDF is the most widely used polymer in bone tissue engineering 

applications. In a novel experiment by Damaraju et al. [60] PVDF fibres demonstrated increased ALP 

activity and consequently increased mineralization of the scaffold. Unfortunately, PVDF is not 

degradable making implantation problematic, but it can still be used as a scaffold to culture cells pre 

implantation. In order to use it as an implantable scaffold, alterations will be required to make it 

more biodegradable.  

Growth Factor Injection  

There is an increasing amount of work being carried out in the stimulation of bone and cartilage 

growth via application of growth factors (GFs). Local delivery is preferred, as systemic delivery has 

additional problems related to bioavailability, short half-lives and unwanted systemic effects. In 

terms of GFs, several are key to bone growth and development. These include TGF-beta, BMP, IGF 

and FGF which all act to increase bone healing and osteoinduction [61]. VEGF is a synergistic GF, 

which, when combined with the others, increases osteogenesis through improving the vascularity of 

the bony ingrowth into a scaffold [62].  

In terms of delivery, the scaffolds can be many of those discussed earlier. The scaffold will ideally 

contain several of these GFs with release of different factors at different times in the tissue 

regenerative process. Of particular advantage would be a scaffold which exhibits ideal porosity and 

mechanical strength as well as demonstrating piezoelectric properties married with delivery of 

osteoinductive GFs and VEGF. Further work still needs to be done to investigate which material will 

be the best to provide these attributes.  



 

Antimicrobial Properties  

Infection can be a devastating outcome in any intervention. The use of scaffolds which elute 

antimicrobial agents can be of dual benefit: they can help fight existing infection, similar to 

conventional drug eluting spacer devices, or they can be used to prevent superimposed infection in 

those at risk.  

Although not an orthopaedic study, Sandler et al. [63] devised a model antimicrobial agent that they 

termed an “active pharmaceutical ingredient” (API). They used FDM type 3DP to generate their PLA 

models which eluted nitrofurantoin. They found 85% inhibition of biofilm formation on the 

nitrofurantoin eluting models relative to those without. Similar work has been demonstrated by Gu 

et al. [64] who used inkjet printing of antibiotics onto the surface of orthopaedic implants, resulting 

in reduced biofilm production.  

Huang et al. [65] created a PLA polymer scaffold using FDM type 3DP. The PLA was mixed with 

levofloxacin powder and they constructed scaffolds from it, varying the design to alter the release of 

levofloxacin. They were able to establish an ideal binder solution of ethanol and acetone mix as well 

as demonstrate that alterations in the microstructure lead to different elution and release profiles. 

They compared the results from 3DP scaffolds and those via and older technique of scaffold 

production, conventional compression moulding. They found that 3DP lead to greater accuracy and 

more precise microstructure which allowed them to precisely engineer levofloxacin delivery.   

 

Conclusion 

3DP is a rapidly advancing technology allowing for the unprecedented production of scaffolds for 

tissue engineering in orthopaedic surgery. The plethora materials, modifications as well as the ability 

to create a “living implant” through integration of transplanted stem and mature cells demonstrate 

that this technology is the future of tissue engineering. Further work will need to focus on the 

optimum material, modification and cell integration for scaffold production in both trauma and 

elective work. This technology will become an exciting prospect in years to come. 
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