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Abstract 

Research on avian cognitive neuroscience over the past two decades has revealed the 

avian brain to be a much better model for understanding core aspects of human 

cognition than previously thought, despite differences in the neuroarchitecture of the 

brains of birds and mammals. Indeed research on the interplay between the brain, 

behavior and cognition of songbirds has provided an excellent model of human 

cognition in one domain, namely the learning of human language and production of 

speech. There are other potentially important behavioral candidates of avian cognition 

however, notably the capacity of members of the crow family (corvids) to remember the 

past and plan for the future (mental time travel), as well as their ability to think about 

another’s perspective (mental attribution), and physical problem-solving. Here we 

review this body of work and assess the evidence that the corvid brain is capable of 

supporting such a cognitive architecture. We propose potential applications of these 

behavioral paradigms for cognitive neuroscience, including the recent work on single-

cell recordings and neuroimaging in corvids. Finally, we discuss their potential impact 

on our understanding of human developmental cognition. 
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Introduction 

Our understanding of the neural basis of cognition in humans is limited to studying the 

human brain in action (cognitive neuroscience) and how it is affected by trauma or 

disease (neuropsychology). However, there remain significant practical limitations to 

studying the living human brain, especially in real time social interactions or during the 

solution of cognitive problems that cannot be studied inside a scanner. Current 

techniques, although much improved, are still dogged by issues of poor spatial and 

temporal resolution, especially when compared to techniques that can be used on 

animals. The only invasive methods we have to study humans are disrupting neural 

function using trans-cranial magnetic stimulation (TMS); recording from neurons in 

clinical patients already suffering from a neural malady (and so running into problems 

in interpreting any findings) or evaluating the effects of different drugs treatments 

based on our understanding of brain chemistry. Therefore, we are still dependent on 

using animal models for which we can manipulate the brain directly.  

 

Although many species are used as animal models to successfully to uncover the neural 

basis of cognition, we are restricted in what questions can be asked about complex 

cognition, by which we mean reasoning, flexibility, problem-solving, prospection and 

declarative knowledge (Emery and Clayton, 2004). Common laboratory animals that are 

used in neuroscience; Drosophila, Aplysia, rats, mice, zebra finches, pigeons and monkeys 

have all provided important information about the neurobiology of learning and 

cognition, but the extent to which any of these animals can model the more unique 

aspects of human cognition, such as mental time travel, theory of mind and innovative 
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problem solving is limited. It is not our intention here to go through detailed arguments 

for and against each of these species’ merits or limitations in terms of their usefulness as 

models of human cognition. Rather, we would like to propose an additional group of 

animals that has been relatively neglected in studies of cognitive neuroscience, but 

which have arguably demonstrated cognitive feats on a par with or even surpassing 

those of the great apes. We propose the corvids (members of the crow family) as (a) an 

animal model for human cognition that could be adapted for studying the neural basis of 

complex cognition and (b) interesting subjects in their own right for understanding the 

evolution and neurobiology of cognition. Determining which features of the avian and 

mammalian brain play a critical role in specific cognitive functions, and which ones are 

unique, could dramatically increase our understanding of the neural basis of cognition, 

and how and why these functions have evolved. 

 

Current primate models have revealed amazing insights into the structure and function 

of the primate brain and its role in perception, memory, attention, information 

processing and decision-making. However, monkeys are expensive, the facilities 

required to house them difficult to setup and there are ethical issues concerning using 

subjects in great numbers. It is not possible or indeed ethical to perform invasive 

experiments on our closet relatives, the great apes, so an alternative may be to develop a 

model, not of the next closest species (which is a rather unsatisfying compromise), in an 

animal much more distantly related to us but one which appears to demonstrate similar 

cognitive abilities. In 2004, we proposed that the complex cognition of corvids and apes 

has evolved independently to solve similar problems, such as coping with difficulties 

leading from life in a complex social group full of individuals with different personalities 
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and relationships, finding food distributed in both space and time and adapting to 

climatic and ecological challenges (Emery and Clayton, 2004). At the time, we 

suggested that corvids and apes did this with very different brains, but as we will 

discuss in the following section, this position has now been updated as our 

understanding of the organization of the avian brain has changed, revealing it to share 

more features with the mammalian brain that previously thought (Jarvis et al., 2005, 

2013).  

 

As yet, almost nothing is known about the structure and function of the corvid brain, 

whereas we have started to amass convincing evidence for their sophisticated primate-

like cognitive abilities. So far, this is unsurpassed by other non-primates and so makes 

corvids powerful candidates for making discoveries about the evolution and neural basis 

of complex cognition, which could be applied to humans. We will discuss some of this 

evidence later, as well as evaluating other avian and non-avian models of cognition and 

why they are unlikely to be sufficient for modeling the human mind. First, however, we 

shall assess the evidence that bird brains, and most likely, corvid brains, are capable of 

supporting a cognitive architecture similar to that of the great apes and potentially 

humans.   

 

Avian Brains 

Our understanding of the structure and function of the avian brain has changed 

dramatically since Edinger (1899) proposed that birds were incapable of complex, 

structured thoughts because he believed that their brains were composed primarily of 

regions evolved from the striatum, rather than the cortex. This erroneous view was 
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rectified in 2004 when a consortium of avian neuroscientists using information from 

connectional, behavioral, neuropharmacological, evolutionary and developmental 

studies, reported that the majority of the avian telencephalon was not striatal but 

cortical in origin (Reiner et al., 2004; Jarvis et al., 2005). A significant part of the avian 

telencephalon was derived from the pallium of a stem amniote ancestor shared between 

all mammals, reptiles and birds. This evolved into the dorsal ventricular ridge (DVR) 

and dorsal cortex (reptiles)/Wulst (birds) and the cortex (mammals). Consequently, 

contrary to Edinger’s view, little of the telencephalon of reptiles, birds or mammals is 

comprised of the striatum. In addition, studies on the role of the basal ganglia (striatum) 

in skilled motor learning, such as learning song (Doupe et al., 2005), have dispelled the 

idea that the striatum is primarily involved in instinctual or non-cognitive behavior, For 

example, during song learning, the basal ganglia is essential for modulating the 

response of motor circuits to changes in song variability, such as due to changes in 

social context (Jarvis et al., 1998; Hessler and Doupe, 1999). It remains to be seen what 

role the striatum may play in other forms of skill learning, such as learning to use a tool.  

 

Reiner and the Avian Brain Nomenclature Consortium (2004) agreed important changes 

to the names of avian brain regions to reflect this updated knowledge, so that the names 

of structures with the suffix –striatum (e.g. neostriatum) were exchanged with terms 

ending in the suffix –pallium (e.g. nidopallium) to reflect their shared ancestry with the 

mammalian pallium (e.g. cortex) not the striatum (Figure 1A). Prefix terms suggesting 

age, such as paleo-, archi- and neo- were also changed, as birds are the more recently 

evolved group compared to mammals, so the suggestion that the avian brain regions 

were more ancestral was also in error. Comparable structures in the primate (monkey) 
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brain are visualized in Figure 1C (similarities are highlighted with the use of the same 

colors).  

 

Insert Figure 1 About Here 

 

A recent comprehensive study comparing the expression of behaviorally relevant genes 

across regions in the telencephalon of 8 bird species has lead to a call to refine the avian 

brain nomenclature further (Jarvis et al., 2013; see also Chen et al., 2013). Areas within 

the mesopallium and hyperpallium (below the lateral ventricle) were found to share a 

high percentage of functionally expressed genes, and are proposed as a cohesive 

structure (renamed the tertiary pallium). Jarvis and colleagues (2013) therefore split the 

mesopallium into dorsal and ventral sectors (Figure 1B). They also found that certain 

regions, such as the entopallium and the hyperpallium intercalatum displayed similar 

gene expressions patterns and proposed that these structures should also be classified as 

a new structure (primary pallium; Figure 1B). Other regions with mirrored patterns of 

gene expression were the nidopallium and hyperpallium apicale, which was renamed the 

secondary pallium (Figure 1B). Whether these findings are sufficient enough for such 

changes to be adopted by the avian neuroscience community remains to be seen. The 

fact that a number of avian neuroanatomists, including Harvey Karten (Karten et al., 

2013) agree with such changes is promising. However, it would seem premature to 

make such sweeping changes on the basis of one study, no matter how comprehensive. 

The original nomenclature changes were the result of a group-level discussion (Reiner 

et al., 2004) and something similar will probably need to be reconvened in the future to 

assess and confirm the validity of these proposed changes.  
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Although we now have a clearer picture of how the avian pallium evolved, there still 

remains the fact that it appears to differ significantly in structure and organization from 

the mammalian cortex. The subdivisions of the stem amniote pallium (the common 

ancestor of all reptiles, birds and mammals, most closely resembling an amphibian) are 

divided into dorsal, medial and lateral portions, surrounding the DVR. The three 

divisions of the dorsal pallium evolve into different structures in reptiles, birds and 

mammals and there is good evidence that they retain similar functions. For example, the 

conventional view is that the dorsal pallium, responsible primarily for processing 

sensory information - especially visual and somatosensory - evolves into the dorsal 

cortex in reptiles, the Wulst (hyperpallium) in birds and the neocortex in mammals 

(Striedter, 2005; but see Chen et al., 2013; Jarvis et al., 2013 for an alternative view). 

The lateral pallium evolves into the lateral cortex in reptiles, piriform cortex in birds 

and olfactory cortex in mammals and processes olfactory information in all three taxa. 

Finally, the medial pallium evolves into the medial cortex in reptiles, hippocampal 

formation in birds and hippocampus in mammals and plays an important role in 

navigation, including spatial memory (Salas et al., 2003). The striking difference 

between birds and mammals is that there is significant dorsalization of the pallium in 

mammals, with the expansion of the cortex and significant ventralization of the pallium 

in birds (and to a lesser extent reptiles), with the expansion of the DVR. Despite these 

differences in evolutionary pathways, the pallium of birds and mammals appear to be 

functionally similar, if not equivalent.   
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In mammals, the cortex is constructed of six-layers of tightly packed cell bodies on the 

outer surface of the telencephalon (grey matter). Connections within or between layers 

tend to be short, with longer axons to other cortical regions and sub-cortical structures 

via axonal tracts (white matter) under the cortex (Figure 2A). Deeper in the brain are 

subcortical structures, such as the striatum, thalamus, hypothalamus, midbrain and 

brainstem influencing visceral functions and responses to external stimuli. These areas 

are not laminated, but consist of dense collections of nuclei with short connections 

within and between nuclei and back to the cortex. In birds, the majority of the pallium is 

organized into nuclei, with no significant tracts of underlying white matter and no 

significant lamination. The only possible exception is the Wulst that appears to be 

laminated in all birds (but is especially pronounced in owls), but this appearance is likely 

the result of stretching and squashing of the hyperpallial nuclei into something akin to 

layers (Figure 2B).   

 

Insert Figure 2 About Here 

 

Although the overall organization of mammalian and avian brains is quite different, 

connections of sensory systems, such as visual, somatosensory and auditory, as well as 

the motor system within each taxon possess many similarities (Medina and Reiner, 

2000; but again see Jarvis et al., 2013 for an alternative view). For example, in birds and 

primates there are three main visual processing pathways. First, the lemnothalamic or 

thalamofugal pathway transfers visual information from the retina to the thalamus 

(principle optic nuclei in birds; dorsal portion of the lateral geniculate nucleus in 

primates), then projects to the primary visual processing areas (Wulst in birds; V1 or 
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striate cortex in primates).  Second, the collothalamic or tectofugal pathway transfers 

visual information from the retina to the optic tectum (birds) or superior colliculus 

(primates), then projects to the thalamus (nucleus rotundus in birds; pulvinar and lateral 

posterior nucleus in primates) and finally the secondary visual processing areas 

(entopallium in birds; extrastriate cortex in primates). Third, the accessory optic system 

is involved in stabilizing retinal images during self-motion, which is particularly 

important for birds moving rapidly through a complex 3D world. An additional, 

relatively minor centrifugal pathway, projects back to the retina from regions in the 

brainstem and its role remains clear. It may play a role in visual reflexes and modulating 

gaze sensitivity, especially during foraging on the ground, but it is not assumed to 

function in visual cognition (Miceli et al., 1999; Shimizu and Watanabe, 2012).   

 

Although the anatomical connections of each pathway are structurally homologous 

across birds and primates, there is some disagreement over whether their functions are 

shared. The tectofugal pathway is dominant in birds, whereas the thalamofugal pathway 

is dominant in primates (Shimizu et al., 2010). Lesions of the avian thalamofugal 

pathway only cause minor deficits in visual processing (especially in birds with lateral 

eyes), whereas lesions of the primate thalamofugal pathway cause severe visual deficits, 

which can result in blindness (Brown and Shafer, 1888). However, despite differences in 

connectivity, with no shared common heritage, the avian tectofugal pathway and 

primate thalamofugal pathway share functions in processing color and motion 

information and are sub-divided along functional lines (e.g. Nguyen et al., 2004). As 

such, these functional similarities are likely to have evolved independently. Similar 

convergences in sensory pathways occur in the auditory, somatosensory and motor 
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systems of birds and mammals (Medina and Reiner, 2000), suggesting that other 

convergent pathways related to cognition may also exist in birds and mammals.  

 

In the mammalian brain, regions with similar functions tend to be found clustered 

together, forming functional columns in the cortex. Their close proximity probably 

relates to an increased efficiency in neural wiring. Recent studies have found similar 

functional columns for a single modality or behavior in the avian brain (Wang et al., 

2010; Kingsbury et al., 2011). By studying the expression of a suite of behaviorally-

relevant genes in response to different stimuli, Jarvis and colleagues (2013) 

demonstrated the equivalent of functional columns in the songbird brain that spanned 

pallial, striatal and even pallidal structures (Figure 1D). They found clusters of neurons 

that expressed the same functionally-relevant genes responsive to auditory, 

somatosensory, visual (day and night vision) stimuli, as well as motor responses and a 

final cluster of the same gene expression, but with an unknown function. As with the 

proposed changes in nomenclature, we share the concerns of Montiel and Molnar (2013) 

that it would seem premature to suggest additional name changes based on similarities 

in gene expression profiles at this early stage, based on a single study.   

 

What this study does tell us though, is that the nucleated avian brain may be more 

efficiently organized, along the lines of the mammalian cortex, than previously assumed. 

An analysis of the connectivity patterns of regions in the pigeon brain (Shanahan et al., 

2013) concur with Jarvis and colleagues (2013) that the avian brain is organized using 

similar principles to the mammalian brain. Regions with a similar function share 

patterns of connectivity and regions with the greatest density of connections are 
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collected into hub nodes, through which the majority of neural information passes. A 

similar connectional organization was found for the primate brain (Young, 1993). 

 

Of direct relevance to the issue of complex cognition is whether birds possess a region 

that is functionally equivalent to the primate prefrontal cortex (PFC). As we will 

describe in a later section, some corvids are capable of mental feats that have only so far 

been described in our closest relatives, the great apes. Although comparable neural 

studies have yet to be performed on apes or corvids, we know from human 

neuroimaging that retrospective and prospective memory, theory of mind and insightful 

problem solving are all dependent on the medial PFC, whereas executive functions are 

dependent on the dorsolateral PFC, and reward learning and emotional engagement are 

dependent on the orbital PFC (Fuster, 2001). The nidopallium caudolaterale (NCL) has 

been proposed as the equivalent to the entire primate PFC based on its connectivity, 

development, electrophysiology, role in behavior and neurochemistry (Güntürkün, 

2005). We do not have the space to discuss these studies in the detail they deserve, but 

will briefly describe those that are the most convincing.  

 

First, NCL forms reciprocal connections with both primary and secondary/tertiary 

areas in the hyperpallium, mesopallium and entopallium. It sends projections to the 

striatum influencing behavioral responses. It also receives and projects connections to 

and from motor and emotional responses. The NCL is therefore in a central position to 

receive information, process that information and then send it on to effect behavior 

(Güntürkün, 2005). This is parallel to what occurs in the primate PFC. Second, lesions 

of the NCL have dramatic effects on a series of executive function tasks, such as working 
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memory, reversal learning and inhibitory control (Morgensen and Divac, 1993). Third, 

the NCL receives dopamine efferents from the ventral tegmental area and substantia 

nigra in the midbrain. The NCL is densely populated with dopamine (D1 and D2) 

receptors, it sends dopamine-rich projections to the striatum and blockade of D1 

receptors affects working memory and discrimination reversal task performance 

(Durstewitz et al., 1999). Finally, NCL neurons in working memory tasks display their 

strongest responses in the delay period, coding an expectation of reward (Rose and 

Colombo, 2005).  

 

Pigeons are the subject of many studies on avian brain structure and function (those not 

focused on song learning). Pigeons are proficient learners and exceptional at visual 

discrimination, but there is little evidence for complex cognition (e.g. theory of mind, 

mental time travel, self-awareness and reasoning). The fact that pigeons have a brain 

region functionally equivalent to the primate PFC means either that pigeons are 

smarter than we previously thought (but yet to be demonstrated experimentally), or 

that executive functions are not as complex as previously thought, or that the pigeon 

NCL is equivalent to only part of the PFC complex; a region that maybe only plays a 

supporting role in more complex forms of cognition. We suggest that the pigeon NCL 

may be functionally equivalent to the primate dorsolateral PFC, playing a role in 

executive functions, and that the pigeon NCL may also share some functions with 

primate orbital PFC due to its multisensory connectivity, its role in reward learning and 

its extensive distribution of dopamine receptors (Güntürkün, 2005), but as this role has 

yet to be investigated, we cannot comment on this further. We do not know whether 

pigeons have an equivalent region to the medial PFC, but feel it unlikely as this region 
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in primates supports complex cognition that is absent in pigeons. However, we predict 

that corvids could have evolved a similar region due to their skills in these areas (see 

below).   

 

Unlike most mammals other than humans, the song birds (Oscines), of which corvids 

are included, are excellent vocal learners and we now know a lot about the behavioral 

processes that underlie avian song perception and production including when and how 

the songs are learned and from whom, as well as the neural circuitry controlling these 

processes. The avian vocal learning system has therefore been proposed as an excellent 

model for human speech and language (see Bolhuis et al., 2010, Brainard and Doupe, 

2013; Petkov and Jarvis, 2012 for recent reviews). A recent proposal suggested that 

parrots may be a better model than songbirds because of their ability to imitate human 

speech, and the form of their complex social relationships (Colbert-White et al., 2014), 

however this proposal fails to appreciate that corvids are songbirds that can imitate 

human speech and also have complex social relationships (Emery, 2006).  

 

Complex cognition is not a universal trait across non-human animals. We have 

proposed that selective animal groups with a very specific socio-ecology, life history and 

sophisticated neural systems are capable of general cognitive abilities as opposed to only 

those that have evolved to face specific challenges in their day-to-day lives (van Horik et 

al., 2012). Corvids and apes are two of those groups and their cognitive abilities are 

suggested to have arisen through convergent evolution not common descent. By this, 

we mean that not all related species from the common stem amniote ancestor of birds 

and mammals (including all reptiles) possess the same abilities as those in the corvid and 
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ape families (Emery and Clayton, 2004). We are well aware that our argument for 

convergence as opposed to homology is based on a paucity of data from a select few 

avian and mammalian species, and that more comparative studies need to be conducted. 

We suspect that similarities in cognition will also be found in parrots, dolphins, and 

elephants, for example, and that as with the corvids and apes, these are most likely to 

have evolved convergently because they all share a number of biological, ecological and 

psychological traits related to complex cognition, including vocal learning (Petkov & 

Jarvis, 2012; van Horik et al., 2012). A case in point is object permanence, particularly 

the ability to track invisible displacements (Piagetian Stage 6), which only seems to be 

present in corvids, (Hoffman et al., 2011; Zucca et al., 2007), parrots (Auersberg et al., 

2014) and apes (e.g. Collier-Baker et al., 2006, however see Jaakkola, 2014 for an 

alternative account).  

 

Corvids and apes differ from most other animal groups in that they share a suite of 

cognitive abilities that allow them to deal with their social and physical worlds (Emery 

and Clayton, 2004). We proposed four cognitive tools that would allow these two 

groups to solve problems outside their natural domains, namely causal reasoning, 

flexibility, prospection and imagination. These tools are not mutually exclusive, for 

example, prospection depends on imagination and flexibility may aid causal reasoning, 

and together they make possible the solution of novel problems. In the ten years since 

we proposed this cognitive toolkit, evidence that corvids and apes possess these tools 

has proliferated. As such, our discussion of these abilities in corvids has to largely be 

restricted, because of space, to our own studies. 
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Avian Models of Learning and Cognition 

Birds have been used as models for learning and memory and the neural basis of 

cognition for decades (Emery, 2006). Indeed, some species are considered the best 

models currently available. Three main species or groups of birds are currently used to 

address specific aspects of learning and cognition and their neurobiology:  

• Pigeons are the primary model system for understanding the processes of 

learning and spatial memory, in particular visual discrimination and navigation 

(homing). Studies on pigeons have substantially increased our knowledge of 

avian brain connectivity, including the suggestion of an avian equivalent to the 

mammalian prefrontal cortex (Güntürkün et al., 2014). Studies of the avian 

hippocampus have been instrumental in our understanding of the neural 

mechanisms of spatial navigation and homing behavior (Bingman et al., 2005)  

• Domestic chicks are the primary model for studying the development and 

neurobiology of learning and memory, especially using imprinting as a model 

behavior system (Nakamori et al., 2013). Chicks are also used as models for 

cerebral lateralization and behavioral function (Halpern et al., 2005). Studies on 

space, number, social and physical cognition in chicks have revealed striking 

abilities in very young brains (Vallortigara, 2012).  

• Songbirds are the primary model for studying the processes underlying vocal 

learning and the avian song control system is one of the best known systems for 

understanding the neural basis of learning and memory (Ziegler and Marler, 

2012). Although all passerines (songbirds) sing, zebra finches have become the 

most popular model, and our knowledge of their neuroanatomy and behavior is 

unsurpassed (Mello, 2014). A second songbird, the black-capped chickadee is a 
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model species for testing ideas concerning the neurobiology of spatial memory 

and its interaction with hormones, caching behavior and environmental stress 

(Pravosudov, 2007). 

 

Although all three models have advanced our understanding of the neurobiology and 

evolution of cognition in a taxon that has a very different brain architecture and shows 

vast differences in behavior, there are limitations in the application of these models to 

some aspects of human cognition, namely what we call complex cognition  (Emery and 

Clayton, 2004). Recent work in corvids has revealed abilities in areas that have been 

proposed as uniquely human and not yet displayed in these other avian models and this 

is the main reason for our proposal for a corvid cognitive neuroscience and application 

of corvids as models of human cognition.    

 

Potential Behavioral Candidates for Understanding Human Cognition 

The vocal learning system of songbirds is not the only avian model for understanding 

human cognition. For almost twenty years, evidence has accumulated suggesting that 

corvids have remarkable cognitive capacities, possessing feats that a number of 

researchers regard to be uniquely human. Corvids are therefore potential candidates for 

new animal models of human cognition. Three strands of evidence will be considered in 

this review: mental time travel (remembering the past and planning for the future), 

social cognition, and physical problem solving. We shall review the research on these 

three aspects of cognition in corvids, and discuss how the same paradigms can be 

developed to study human cognition, particularly the application to neuroscience and 

developmental cognition (Figure 3). Comparative and developmental cognition both 
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require the use of tasks that are, respectively, entirely or largely, non-verbal. It is 

important to note, however, that our purpose is not to ask questions about whether or 

not corvids show cognitive performances equivalent to humans, or of young humans of a 

particular age. Rather the objective is to investigate two different kinds of mind, ones 

that have very different evolutionary histories and neural architectures yet similar 

patterns of large-scale network organization as discussed in the previous section, in 

order to compare and contrast the mechanisms they use to solve the tasks. This raises 

interesting questions about how information processing is achieved in these two kinds 

of mind given the striking differences in neural architecture and surprising similarities 

in connectivity and organization of avian and mammalian brains, particularly how the 

information is passed between nuclei in the avian brain as opposed to between layers in 

the mammalian cortex. 

Insert Figure 3 About Here 

 

Mental Time Travel  

Mental time travel refers to the ability to remember the past (episodic memory) and 

plan for the future (episodic future thinking). There has been considerable debate as to 

whether mental time travel is uniquely human (e.g. Suddendorf and Corballis, 1997), or 

whether we share this cognitive ability with other animals (e.g. Clayton et al., 2003). As 

we alluded to in the previous section, one difficulty is that mental time travel in humans 

has typically been characterized in terms of two features of phenomenological 

consciousness, neither of which is amenable to empirical evaluation in animals. The first 

feature is an awareness of the subjective sense of time, of re-experiencing now in the 

mind’s eye an event that happened in the past and of pre-experiencing possible future 
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scenario; the second is an awareness of being the owner and author of these memories 

and forethoughts (e.g. Tulving, 2005). 

 

In the absence of any agreed behavioral markers of consciousness in non-linguistic 

animals it is not possible to evaluate empirically whether or not the phenomenological 

aspects of mental time travel are unique to humans. What we can do is focus on the 

behavioral criteria for episodic cognition, and this has been termed episodic-like cognition 

to explicitly acknowledge that such criteria ignore the involvement of phenomenological 

consciousness (Clayton and Dickinson, 1998). The retrospective component, episodic-

like memory, needs to fulfill three criteria to meet the behavioral properties of episodic 

memory as defined for humans: namely content, structure and flexibility (Clayton et al., 

2003).  In terms of the content of an episodic-like memory, the subject must remember 

what happened where and when on the basis of a single past experience. Second, the 

what-where-and-when components form an integrated structure: it is this binding that 

allows the subject to discriminate between similar episodes that occurred at different 

times and places. Finally, the information must be capable of flexible deployment, and as 

a result it can be updated after the memory has been formed so that information can be 

generalized across situations.  

 

Experiments on the caching behavior of western scrub-jays (Figure 3A) revealed that 

these birds episodically recall specific past caching episodes in terms of what happened 

where and when; i.e. they remember which foods they have hidden where and how long 

ago and search in places they had cached perishable worms after a short delay when 

they would still be fresh but switching to search in the peanut cache sites after a long 
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delay when the worms would have rotted (Clayton and Dickinson, 1998). Subsequent 

tests have shown that the jays also remember which type of perishable foods they have 

hidden where and how long ago (e.g. worms versus crickets), irrespective of whether the 

foods had ripened or decayed. The jays also discriminated between similar episodes that 

occurred at different times and in different places, demonstrating that they formed 

integrated what-where-and-when memories.  Furthermore, if the jays were given new 

information about how long a given food item takes to degrade in a particular place, but 

only after the caching event had taken place, then they could update their knowledge 

about the rate of perishability of the food and change their search behavior at recovery 

accordingly. As far as we are aware, this is the only published demonstration of the 

declarative flexibility with which animals can update their information after the time of 

memory encoding (Clayton et al., 2003).  

 

Since the initial studies, a number of other laboratories have investigated whether or not 

animals have episodic-like memory using paradigms analogous to those employed with 

the jays. There is now good evidence that a diverse range of animals can remember the 

what-where-and-when of past events including rats (Babb and Crystal, 2006), mice 

(Dere et al., 2005), magpies (Zinkivskay et al., 2009) and chickadees (Feeney et al., 

2009), and more recently chimpanzees (Martin-Ordas et al., 2012) and cuttlefish (Jozet-

Alves et al., 2013). Note that all these studies have only focused on the content of 

episodic-like memory: they lack the cognitive sophistication to demonstrate that such 

memories have an integrated or bound structure, and can be deployed flexibly. For this 

reason, the scrub-jay paradigm remains the most appropriate model for application to 

models of human episodic cognition.  
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If what-where-and-when memories are an indicator of episodic cognition, then the 

animals that pass such tasks should also be capable of planning ahead, and there is indeed 

evidence to support this claim in corvids. It has been shown, for example that scrub-jays 

spontaneously plan for tomorrow’s breakfast without reference to their current 

motivational state, spontaneously caching in the evening in a room where they have 

learned they will never be served food in the morning (Raby et al., 2007). It is important 

to note that we can rule out an explanation in terms of mediated reinforcement of the 

anticipatory act because the birds were not given the opportunity to cache during 

training. Indeed, Shettleworth has argued that “two requirements for genuine future 

planning are that the behavior involved should be a novel action or combination of 

actions… and that it should be appropriate to a motivational state other than the one the 

animal is in at that moment… Raby et al. describe the first observations that 

unambiguously fulfill both requirements” (Shettleworth, 2007, p. 825). These results 

show that corvids are capable of both episodic-like memory and planning for breakfast.  

 

Social Cognition 

Corvids are highly visual animals and use social signals such as eye gaze and gestures, 

such as beak direction, to represent their attentional state (Pika and Bugnyar, 2011). 

The ability to read such signals presents individuals with an advantage in social 

interactions, possibly allowing them to predict another’s future actions and so outwit 

them. In the next section we shall discuss this ability in relation to caching and 

specifically cache protection, but corvids also interact outside of caching, especially with 

close companions and social partners. Jackdaws, for example, follow a conspecific’s gaze 
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towards the object of their attention concealing food, but only when the conspecific is 

their partner, not when unfamiliar to them (Figure 3B; von Bayern and Emery, 2009b). 

In a similar paradigm using human cues, jackdaws responded to social signals that were 

communicative (distal pointing and gaze alternation), not ambiguous or potentially 

threatening (von Bayern & Emery, 2009a). Finally, in a study of understanding other’s 

attentional states - using a competitive paradigm where a human looked towards or 

away from food and the time taken for the bird to take the food was recorded – jackdaws 

took longer to take the food if the human was a stranger and their attention was focused 

on the food. If the human was familiar to them, they did not discriminate between 

attentional states (von Bayern and Emery, 2009a).  

 

In these cases, jackdaws demonstrate a high level of flexibility in the way that they 

differentiate between similar social cues that differ in functional significance. They note 

the identity of the individual providing the cue and act accordingly; either using the 

honest or reliable cue of a partner in a cooperative paradigm or responding to the threat 

of a human stranger in a competitive paradigm. They also rely on communicative cues 

in a cooperative task, not attentional cues that could be misinterpreted in the same 

context. Finally, they also generalize their responses to social cues based on their 

function, not appearance, so act similarly to one eye open, two eyes open and profile 

directed away but with eyes towards the viewer, all representing the same attentional 

state. 

 

Cache Protection Strategies 

Much of the work on social cognition in corvids, however, revolves around the 
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strategies these birds use to protect their caches from being stolen (pilfered) by other 

individuals. Most food-caching animals only steal caches at the time they are being 

hidden, or when discovered opportunistically. Corvids, by contrast, can remember 

where they have seen other individuals cache based on observation alone, and can 

therefore steal the food at a later date once the cacher is no longer present to defend its 

caches (Figure 3C; reviewed by Clayton et al., 2007). This dramatically increases the 

risk of cache theft. An added complexity is that any one corvid may play the role of both 

cache protector and potential pilferer, and this role-playing may have driven the 

evolution of increasingly more complex cognitive strategies for pilfering and cache 

protection (e.g. de Kort and Clayton, 2006) 

 

Corvids use a suite of cache-protection strategies that limit opportunities for potential 

pilferers to witness caching events: they preferentially cache behind barriers when 

others are looking, and use both distance and shade to degrade the visual information 

available to onlookers, preferences they do not show when others cannot see where they 

cache. If the potential pilferer can hear but cannot see, they conceal auditory information 

by caching in a substrate that makes little noise. By contrast, if they are alone or if 

others can see as well as hear the caching event, then the birds prefer to cache in noisy 

substrates. It has been suggested that this may serve as a cache protection strategy in 

its own right, allowing the cacher to detect a potential cache-raid should the bird be 

within earshot of a potential pilferer that it is unable to see. Jays also keep track of 

which particular individual bird watched them cache and when, and take protective 

action accordingly, such as moving the high risk caches to new places once the potential 

pilferer has left. In deciding which cache protection tactics to use, the birds take into 
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account the dominance status of the potential pilferer in relation to their own dominance 

status, employing different strategies if they are dominant to the onlooker than if they 

are subordinate (reviewed by Clayton et al., 2007). Similar tactics have been found in 

several other species of corvids, in both the laboratory and the field, including ravens 

(e.g. Bugnyar, 2011), Clark’s nutcrackers (Clary and Kelley, 2011), Florida scrub-jays 

(Kulahci and Bowman, 2011) and Eurasian jays (e.g. Legg and Clayton, 2014) and also 

in some parids, namely mountain chickadees (Pravosudov, 2008).  

 

Experience-Projection  

The most striking finding is that only those birds who have been experienced thieves 

themselves in the past move food to new cache sites once the potential pilferer has left 

the scene (Emery and Clayton, 2001). Naïve birds that have not stolen other birds’ 

caches do not do so, ruling out the possibility that such cache protection strategies are 

hard wired. It is important to note that the jays were neither rewarded nor punished for 

re-caching, and in fact they were not given the opportunity to recover their re-caches 

and thus discover whether or not re-caching was successful, and thus had no 

opportunity to learn about the benefits of re-caching.  Instead, the inference is that the 

experienced pilferers engage in a form of social cognition called experience-projection, 

anticipating what the onlooker might do in similar circumstances i.e. to pilfer the caches 

they have seen another bird make, and thus move their caches to new places before the 

potential pilferer has the opportunity to do so. In terms of their applicability as an 

animal model of social cognition that can be developed for humans, there are two 

important things to note.  The first is that the responses of these experienced birds are 

highly flexible. The jays only re-cache food when a potential pilferer has observed them 
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cache~ they do not do so if the onlooker was their mate with whom they share their 

caches or if the potential thief did not witness the caching event (Emery and Clayton, 

2001).  The second is that this flexible deployment of information that we referred to in 

the previous section is seen in both studies of episodic cognition and social cognition, 

which is consistent with the human neuroimaging studies that suggest that mental time 

travel, theory of mind and insightful problem-solving are all dependent on the PFC 

(Emery and Clayton, 2004). 

 

Physical Problem Solving 

The final strand of evidence for corvid cognitive capacities comes from studies of 

physical problem solving, and in particular research on innovative tool use. The most 

famous example is that of Betty, a New Caledonian crow, who modified a piece of wire 

to make a hook-shaped tool, which was used to retrieve a small bucket containing a 

reward that was otherwise out of beak reach (Weir et al., 2002). Even more striking is 

the finding that rooks, which do not habitually use tools in the wild, will spontaneously 

craft these hooked shape tools in the laboratory and use them to obtain food (Figure 3D; 

Bird and Emery, 2009a).  

 

A task that has the greater potential for application across species is the Water 

Displacement Task inspired by Aesop’s fable “The Crow and The Pitcher”. In this tale, a 

thirsty crow drops stones into a half-full pitcher of water to raise the level within beak 

reach so that it can drink. In the Water Displacement or Aesop’s Fable task, rather than 

making the birds thirsty, the corvids were tempted with a worm floating on top of water 

half-filled in a vertical transparent tube (Figure 3E). A handful of stones were placed 
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next to the tube, which the bird had to drop into the tube in order to raise the water 

level and reach the worm. Bird and Emery (2009b) found that rooks with experience of 

dropping stones into tubes, but not in the context of water, would spontaneously put the 

stones into the tube to raise the water level and obtain the worm. Furthermore, when 

the water level was varied, the birds matched the number of stones required to increase 

the water level and so reach the worm. The birds were also selective in their choice of 

stones, taking those that would most efficiently raise the water level. Subsequent 

experiments have shown that Eurasian jays can solve this task (Cheke et al., 2011), and 

that habitual tool-using New Caledonian crows showed a similar performance to that of 

rooks and Eurasian jays (Jelbert et al., 2014). In these latter studies, jays and crows 

flexibly responded to changes in the material of the ‘stones’ (floatable or sinkable), as 

well as the substrate inside the tube (sand, sawdust, air or water), but did not 

manipulate the water when they could only see the result of their actions, not the 

actions themselves.  

 

Costs and Benefits of the Different Animal Models 

Why develop corvid models of human cognition when there already exist a number of 

rodent and non-corvid avian models that may be more amenable to neuroscientific 

investigation? We know significantly more about the rodent brain than the corvid brain, 

rodent genomes have been mapped in detail and gene knockouts have been used to 

model human neurocognitive disorders. Rodents are relatively simple and cheap to 

maintain in the lab, easy to obtain and we know a lot about their biology and behavior. 

Similar cognitive tasks to those described for corvids have been developed for rats. For 

example, Babb and Crystal (2006) found that rats could remember where different types 
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of food (what) were located in a radial arm maze and the relative time when they were 

available (when). It is important to note however that more stringent tests of flexibility, 

and whether these individual components are bound together as an integrated 

representation remain an open question, having only been conducted on the corvids (see 

Clayton et al., 2003). Furthermore, the corvid models have the advantage of showing 

flexibility across all three domains, namely mental time travel, theory of mind and 

causal reasoning. 

 

With any animal model, there are pros and cons. A disadvantage of the rodent models is 

that rodents are primarily olfactory creatures, whereas corvids, like humans, are visual 

and auditory creatures. Indeed avian and primate brains have analogous visual and 

auditory pathways (Medina and Reiner, 2000). Many examples of non-verbal human 

social cognition are based on visual cues, such as pointing and eye gaze, and only non-

human animals that can utilize those cues in their social interactions are relevant 

potential animal models of human social cognition (Emery and Clayton, 2009). Those 

few rodent species that either naturally use tools or have been trained to use tools (e.g. 

Okanoya et al., 2008) do not use tools in the same flexible manner as humans or corvids. 

Rodents are also inadequate models of human cognitive aging because they only live for 

around 1 year in captivity, whereas corvids can live up to 30 years.  

 

However, corvid models of human cognition are not without their problems. Corvids are 

not traditional lab animals so they cannot be ordered from a lab breeder en mass but 

must be taken from the wild or hand-raised if they are to be studied in the lab, and this 

requires specialist technical assistance. To date, only one stereotaxic atlas of a corvid 
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brain has been published (jungle crow; Izawa and Watanabe, 2007) and very little is 

known about neural connectivity or genome structure. In essence the corvids make 

excellent behavioral models of cognition provided the space and expertise for their 

housing is available, but they remain to be developed as neurobiological models. 

 

Potential Applications of the Corvid Models 

The biological and cognitive similarities of corvids and humans reinforce our proposal 

that corvids represent strong models for some aspects of human cognition. Although 

avian brains are structured along very different principles from mammalian brains, we 

suggest that these differences are not a barrier to similarities in function.  Although our 

earlier proposal suggested a significant degree of convergence in the cognitive systems 

of non-human apes and corvids (Emery and Clayton, 2004), we might now extend that 

proposal to include humans (albeit with clear warnings that many important differences 

still exist). Our proposal is not that corvids present perfect models of human behavior 

and cognition, rather that they are as good, if not better than current non-human 

mammalian models. We propose two applications of corvid models of human cognition; 

neuroscience and child development. 

 

Neuroscience 

Avian neuroscience has by and large focused on two aspects of behavior; song learning 

and spatial memory. Research on song learning has revealed selective neural circuits for 

perceiving song, circuits matching perceived song with remembered song and circuits 

for producing song in specific contexts (Ziegler and Marler, 2012). Research on spatial 

memory has focused on the hippocampus; size differences in the hippocampus between 
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caching and non-caching birds and changes in hippocampus size before and after 

caching, as well as neurogenesis in the hippocampus (Pravosudov, 2007). This research 

on the interplay between brain and behavior has been largely restricted to traditional 

avian models, such as the zebra finch (song) and the chickadee (caching). By contrast, 

there has been little research on the corvid brain. We shall focus on two studies that 

have direct relevance to our cognitive models and which have the greatest potential for 

further development.  

 

The first concerns the role of the NCL in corvids.  Although there is good evidence that 

the NCL of birds is functionally equivalent to the primate PFC, much of this research is 

the result of studies performed on pigeons. Corvids have a much larger cerebrum than 

most other birds (Emery and Clayton, 2004) and this dramatic increase in brain size in 

corvids is reflected in a larger nidopallium and thus larger NCL (Rehkämper et al., 

1991). Furthermore studies comparing the performance of corvids and pigeons on 

learning sets showed that pigeons were rote learners, solving each set of visual 

discriminations afresh, whereas the corvids were rule learners and therefore capable of 

adopting an abstract rule, namely win-stay lose-shift, that could thereby be generalized 

across sets of new discriminations (Wilson et al., 1985). If the pigeon NCL is 

functionally equivalent to the primate PFC, or at least the dorsolateral PFC, then what 

do we expect the corvid NCL neurons to do? As mentioned in the first section, the work 

on pigeons suggests that in working memory tasks the NCL neurons display their 

strongest responses in the delay period, coding an expectation of reward (Rose and 

Colombo, 2005). Similar studies to those on pigeons have recently been performed on 

carrion crows.  Neurons in the crow NCL respond during the delay period of Delayed 
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Matching and Non-Matching to Sample Tasks (Veit and Nieder, 2013). Interestingly in 

these tasks, the crows employ an abstract rule (match or non-match) using an arbitrary 

tone or shape presented in the delay period. Veit and Nieder (2013) found that a 

population of neurons in NCL fired in the delay period before the crows were presented 

with their choice stimuli and so encoded the properties of these abstract rules. Some 

neurons also fired if the crow was going to make a behavioral error, with a weaker or 

inverse discharge rate. Other neurons in the crow NCL continued to respond to a 

previously presented visual stimulus during the delay period of a working memory task 

even though the stimulus was no longer present, suggesting that the image was being 

retained in working memory before the crow had to make a behavioral choice (Veit et 

al., 2014).  

 

The second concerns the use of neuroimaging methods in corvids. Marzluff and 

colleagues (2012) examined the brain responses of anaesthetized crows in a PET 

scanner to the presentation of threatening faces versus benign faces (predicting food). 

Neural networks typically responsive to fear (to the threatening faces) and motivation 

(to faces predicting the presentation of food) in mammalian brains were also found 

responsive in crow brains. It remains to be seen how sophisticated such avian 

neuroimaging studies will become as scanner resolution increases and techniques can be 

applied to awake rather than anaesthetized birds (de Groof et al., 2013).  We envisage a 

renaissance of avian neuroscience with the application of optogenetics, which can be 

used to disrupt activity in selective neural circuits with the application of focused light. 

This technique has started to be used in zebra finches to study vocal learning (Roberts 

et al., 2012) but presumably it could be adapted to our corvid models. For example, it 
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would be fascinating to investigate the role of the hippocampus in both episodic-like 

memory for past caching events and the jay’s ability to plan for tomorrow’s breakfast. 

Would disruption of the corvid hippocampus and NCL inhibit both of these abilities, as 

one would predict from human neurocognitive imagining studies and a recent 

comparative analysis in animals (Allen and Fortin, 2013)? This is an important question 

because although it has been well established that the hippocampus plays a crucial role 

in spatial memory in both birds and mammals, and that lesions to the hippocampus 

disrupt memory for caches in food-storing birds including corvids (e.g. Krushinskya, 

1966), recent work on the neuroanatomy of the pigeon hippocampus suggests that it 

only receives visual and olfactory input. Rattenborg and Martinez-Gonzalez (2011) have 

therefore argued that in contrast to the mammalian hippocampus the avian hippocampus 

does not have connections with most higher-order association areas (but see Allen and 

Fortin, 2013 for a counterargument in favor of evolutionary continuity). Studies of 

corvid connectivity would be crucial in this regard.  

 
Child Development 

The second application of corvid models is for studying the development of cognition in 

young humans. For example we can investigate whether, and to what extent, young 

children show the same pattern of development in their performance on what-where-

and-when tasks inspired by the scrub-jay caching to that found in other tests of mental 

time travel (reviewed by Clayton, 2014). Performance on what-where-and-when 

memory tests does indeed show a similar developmental trajectory (e.g. Hayne and 

Imuta, 2011; Scarf et al., 2013), namely that young children generally fail the tasks at 

three years of age, show a transitional state of performance at four years of age, and pass 

at five years of age.  Similarly when children were tested on a task analogous to the 
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planning for breakfast experiment for scrub-jays, in which the children were given the 

opportunity to plan for tomorrow’s playtime as opposed to breakfast, they did not pass 

the task until they were four years of age (Atance et al., 2014). In essence, the children’s 

performance on the scrub-jay based paradigms shows a similar developmental trajectory 

to that found in other tests of episodic cognition in young children, thereby establishing 

them as appropriate models for studying human and avian cognition.  

 

Corvid models of insightful problem-solving have also been adapted to study cognitive 

development, and such studies show that these abilities develop surprisingly late in 

childhood. Indeed, studies investigating the hook-making abilities of young children 

suggest that it is not until children reach about eight years of age that they can solve 

such tasks, and even then only about half of the children were successful on the task 

(e.g. Cutting et al., 2011).  Furthermore, in line with the developmental trajectory for 

hook-making abilities, young children did not pass the critical aspects of the water task, 

such as spontaneously dropping objects that sink into the tube as opposed to those that 

float until they were eight years of age (Cheke et al., 2012). 

 

What do the corvid analogues tel l  us about human cognition? 

Intuitively, one might have thought that social and episodic cognition tasks required 

more complex forms of cognitive process given that they both require forms of 

perspective taking (other minds and other times respectively). Perhaps the fact that 

children pass these tasks earlier than the physical problem-solving tasks is a reflection 

of the effects of extensive technological enculturation on physical problem solving. For 

example, in Western mechanistic societies children gain considerable experience of 
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devices with hidden mechanisms, from smart phones and computers to light switches. It 

would be fascinating to conduct cross-cultural studies to investigate these issues further. 

Such comparisons would allow us to investigate whether, and to what extent, a child’s 

understanding of the physical world is in general developmentally delayed compared to 

that of perspective taking and whether or not this applies specifically to children that 

have been raised in mechanized cultures. In so doing we should gain a better 

understanding of the mechanisms controlling the various behavioral decisions that 

children make in problem-solving tasks, including how they bring to mind and co-

ordinate the various actions required of the more complex physical tasks involved the 

hook manufacture tests (Cutting et al., 2014). The hope is that these models will 

stimulate future research identifying these cognitive milestones and exploring the 

mechanisms underlying these abilities in both children and corvids (Clayton, 2014). 

 

Conclusion 

Our understanding of corvid cognition, especially with respect to abilities thought to be 

uniquely human, has not been reflected in our understanding of corvid neurobiology. In 

the 10 years since our general understanding of the avian brain was reassessed, we still 

know little about those birds that would make plausible models for human cognition, 

namely corvids and parrots. We propose that neuroscientists interested in the 

neurobiology of complex cognition start to incorporate avian models into their 

paradigms, most effectively by collaborating with comparative psychologists, 

ethologists and behavioral ecologists with expertise in working with these unusual 

species. Computational neuroscientists will be able to think clearly about the issues 
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surrounding differences in neural and cognitive systems between birds and mammals 

that will make the best use of data resulting from these interdisciplinary relationships.   
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Figure Legends 

Figure 1: A. Schematic representations of avian (A, B, D) and mammalian (C) brains. All 

are sagittal views, with rostral to the right. Areas that are either structurally 

homologous or functionally analogous have been given the same color (except D). In 

areas of the primate brain with hatching, it is not known which regions are 

functionally equivalent to the avian mesopallium, nidopallium and entopallium.   

These images are not to scale and the position of different regions are approximate 

and for illustrative purposes only. A. Crow brain with terms and subdivisions based 
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on the revised nomenclature of Reiner et al., (2004). The area in the circle displays 

the subdivisions of the hyperpallium in more detail. B. Crow brain displaying 

proposed boundary changes based on Jarvis et al., (2013). The area in the circle 

displays the boundary and nomenclature changes in the hyperpallium and 

mesopallium. C. Rhesus monkey brain with established nomenclature. D. Crow brain 

with overlaid functional columns (auditory [blue], day vision [red], motor [yellow], 

visual [green], somatosensory [orange] and cluster N [purple] as proposed by 

Jarvis et al., (2013). Abbreviations: Hyperpallium apicale (HA); interstitial 

hyperpallium apicale (IHA); hyperpallium intercalatum (HI); hyperpallium 

densocellulare (HD); hyperpallium (H); Intercalated hyperpallium (IH); nidopallium 

caudolaterale (NCL).  

 
Figure 2: The avian brain (A) and mammalian brain (B) represented as 3D cubes to 

display the differences between a nuclear (avian) and layered (mammalian) 

organization to the pallium and its relationship to sub-pallial areas.  

 

Figure 3: Drawings representing the different corvid cognition tasks discussed in the 

text. A. Caching paradigm used to test episodic-like memory (Clayton and Dickinson, 

1998) and future planning (Raby et al., 2007) in western scrub-jays. Two different 

foods (e.g. wax worms and mealworms) can be hidden in different locations (molds) 

in an ice cube tray and recovered after different delay periods. The trays are filled 

with sand or corn kibble allowing the foods to be buried and each tray is made unique 

by the arrangement of various colored Lego Duplo® bricks around each tray. B. 

Object choice paradigm used to test social cognition in jackdaws (von Bayern and 

Emery, 2009a, 2009b). C. Social caching paradigm used to test for visual perspective-
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taking, knowledge attribution and experience projection in western scrub-jays 

(Emery and Clayton, 2001, Clayton et al., 2007). D. Tube and bucket paradigm used 

to test physical cognition and tool manufacture in rooks (Bird and Emery, 2009a). E. 

Aesop’s Fable (water displacement) task used to test physical cognition and tool use 

in rooks (Bird and Emery, 2009b). 
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