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Abstract

TP53 mutations are ubiquitous in high-grade serous ovarian carcinomas (HGSOC), and the presence of TP53
mutation discriminates between high and low-grade serous carcinomas and is now an important biomarker for
clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53
mutation but its accuracy has not been established. The objective of this study was to test whether improved
methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation
sequencing (NGS). Four clinical p53 IHC assays and tagged-amplicon NGS for TP53 were performed on 171
HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete
absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any
abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining
predicted gain-of-function (GOF or nonsynonymous), loss-of-function (LOF including stopgain, indel, splicing)
or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171
(99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ter-
nary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and
0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at
0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated
with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence
of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of
a low-grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF
mutation, which limits sensitivity for binary prediction of mutation to 96%.
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Introduction

High-grade serous ovarian carcinoma (HGSOC) is
the most aggressive histological type of ovarian car-
cinoma and pathogenic TP53 mutation is present in
>96% of cases [1]. TP53 mutation is frequently pres-
ent in fallopian tube precursor lesions suggesting that
it is an early driver event [2–4]. HGSOC show

remarkable intratumoural genetic heterogeneity char-
acterized by divergent copy number abnormalities
and frequent passenger substitutions – however
owing to their presence in the ancestral clone, TP53
mutations are detectable in all subclones of an indi-
vidual’s HGSOC [5–7]. The ubiquitous presence of
TP53 mutations in HGSOC provides an important
diagnostic feature for small tissue biopsies,
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particularly in distinguishing low-grade serous carci-
noma from HGSOC, and has been used for personal-
ized disease monitoring using circulating tumour
DNA in plasma samples [8–11].

Despite the clinical importance of TP53 mutation,
rapid sequencing is not widely available and immu-
nohistochemistry (IHC) remains the commonest
method to infer TP53 mutational status. However,
the accuracy of IHC as a predictor of TP53 mutation
in ovarian carcinoma has not been precisely defined.
Early studies showed only a modest correlation
between p53 staining pattern and TP53 mutation
although these results were based on limited somatic
sequencing or only scored overexpression of p53
[12–17]. We have previously proposed a 3-tier scor-
ing system to describe p53 staining in ovarian carci-
noma: overexpression (OE), complete absence (CA)
or wild-type (WT) [18]. OE is most commonly asso-
ciated with nonsynonymous TP53 mutations, which
interfere with MDM2-induced ubiquitination and
degradation of p53, resulting in excessive p53 protein
accumulation in the nucleus. CA is associated with
nonsense mutations, which introduce a premature
stop codon that triggers nonsense-mediated RNA
decay, or indel and splice acceptor mutations that
interfere with correct protein translation by introduc-
ing frame shifts or aberrant splicing. WT expression
is characterized by a variable staining intensity in a
variable number of tumour cell nuclei. Depending on
the proliferation and maturation status of tumour
cells, the number of variably intense staining nuclei
can range from a few to even the majority. Interpre-
tation with the 3-tier pattern increases the sensitivity
of IHC and abnormal p53 staining was observed in
88–94% of HGSOC as compared to 14% of endome-
trioid ovarian carcinoma (EC) [18,19]. However,
comparison of the 3-tier pattern to TP53 mutation in
a study of 57 ovarian carcinomas showed that abnor-
mal p53 expression predicted pathogenic mutation
with a sensitivity of 94% but a specificity of only
38% [20].

The functional consequences of TP53 mutations
have been divided into two classes with distinct bio-
logical effects (reviewed in [21]). Nonsynonymous
mutations have been shown to induce gain of func-
tion (GOF) class effects including metabolic reprog-
ramming, chromatin reorganization and increased
motility and invasion [22,23]. Loss of function (LOF)
class mutations, that include stopgain, frameshift and
splicing mutations, have weaker tumourigenic effects
than GOF mutations in genetically engineered mouse
models [24,25]. Distinguishing between GOF and
LOF mutations may be clinically important in
HGSOC as LOF mutations have been associated with

reduced overall survival [18,26,27]. In addition, the

emergence of new clinical trials testing strategies to

restore wild-type p53 conformation [28–31], or to

reinstate protein translation of LOF mutations [32,33]

emphasizes the need for robust and reliable IHC bio-

markers for p53.
The primary aim of this study was to determine

the sensitivity and specificity of IHC to predict the

presence and class of TP53 mutation. We compared

clinically relevant assays for p53 staining to next

generation sequencing of tumour tissue as the gold

standard reference. The secondary aim was to investi-

gate misclassified cases to categorize TP53 mutations

with unexpected patterns of p53 staining.

Methods

Study cohort and DNA extraction

This study was granted ethical approval REB15-

0945. The study cohort was sourced from the Cana-

dian Ovarian Experimental Unified Resource

(COEUR) [19,34] and the Pathology Department of

Calgary Laboratory Services (CLS) [35]. All cases

underwent additional staining with histotype-specific

IHC as part of detailed pathological review to assign

the correct ovarian histotype [19]. Initial sequencing

analysis was carried out on fresh-frozen tumour tis-

sue from the COEUR cohort and formalin-fixed par-

affin embedded (FFPE) tissue from the CLS cohort.

DNA was extracted from fresh-frozen material as

previously described [34]. For FFPE material, DNA

was extracted from two 1 mm tissue microarray cores

using the QIAam Micro DNA kit (Qiagen) following

the manufacturer’s protocol except that additional

incubation with lysis buffer was performed at 958C

for 15 min before adding proteinase K.

Tagged-amplicon sequencing

TP53 was sequenced starting with amplification of

the entire coding sequence exon 2–11 of TP53 with

flanking splice sites using tagged-amplicon sequenc-

ing with the Fluidigm Access Array 48.48 platform

as described previously [9]. Tagged-amplicon

sequencing libraries were sequenced on the Illumina

HiSeq2000 or MiSeq platforms using paired-end

100bp reads (primer sequences available upon

request). Sequencing data and variant verification

were performed using an in-house analysis pipeline

and IGV software as described [9,36].
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Sanger sequencing

The TP53 coding sequences (exons 2–11) were
amplified as described [37] with the following modi-
fications: PCR reactions were performed in 25 ll,
universal primers M13 forward and M13 reverse
were incorporated into primer pairs and used to
sequence in both the forward and reverse directions.
To sequence exon 7, an alternative forward primer
was used (TP53-7F: CAGGTCTCCCCAAGGCGC
AC) to avoid a poly A tract downstream of the exon
7 forward primer described in [37] (CATCCTGGCT
AACGGTGAAAC). Mutational analysis was per-
formed using Mutation Surveyor Software version
4.0.4 (SoftGenetics) using default settings.

Immunohistochemistry

Tissue microarrays were constructed as described
[34] using 0.6 mm cores from FFPE archival tumour
tissue. Pathological scoring was performed by sub-
specialized gynaecological pathologists (MK, SL).
Four methods for clinical immunohistochemical anal-
ysis of p53 staining were performed as described
[18,19,34,38] using 4 mm sections from tissue micro-
arrays and tumour blocks.

Statistical analysis

The diagnostic test performance of p53 IHC was quan-
tified by calculating sensitivity, specificity and accu-
racy using TP53 mutation status as the reference. Two
p53 IHC classifications were evaluated: (1) binary clas-
sification where abnormal or normal staining was com-
pared to the presence or absence of a deleterious TP53
mutation and (2) ternary classification where OE, CA
or WT staining was compared to GOF, LOF mutation
classes or cases with no detectable mutation (NDM),
respectively (GOF for any nonsynonymous mutation,
LOF for any stopgain, indel or splicing mutation and
NDM for normal or synonymous mutations). Cases that
were not assessable for IHC were excluded from com-
parison. Cases with cytoplasmic staining were excluded
from ternary classification. Statistical analyses were
performed using the R statistical language [39] and
classification analysis was performed using the caret
package [40]. The complete statistical analysis is pro-
vided in the Supplementary Analytical File as a knitr
document which fully reproduces the analyses [41].

Results

The study design selected HGSOC and EC cases for
TP53 sequencing and p53 IHC from two ovarian car-

cinoma cohorts available on tissue microarrays that
had been subjected to detailed pathology review and
immunophenotyping to accurately determine histo-
type. For the primary analysis, IHC and sequencing
results were independently generated and the inter-
pretation of mutation and staining pattern was
blinded. Figure 1a shows the staining patterns recog-
nized for p53 IHC scoring.

TP53 mutation analysis

Figure 1b shows the flow of samples through the
study. 315 cases of HGSOC and EC represented on
three tissue microarrays were initially selected for
eligibility, from which 252 (80%) DNAs were sub-
jected to tagged-amplicon sequencing. Supplemen-
tary material, Figure S1 shows the sequencing
strategy for mutation detection. After quality control
(supplementary material, Table S1), 251 cases were
evaluable for mutation status (99.6%), which con-
sisted of 171 HGSOC and 80 EC cases. Median
sequencing depth for TP53 was estimated as 33690
(IQR 1756–6913) and median TP53 mutant allelic
fraction was 0.65 (IQR 0.45–0.78).

Table 1 shows the clinical features for the evalu-
able 251 cases. TP53 mutations were detected in 177
(71%) cases, which included one synonymous muta-
tion in an EC that was not considered deleterious.
The most common amino acid substitutions were
p.R175H (N 5 9), p.Y220C (N 5 6), p.R273H (N 5 5)
and p.R196X (N 5 4) (Figure 2a). Deleterious TP53
mutations were present in 169 (99%) HGSOC and 7
(8.8%) EC cases. In HGSOC cases there were 112
(66%) GOF and 57 (33%) predicted LOF mutations.
The EC cases had 5 (6.3%) GOF and 2 (2.5%) pre-
dicted LOF mutations (Figure 2b).

Immunohistochemical staining for p53

Four IHC assays commonly used for clinical report-
ing of p53 status were selected for comparison (Table
2). Inspection of the 3-tier scores for p53 staining
across 171 HGSOC and 80 EC cases on TMAs
revealed systematic differences in the performance of
the four assays (Figure 3a and Supplementary Ana-
lytical File). Three cases showed strong cytoplasmic
staining (CY) without nuclear overexpression and
were scored separately (discussed below). Inspection
of the IHC results for EC cases, where a low fre-
quency of TP53 mutation was expected, showed that
scoring for WT was highest for method 1 (91%,
N573) and was progressively lower with methods 2–
4 (Figure 3a). For scoring CA, method 1 had the
lowest frequency in EC (5%, N 5 4). For the HGSOC
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cases, where ubiquitous mutation was expected,
method 1 had the highest frequency for scoring of
OE (69%, N 5 118) and the lowest for CA (23%,
N 5 39). Cross-comparison of the TMA images sug-
gested that method 1 had the strongest staining for
p53 across EC and HGSOC cases (Figure 3b) and
that scoring of the weaker staining from methods 2–4
frequently shifted interpretation of cases from WT to
CA (supplementary material, Figure S2 and Supple-
mentary Analytical File). Inter-rater variability for
scoring with method 1 by a second, independent
observer showed very good agreement (j50:88;
Cohen’s Kappa for two raters with equal weights,
N 5 148, p� 0:001). The contingency table for the
two observers’ scores showed that disagreement most
commonly occurred for CA and WT staining (Sup-
plementary Analytical File).

Primary analysis of p53 IHC as predictor of TP53
mutation class

The performance of p53 IHC in predicting TP53
mutation was tested both as (1) a binary classifier for

Table 1. Study demographics

HGSOC EC

N (total 5 251) 171 80

Age (median, IQR) 58 (52–67) 55 (49–66)

Stage

I 7 (4%) 50 (63%)

II 7 (4%) 19 (24%)

III 113 (66%) 6 (8%)

IV 31 (18%) 2 (3%)

NA 13 (8%) 3 (4%)

HGSOC, high-grade serous ovarian carcinoma; EC, endometrioid carcinoma;
IQR, interquartile range; NA, not available.

Figure 1. p53 scoring system and flow of samples through study. (a) p53 IHC scoring system: Normal or wild type pattern (WT) is
characterized by variable staining intensity. Abnormal overexpression (OE) shows strongly intense staining in all tumour cell nuclei.
Abnormal complete absence (CA) shows complete absence of expression within tumour cell nuclei. Note the variable intensity of nor-
mal p53 expression seen in fibroblasts and lymphocytes which act as an intrinsic control. Abnormal cytoplasmic staining (CY) shows
diffuse cytoplasmic staining in the absence of strong nuclear staining. (b) Flow of samples through the study.

250 M K€obel et al

VC 2016 The Authors The Journal of Pathology: Clinical Research published by The Pathological
Society of Great Britain and Ireland and John Wiley & Sons Ltd

J Path: Clin Res October 2016; 2: 247–258



any pathogenic TP53 mutation and (2) as a ternary

classifier where OE, CA or WT staining was com-

pared to GOF, LOF TP53 mutations or NDM. The

sensitivity and specificity results for these compari-

sons are shown in Figure 4 and Table 3 (see also
Supplementary Analytical File). For binary classifica-

tion, IHC method 2 and 1 had the highest sensitivity

and there was a progressive increase in specificity

from method 4 to method 1. For ternary classifica-

tion, method 1 had highest sensitivity for GOF muta-

tions and was markedly better for WT predictions

(Figure 4a). However, the sensitivity for method 1

for prediction of LOF mutation was markedly

reduced compared to other methods. For both binary

and ternary classification, method 1 had the highest

overall accuracy (Figure 4b).

Secondary analysis

Twenty-three (9%) cases were discordant between

the class of TP53 mutation and the IHC staining pat-

tern (supplementary material, Table S2). These cases
were subjected to an independent second analysis

with repeat sequencing from new DNA samples and

IHC staining on whole sections from the original tis-

sue blocks using method 1. From 21 evaluable

sequences, the mutation result was revised in two

cases from nonsynonymous to NDM which was in

agreement with the IHC staining. The IHC staining

was revised in five cases from staining whole sec-

tions: WT to CA (N 5 1), WT to OE (N 5 1) and CA

to WT (N 5 3) (supplementary material, Figure S3).
The revised data for method 1 was then used to re-

estimate the classifier performance for method 1. The

accuracy of the binary classifier to predict any TP53
mutation increased from 0.94 to 0.97 (Figure 4b)

with sensitivity of 0.96 and specificity of 1.00. The

accuracy to predict GOF and NDM increased (Table

3) but the sensitivity to detect LOF mutations

remained low (0.76).

Discordant cases

Comparison of the data from primary and secondary

analysis showed that 13 HGSOC cases that were pre-

dicted to have LOF mutations did not show the

expected CA pattern (Table 4). The observed staining

patterns (OE, N 5 6; WT, N 5 7) were consistent

across multiple experiments, suggesting that these

results did not simply arise from mistakes in

interpretation.
Comparison of the mutation and staining data pro-

vided partial explanations for why p53 protein was

detectable (Figures 1a and 5). For example, two unre-

lated cases had an inframe p.I255del1 mutation that

did not alter the reading frame. The observed OE

pattern in these cases suggests this mutation may

give rise to a nonsynonymous conformational change.

Figure 2. Frequency and position of TP53 mutations. (a) Schematic of the TP53 gene showing protein domains (open boxes) with lol-
lipops showing positions and counts of identified mutations. Mutation type is indicated by circle fill: white, non-synonymous; black,
indel or in-frame; grey, codons with >1 mutation type. Black rectangles below the cartoon show codon positions of TP53 mutations
with discordant p53 IHC results. (TAD, transactivation domain; DBD, DNA binding domain; TMD, tetramerization domain). (b) Barplot
showing the frequency and type of TP53 mutation by histotype.

Table 2. Immunohistochemical assays

IHC method Antibody (Supplier) IHC Platform Dilution Pretreatment

1 DO-7 (DAKO) Leica Bond Max 1:2500 ER2

2 DO-1 (Santa Cruz) Ventana Discovery Ultra 1:200 CC2

3 DO-7 (DAKO) Ventana Discovery Ultra 1:400 CC1

4 E26 (Epitomics) DAKO Plus Autostainer 1:100 pH6
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Other LOF mutations predicted mutant p53 protein
with lengths >250 amino acids (Figure 5).

WT staining was observed in nine HGSOC (5.3%)
of which two (1.2%) did not have a detectable TP53
mutation. Both cases expressed WT1 as evidence of
serous cell lineage and showed non-specific solid
architecture and moderate nuclear atypia by morphol-
ogy (supplementary material, Figure S4).

Cytoplasmic staining

Cytoplasmic staining (CY) without nuclear overex-
pression of p53 was observed in four (2.3%) cases of
HGSOC and these results were confirmed on full
section staining (supplementary material, Figure S5).
For two cases, CY staining was also confirmed in
independent specimens collected at recurrence. Other
nuclear markers (PAX8, WT1, ER) assessed on all
four cases did not show any evidence of abnormal
staining, excluding the possibility that CY staining
for p53 could have arisen artefactually from

Figure 3. Tissue microarray analysis of p53 IHC staining. (a)
Barplot showing the frequency of p53 IHC staining patterns in
endometrioid (EC; N 5 80) and high-grade serous ovarian carci-
noma (HGSOC; N 5 171) cases. Staining is scored as follows:
complete absence (CA) of expression in tumour cells; wild-type
(WT) pattern showing nuclear staining with variable intensity in
1–80% of tumour cell nuclei; overexpression (OE) showing
nuclear staining with strong intensity in >80% of tumour cell
nuclei; strong cytoplasmic (CY) staining with absent nuclear
staining; unscored for non-assessable cores. (b) Representative
tissue microarray images showing p53 immunohistochemical
staining patterns.

Figure 4. Analysis of IHC method to predict presence of TP53
mutation. (a) Cleveland dot plot showing the sensitivity and
specificity for binary and ternary predictions of the class of
TP53 mutations. (b) Dot plot showing the overall accuracy of
IHC methods for binary and ternary predictions. Error bars show
95% confidence limits.
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compromised tissue. The TP53 mutations in all four
cases predicted disruption of the p53 nuclear local-
ization signalling domain located at 316–325 aa.

Discussion

These results show that use of an optimized p53 IHC
assay is an accurate predictor of the presence and
class of TP53 mutations in ovarian carcinoma with
high specificity and sensitivity for prediction of GOF
mutations and NDM status.

The observed TP53 mutation frequency for
HGSOC cases was 99% compared to 94–97% in pre-
vious studies [1,42]. This is likely to be a result of
the higher sensitivity of targeted NGS sequencing [9]
and improvements in experimental design in this
study (including stringent sample selection, manual
review of mutation calls and secondary analysis of
discordant cases). We observed significant differen-
ces in accuracy for the four clinical IHC assays
tested (Figure 4). Method 1 had the highest intensity
of staining (Figure 3) and had less misclassification.
Previous studies have focused on OE as the most
important determinant of abnormal p53 staining and
p53 IHC has not been optimized for the lower cut-off
needed to distinguish WT from CA. Across the dif-
ferent methods weakly stained WT cases were fre-
quently misclassification as CA causing false positive
mutation predictions. Weakly stained assays per-
formed without intrinsic controls cannot reliably dis-

tinguish CA from WT. Therefore, we propose that
use of intrinsic control cells provides an internal ref-
erence for IHC scoring. Despite a common belief
that p53 IHC cannot detect p53 wild type protein, the
DO7 antibody used in Method 1 robustly detects p53
expression in normal cells including stromal fibro-
blasts and lymphocytes when used with recent
improvements in polymer-based IHC detection sys-
tems. It is possible that p53-positive intraepithelial
lymphocytes in a CA case could be falsely read as
p53 WT tumour cells, particularly since some
BRCA1 and BRCA2 HGSOC can have a very dense
intraepithelial lymphocytic infiltrate [43]. Yet we
believe that a titration towards a stronger staining
IHC assay is preferred, not only for better interpreta-
tion at the lower cut-off, but also because of better
distinction of OE from high WT cases at the upper
cut-off. Because stronger staining moves that inter-
pretation away from a cut-off definition by % posi-
tive tumour cells towards a pattern interpretation
with virtually all tumour cells strongly staining in
OE versus the variable intensity with some negative
tumour cells seen in WT. Our data strongly support
the contention that further assay comparison and
training in interpretation are needed for p53 IHC to
be used as a diagnostic and predictive test [44].

Our data show that optimized p53 IHC can have
100% specificity for binary classification of patho-
genic TP53 mutation in ovarian carcinoma. This is a
remarkable increase compared to 38% reported previ-
ously [20]. In the prior study, 7/30 cases with OE
and 6/17 cases with CA had NDM, which probably
resulted from only sequencing exons 4–9 of TP53 or
differences in IHC interpretation. We reduced the
number of false positives (cases in which p53 IHC
predicts mutation but mutation is absent) for three
main reasons: first, we improved identification of
TP53 mutation through sensitive NGS of the entire
coding sequence, second, we improved identification
of p53 IHC patterns corresponding with the TP53
mutation by optimized IHC, and third, we improved

Table 3. Concordance of p53 IHC with TP53 mutation

Mutation type

IHC

method Sensitivity Specificity

Balanced

accuracy

Binary 1 0.93 0.95 0.94

2 0.95 0.82 0.89

3 0.90 0.78 0.84

4 0.87 0.73 0.80

1 Revised 0.96 1.00 0.98

Gain of function 1 0.97 0.95 0.96

2 0.95 0.95 0.95

3 0.90 0.98 0.94

4 0.85 0.97 0.91

1 Revised 1.00 0.95 0.98

Loss of function 1 0.73 0.98 0.86

2 0.83 0.93 0.88

3 0.84 0.91 0.88

4 0.83 0.89 0.86

1 Revised 0.76 1.00 0.88

NDM 1 0.95 0.93 0.94

2 0.82 0.95 0.88

3 0.78 0.90 0.84

4 0.73 0.87 0.80

1 Revised 1.00 0.96 0.98

NDM, no detectable mutation.

Table 4. Concordance of p53 expression from IHC method 1
with TP53 mutation status in all cases (HGSOC1EC) after sec-
ondary analysis

IHC Nonsynonymous Indel Stopgain Splicing NDM Total

OE 115 2 2 2 0 121

CA 0 16 13 12 0 41

CY 0 2 2 0 0 4

WT 0 4 0 3 76 83

Total 115 24 17 17 76 249

OE, p53 overexpression; CA, p53 complete absence of expression; WT, p53
wild type pattern of expression; NDM, no detectable mutation; HGSOC,
high-grade serous ovarian carcinoma; EC, endometrioid carcinoma.
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concordance of both methods by performing a sec-
ondary analysis.

In the initial sequencing analysis, we already per-
formed quality control for cases failing sequencing
and HGSOC with NDM. We repeated DNA extrac-
tion from new cores taken from FFPE blocks. By
doing so, we avoided the pitfall of simply not evalu-

ating tumour tissue. This resulted in an additional
identification of six TP53 mutations in eight initially
NDM HGSOC in a second round of NGS. Short read
NGS, which is thought of having lower sensitivity
for indel detection, performed well. Only one splice
acceptor mutation (c.356-2delA) was missed by NGS
and only detected by Sanger sequencing (but was CA

Figure 5. Cases with discordant TP53 mutation and expected p53 IHC staining pattern.
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by IHC and therefore would have been caught in the
secondary analysis).

The secondary analysis was performed for NGS-
IHC discordant cases and included DNA re-extraction,
re-sequencing and full section IHC. After knowing the
mutation and p53 IHC status, the interpretation of
TP53 sequencing data was revised in 2/21 cases and
p53 IHC data in 5/23 cases. Three EC with NDM
showed CA on the tissue microarray cores. We did not
consider the intrinsic control in the initial interpreta-
tion, which was absent in these cases. On full section,
the central areas including the TMA punch holes also
showed CA without intrinsic control but there was WT
towards the edges of the section. Heterogeneous p53
expression is likely caused by antigen degradation due
to delayed fixation of the tissue center. To avoid such
pitfalls in interpretation, we recommend that only
cases with intrinsic control present should be inter-
preted. The secondary analysis increased the accuracy
of p53 IHC as binary or class predictor of the TP53
mutation by 3.6% each. These examples illustrate how
both methods can complement each other. A discord-
ance forces re-evalution of both assays. For the most
accurate assessment of mutation status currently within
the realm of clinical trials, we recommend a combina-
tion of NGS and IHC.

Although the secondary analysis resolved issues
with discordant GOF cases or NDM cases, it did not
improve performance for the LOF mutation class
where 13 cases (24%) did not stain as CA. This limits
the overall sensitivity of p53 IHC for the binary TP53
mutational status to 96% and the overall accuracy for
the class of mutation to 94.7%, the latter is still higher
compared to 83% in a previous study [20]. Detailed
review of these cases show that the majority have
detectable p53 expression owing to 30 mutations. Stop-
gains associated with CA occur before amino acid 213
while stopgains associated with WT occur after amino
acids 245. Because the DO7 antibody used in method
1 recognizes the N-terminal region between amino
acids 19 and 26 we speculate that early stopgains are
subjected to nonsense-mediated RNA decay while
later stopgains are resulting in expression of truncated
p53 protein. In other cases indels or splicing mutations
resulted in OE. An in frame indel is likely having the
same conformational effect as nonsynonymous muta-
tions. In two cases, splice site mutations in direct prox-
imity result in CA and OE. It has been reported that
slight changes in location of mutation can have differ-
ent effects on the alternative splicing process leading
to expression of alternative splicing variants [45]. P53
IHC is therefore an essential additional method to
sequencing to understand the functional effects of
TP53 mutations. p53 IHC further subclassifies LOF

into true LOF with CA versus truncating mutations
with WT versus putative LOF with OE that may be
better classified as GOF.

We have also identified a wider pattern of abnormal
p53 expression as we observed CY staining in four
(2.3%) of HGSOC with complete interobserver agree-
ment. Since OE cases can show minor amounts of CY
it is important to note that CY should only be reported
in the absence of strong nuclear expression. Hence,
only cases for which the question is WT versus CA that
show prominent cytoplasmic staining should be consid-
ered for CY. Although CY staining can be artefactual
this is an unlikely interpretation of our data as (1) the
same p.R306X mutation was detected in two unrelated
cases that both showed CY and not in any other case
(2), CY was observed in paired primary and recurrence
specimens and (3) CY was confirmed on full sections.
Cytoplasmic localization of mutated p53 has been
reported before in colorectal carcinoma [46]. All four
mutations associated with CY in our series were indels
and stopgains resulting in predicted p53 protein of
292–306 aa length truncated the protein before the
nuclear localization domain. However, we observed
WT staining for other truncating mutations that resulted
in similar protein lengths and there may be alternative
mechanisms for cytoplasmic localization. It has been
reported that a p.K382fs mutation resulting in a 420 aa
protein showed cytoplasmic localization owing to
impaired binding to importin. This occurred because of
conformational changes from the additional 27 aa and
not from any alteration in the nuclear localization
domains [47]. In addition, specific p53 mutants may
undergo post-translational modifications that can stim-
ulate nuclear transport and/or mitochondrial associa-
tion, promoting cytoplasmic accumulation. It is
important to note that p53 normally shuttles between
the nucleus and the cytoplasm, and cytoplasmic func-
tions of p53 are well documented. However, cytoplas-
mic sequestered p53 cannot exert its nuclear function
[48] and CY is likely to be indicative for LOF effects.

For diagnostic pathology, identifying TP53 status in
ovarian carcinoma has critical clinical utility: distin-
guishing HGSOC from low-grade serous carcinoma on
small tissue biopsies before commencing neoadjuvant
chemotherapy [10], identification of STIC [49] and
sub-classification of ovarian carcinomas for inclusion
in histotype-specific clinical trials [19]. Our results are
transferable to other tumour sites, for example endome-
trial carcinomas or adenocarcinomas of gastroesopha-
geal junction [50,51] although the interpretation of p53
IHC may not be straightforward for tumours showing
longer periods of terminal differentiation allowing for
degradation of nonsynonymously mutated p53 protein
and interpretation rules may have to be adjusted [52].
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For current clinical practice, which relies mostly
on IHC without access to sequencing, a diagnostic
limitation for p53 IHC should be kept in mind. Nine
(5.3%) of HGSOC in our revised series showed WT
staining and 7 (4.1%) cases harboured an underlying
LOF mutation. Importantly, this means that the find-
ing of WT p53 IHC, particularly in small biopsies,
cannot solely be used to diagnose low-grade serous
tumours. NGS should always be considered in WT
IHC with morphological features suggesting HGSOC.
However, the major strength of p53 IHC as a clinical
test is its high negative predictive value as abnormal
p53 IHC virtually excludes the possibility of a low-
grade serous tumour [10].

Only two HGSOC remained wild type by both
sequencing and IHC after secondary analysis suggest-
ing that TP53 wild type HGSOC are rare (�1%). Some
authorities even question a diagnosis of HGSOC if
there is no evidence for TP53 mutation [53]. The clas-
sification of our wild type HGSOC cases remains
uncertain. These tumours represent a rare subset which
should be studied to establish whether other mecha-
nisms such as MDM2 amplification can lead to an
alternative pathway of HGSOC oncogenesis [1]. WT
staining in these cases effectively excludes the possi-
bility of homozygous deletion of TP53. The prevalence
of TP53 mutations in EC was 8.8% in our series, which
is similar to reports for endometrioid carcinomas of the
ovary (7%) [54] and endometrium (9%) [55] but
remarkably lower compared to 51% (N 5 37/72) from
previous reports that included high-grade carcinomas,
which are now classified as HGSOC [56]. This further
underscores the importance of accurate disease classi-
fication for study inclusion, which we performed using
diagnostic IHC marker panels [19].

Our results show that optimized p53 IHC assay,
when interpreted correctly, can be a useful surrogate
for the TP53 mutation status. The combination of
p53 IHC and sequencing should be considered the
gold standard in assessing the p53 functional status
for clinical trial inclusion.
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