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ABSTRACT
With network traffic rates continuously growing, security systems
like firewalls are facing increasing challenges to process incoming
packets at line speed without sacrificing protection. Accordingly,
specialized hardware firewalls are increasingly used in high-speed
environments. Hardware solutions, though, are inherently limited
in terms of the complexity of the policies they can implement, of-
ten forcing users to choose between throughput and comprehensive
analysis. On the contrary, complex rules typically constitute only
a small fraction of the rule set. This motivates the combination
of massively parallel, yet complexity-limited specialized circuitry
with a slower, but semantically powerful software firewall. The
key challenge in such a design arises from the dependencies be-
tween classification rules due to their relative priorities within the
rule set: complex rules requiring software-based processing may
be interleaved at arbitrary positions between those where hardware
processing is feasible. We therefore discuss approaches for par-
titioning and transforming rule sets for hybrid packet processing,
and propose HyPaFilter, a hybrid classification system based on
tailored circuitry on an FPGA as an accelerator for a Linux net-

filter firewall. Our evaluation demonstrates 30-fold performance
gains in comparison to software-only processing.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security and pro-
tection
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Packet classification, FPGA hardware accelerator, Firewall
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1. INTRODUCTION
Software firewalls like netfilter/iptables [3], pf [4], or

ipfw [2] are widely used in practice, in both standalone applica-
tions and as a basis for professional security appliances [1]. Their
main advantages are flexibility and powerful filtering options, as
well as their easy setup and handling, since they can be used on
top of common operating systems with commercial off-the-shelf
(COTS) hardware. These CPU-based architectures, however, hardly
meet the line rate packet processing requirements for high link
speeds such as 40 Gbps or beyond, which leave only small pro-
cessing time frames of 8 ns or less for each packet in the worst
case [21]. In contrast, packet classification systems based on spe-
cial purpose hardware, such as network processors (NPUs) [24,26],
field-programmable gate arrays (FPGAs) [11, 17, 20, 21], graph-
ics processing units (GPUs) [35], or application-specific circuits
(ASICs) [8] provide an abundant amount of parallelism which can
be used to process many network packets at once. Furthermore,
the matching process for every single packet is often parallelized,
which leads to large achievable throughputs of up to 640 Gbit/s [8].

However, dedicated hardware is significantly more constrained
with respect to the expressiveness of the supported rule set seman-
tics: while the functionality of software-based classification sys-
tems ranges from stateful connection tracking over probabilistic
matching to deep packet inspection [2–4], specialized hardware en-
gines are often restricted to simple stateless packet classification
with no or only limited connection tracking capabilities [8, 11, 17,
21, 35]. Moreover, while software firewalls can utilize a virtually
unlimited amount of memory for storing policies and connection
states, hardware firewalls have to operate within fixed boundaries.

In order to combine the advantages of massively parallel match-
ing hardware and powerful inspection capabilities of software-based
packet filters, we propose HyPaFilter, a hybrid packet classifica-
tion concept. The HyPaFilter approach aims to reach the packet
rate and processing latency of a dedicated hardware firewall for
common, easy to classify traffic, while providing the flexibility and
functionality of a software firewall for packets which require com-
plex processing. To this end, HyPaFilter partitions a user-defined
packet processing policy into a simple part manageable by special-
ized matching hardware, and a complex part, which is handled in
software. We found that a key challenge in such a hybrid design,
regardless of its concrete implementation, is the proper handling of
dependencies between different rules in the specified policy: if the
hardware detects a rule match of an incoming packet in the simple
part of the policy, it must ensure that the packet does not match
a more highly prioritized rule installed in the software filter be-
fore the action specified by the hardware-detected rule is applied.
However, it is desirable to avoid a full-fledged software packet clas-
sification whenever possible in order to achieve the full hardware
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speedup for a large number of packets. In order to overcome this
challenge, the HyPaFilter approach determines the largest rule in-
dex in the simple rule set up to which a hardware-only classification
is safely possible. Furthermore, even if complex processing for a
packet is required, the matching information from the hardware can
be reused in order to narrow down the set of rules the software filter
has to match against this packet. We also address policy updates, as
both the simple and complex part of a policy can change at arbitrary
positions after an initial system setup.

As FPGA-based systems are suitable candidates for high perfor-
mance, low latency network applications [25], we prototyped the
HyPaFilter approach using a standard Linux host using netfil-

ter/iptables as the software packet filter, combined with the
NetFPGA SUME [37] platform. In this setup, the NetFPGA SUME
is configured with tailored logic which matches packets against ev-
ery simple rule in parallel, allowing it to perform basic firewalling
tasks without involving the host at all at speeds of up to 40 Gbps for
64 byte frames. Complex rules and policy updates are implemented
in netfilter in order to allow for comprehensive packet analysis
as well as short rule update latencies. Whenever possible, updates
that involve simple rules are moved from the software filter to the
hardware filter during the next hardware configuration phase.

Of course, the achievable performance of HyPaFilter is depen-
dent on both the structure of the implemented policy as well as on
network traffic characteristics. However, previous examination of
real-world traffic in [6] showed that the fraction of traffic which can
be analyzed by simple packet filter rules is large enough to expect
a significant performance gain in practical applications. Our eval-
uation results indicate that the HyPaFilter system can significantly
increase the maximum achievable classification throughput over a
software-only approach even for policies with many and widely
spread complex rules. In the current state of development, state-
ful firewalling relies on the software firewall only. Therefore, the
intended use case prefers scenarios like bridging firewalls, denial-
of-service protection, or demilitarized zone configurations, where
many policies can be implemented by stateless firewall rules.

To sum up, the main contributions of this paper are: (1) We
present a hybrid packet classification concept which combines the
benefits of dedicated matching hardware with powerful matching
semantics typically found in software-only approaches. We proto-
typed this concept on a combination of a NetFPGA SUME and a
Linux host system. However, at its core, the HyPaFilter approach
does not make any assumptions on the used hardware and can be
used with other kinds of hardware, such as GPUs or NPUs. (2) We
describe different strategies in order to achieve a good policy sep-
aration, which is one of the key challenges in such hybrid designs.
(3) We provide a detailed study on how the structure of the im-
plemented policies affects the achievable throughput in our hybrid
system.

The remainder of this paper is structured as follows: in Section 2,
we discuss related work in this field of research. Next, we briefly
introduce the packet classification problem in Section 3. Sections 4
and 5 describe the hybrid matching algorithm as well as the archi-
tecture of the HyPaFilter system, respectively. Finally, we present
our evaluation results in Section 6 and conclude this paper in Sec-
tion 7.

2. RELATED WORK
Network packet classification has been of major interest to the

research community due to its importance for packet-switched net-
works [13, 32]. Most of the scientific work in this area focuses on
the geometric variant of the packet classification problem, which
considers a limited number of packet header fields and does not

take other criteria into account, such as packet payloads or con-
nection states. These research efforts can be roughly split into the
following categories: classification algorithms, hardware architec-
tures, and rule set transformations.

Classification algorithms traverse an algorithm-specific data struc-
ture in order to find the highest prioritized rule that matches on all
relevant header fields of an incoming packet. Such approaches ex-
ist in many different flavors, such as decision tree algorithms [12,
30, 34], bit vector searches [7, 22], or techniques based on hash
maps [31]. In comparison to a straightforward linear search through
the rule set, these advanced classification algorithms provide sig-
nificantly faster classification performances [13]. Despite this fact,
many practically used packet classification systems, such as net-
filter [3] and pf [4], implement a linear search in order to dis-
criminate network packets and thus generally suffer from low clas-
sification performance [16]. However, these systems also provide
powerful rule set semantics which are more expressive than plain
stateless header field inspection.

Specialized hardware architectures used for packet classification
typically employ large amounts of parallelism in order to achieve
high throughput rates. The most common hardware architecture
used for packet classification is Ternary Content Addressable Mem-
ory (TCAM), which matches the entire rule set in parallel against
incoming packet headers [28] and can thus process every incoming
packet in a small, fixed number of clock cycles. On the down-
side, TCAMs are expensive, power-intensive, and cannot natively
represent rules with range or negation tests [17]. Other widely
used implementation platforms for packet classification are FP-
GAs [11,17,18,20], NPUs [24,26], and GPUs [35], which typically
also employ a full parallel match [17] or implement a classification
algorithm which is amenable for parallelization/pipelining [11, 18,
20, 24, 26, 35]. Although significantly faster than software-based
systems, these approaches only support limited stateless matching
semantics. In contrast, the HyPaFilter design combines the flex-
ibility of existing software engines with the processing speed of
dedicated hardware.

Rule set transformation techniques are orthogonal to the em-
ployed classification algorithm/architecture. The goal is to trans-
form an initial rule set R into an equivalent rule set R′ which
can be traversed faster for incoming network packets. Existing ap-
proaches for rule set transformation are rule set minimization [23]
or the encoding of decision tree data structures into the rule set [16].
HyPaFilter utilizes the latter transformation variant to install com-
plex rules in the software filter which can reuse the hardware clas-
sification result in order to accelerate the software matching.

The possibility of hybrid packet filters for FPGA/netfilter
and NPU/netfilter combinations has been previously addressed
in [10] and [6], respectively. However, these works do not answer
the following key questions: (1) How should a packet processing
policy be deployed in a hybrid system in order to reach high classi-
fication performance? (2) How does the hybrid system implement
rule set updates? In order to provide an answer to these questions,
we present three rule set partitioning schemes as well as update
mechanisms to handle rule set changes.

3. PROBLEM STATEMENT
In this section, we first introduce the packet classification prob-

lem, which serves as the vantage point for the extended packet clas-
sification problem, which we define subsequently.

3.1 Packet Classification Problem
The packet classification problem, as it is most often seen in the

literature [7, 12, 17, 31], can be formally defined as follows: let



H = (H1 ∈ D1, . . . ,HK ∈ DK) be a tuple of header values and
R = 〈R1, . . . ,RN〉 be an ordered list of rules Ri, which is called the
rule set. Here, D j is called the domain of the jth header field. For
the rest of this paper, we assume that each D j is a range of non-
negative integers, in order to cover common header fields like IP
addresses, ports, or protocol numbers. Every rule Ri consists of K
checks C j

i : D j→{true, false} with

Ri =C1
i ∧ . . .∧CK

i .

Ri is said to match the header tuple H if C j
i (H j) yields true for

all j ∈ {1, . . . ,K}. The goal of the packet classification problem is
to find the smallest index i∗ such that rule Ri∗ matches H . This
index can subsequently be used in order to look up and execute
an action for the corresponding matching rule, such as DROP or
ACCEPT. Here, the checks C j

i are often simple equality, range, or
subnet tests. An example for an iptables rule which consists of
these basic tests is

-p tcp --dport 80 --dst 1.2.3.4 -j ACCEPT

which accepts incoming TCP packets with destination port 80 ad-
dressed to 1.2.3.4.

The most straightforward way to solve the packet classification
problem, which is implemented by many practically used classi-
fication systems [3, 4], is a linear search through the rule set R.
Although a linear search is simple to implement and memory effi-
cient, it does not provide good classification performance. Faster
classification algorithms, such as [7, 12, 22], exploit the simplic-
ity of the above mentioned tests in order to translate the rule set
R into search data structures for fast traversal at runtime. How-
ever, this is independent of the semantic specification of the rule
set, which is typically still done through a linear list of rules, or-
dered by priority. Any other representation used by the algorithm
must not change these rule set semantics, so that HyPaFilter can
remain independent of the specific algorithms and data structures
used internally in the software classificator.

3.2 Extended Packet Classification Problem
Practical packet filter implementations, such as netfilter [3],

pf [4], and ipfw [2], support advanced matching criteria in order
to increase the expressiveness of an implemented filtering policy.
Examples for such sophisticated checks are connection tracking,
rate limiting, unicast reverse path forwarding (URPF) verification,
probability-based matching, or deep packet inspection. When used
in conjunction with the previously defined basic checks, these tests
can greatly foster both the robustness and effectiveness of the used
packet filtering policy. In such a system, a rule Ri can be modelled
as

Ri =C1
i ∧ . . .∧CK

i ∧Ai,

where Ai is a rule-specific combination of advanced matching cri-
teria. An example iptables rule which scans the packet payload
in addition to basic header checks could look like

-p tcp --dport 80 -m string --string "BAD" --algo

bm -j DROP.

Here, the A part of this rule is the test for the string “BAD”. In
contrast to most other existing hardware-accelerated classification
systems, the HyPaFilter approach tackles both the basic and the
extended packet classification problems.

4. MATCHING ALGORITHM
In order to support good classification performance, small rule

set update latencies and expressive rule set semantics, the HyPaFil-
ter system relies on a hybrid matching algorithm which first pro-
cesses every incoming packet on the FPGA. After the packet is
matched, the FPGA circuitry decides whether the packet requires
further, potentially more complex processing in the host-based net-
filter classification system. For the remainder of this paper,
we follow the nomenclature of [36] and denote packets forwarded
by the FPGA as forwarded, while those diverted to the host are
called shunted. Although software-based packet processing is sig-
nificantly more expensive than classification on the FPGA, we will
present a strategy how the software rules can be structured in order
to keep the number of traversed rules as small as possible in case
of a packet shunt. In the remainder of this section, we will explain
the architecture of the FPGA-based filter, the dispatch logic which
decides whether a processed packet must be shunted to the host, as
well as the rule set structure implemented in netfilter.

4.1 Hardware Filter
Let RS ⊆ R be the sublist containing the simple rules without

advanced matching criteria, and RC ⊆ R be the sublist of com-
plex rules with advanced matching criteria. That is, RS ∪RC =
R and RS ∩RC = /0. The classification system implemented on
the FPGA solves the classic packet classification problem on RS, as
introduced in Section 3.1. It therefore implements every Ri ∈RS.
In order to achieve high matching performance on the FPGA with
a low deterministic processing latency per packet, we decided to
use a rule set specific parallel matching engine, which is generated
by translating every rule Ri ∈ RS at setup time into a specialized
match unit M j specified in VHDL, similar to the technique pro-
posed in [17]. Here, j is the index of rule Ri within the sublist RS.
This process is illustrated in Figure 1. Since each rule in RS is
a conjunction of simple checks, such as subnet tests or port range
tests, the match units are composed of a small number of basic com-
parator circuits. For example, a rule which matches TCP packets if
the source IP address is in the subnet 203.0.0.0/8 with destination
port 80 is translated into three specific comparator circuits: the first
one compares the packet’s transport protocol field against the TCP
transport protocol number 6, while the second and third compara-
tors compare the first octet of the packet’s source IP address against
203 and the packet’s destination port against 80, respectively. Fi-
nally, the results of these comparators are connected with an AND
gate in order to determine whether the rule matches or not. As the
match units are arranged in parallel, incoming network packets can
be matched against the entire simple rule set RS in a single clock
cycle, which yields a result bit vector V of size |RS|. Here, the
ith position Vi of the result vector V stores a 1 if rule Ri matches
the current packet, otherwise Vi is set to 0. As we are interested
in the most highly prioritized matching rule, we employ a priority
encoder in order to determine the index of the first enabled bit in

Figure 1: Translating simple rules into matching circuitry.



Figure 2: Parallel match of packet header data against RS.

V , which we will refer to as matchID in the following. The entire
hardware matching process is sketched in Figure 2.

Up to this point, the packet classification problem is solved for
the simple rule set RS solely in hardware, as the matchID can be
used in order to quickly look up the action ARS,P which must be
applied for the current packet P. If the installed rule set R does
not specify any rules with complex checks, i. e., if RC = /0 and thus
RS = R, then the classification is complete at this point and ARS,P
is applied to the current packet. However, if RC 6= /0, then addi-
tional processing may be required by the software filter residing on
the host system. This is the case when the matchID is greater or
equal to the smallest index of a rule in R that specifies complex
checks. In the following, we denote the smallest index of a rule in
R with complex checks by the term validID.

For instance, consider the case that the hardware matching cir-
cuit for the rule set sketched in Figure 1 computes that matchID is
3 for an incoming packet P (that is, the packet matches the sim-
ple rule R4). In this case, our hardware classification might be
incorrect, as rule R3 ∈ RC is more highly prioritized than rule
R4 ∈RS, and R3 might also match on the packet P. Thus, whenever
matchID ≥ validID, we shunt the classified packet to the host for
further processing, as described in the next section.

4.2 Software Filter
The task of the software filter running on the host computer

(which is netfilter in our case) is to classify every shunted packet
which cannot be handled solely in hardware. However, simply in-
stalling only the complex rule set RC in the software filter is not
enough, since for every shunted packet P, the hardware classifi-
cation might have been correct. This is the case when P is not
matched by any complex rule with a higher priority than the first
matching simple rule. As a consequence, the software filter must
be able to reproduce the hardware classification result iff the most
highly prioritized matching rule is in RS and not in RC. In the
remainder of this section, we present three different strategies how
the rule set in the software filter can be organized in order to achieve
this goal.

Full set strategy.
The most straightforward way to setup the software filter, which

we call the full set strategy, is to simply install the entire rule set
R. That way, forwarded packets will always traverse rules in the
correct order until the first matching rule is found, as sketched in
Figure 3a for the example rule set from Figure 1. This approach
allows for quick rule updates, since only one rule in the rule set
installed in the software filter has to be changed in addition to a
possible update of the validID register on the FPGA. This strategy
is simple, but comes at the cost of a major disadvantage: the soft-
ware filter may process a large number of rules for every shunted
packet, including simple rules. It thus repeats significant work al-

ready done in hardware. In contrast to the full parallel match in
the hardware filter, this can be rather expensive, as the rules are
processed linearly in most existing software packet filters.

Cut set strategy.
The amount of redundant work which is done in software for

shunted packets can be reduced with a simple modification. We al-
ready know that no simple rule with an index less than validID can
match a packet which has been forwarded to the software filter—
otherwise, the packet would have been processed solely on the
FPGA. For example, consider the rule set from Figure 1 and a
packet P with matchID 3. As matchID is equal to validID (which
is also 3 in the example), P will be forwarded to the software filter,
which will superfluously once again test rules R1 and R2 against P.
In order to avoid this potential extra work on the host system, the
cut set strategy installs only those rules Ri ∈R in the software filter
where i≥ validID, as sketched in Figure 3b.

In comparison to the full set strategy, the cut set strategy has
higher rule update costs, as a potentially large number of rules must
be inserted or removed from the software filter in case of an update.
For instance, if the current validID is 300, and a rule is updated at
position 100, then the 200 rules Ri ∈R with 100 ≤ i ≤ 299 must
be inserted in the software filter. However, our evaluation demon-
strates that the update effort can clearly pay off in terms of classifi-
cation performance, as the software filter will test |R|−validID+1
rules at most, in contrast to the worst case of testing |R| rules in
the full set strategy.

Interval strategy.
All strategies described so far implement rule sets in the soft-

ware filter which are agnostic to the partial classification result tu-
ple <matchID, ARS,P> previously computed on the FPGA for every
shunted packet P. This results in wasted effort on the software side
and inflates the software-side rule set—also in case of the cut set
strategy. To avoid the recomputation effort, the interval strategy
relies on metadata handed over from the FPGA to the matching
software when a packet is shunted, i. e., the match index and ac-
tion tuple <matchID, ARS,P>. Simply put, the goal of the interval
strategy is that shunted packets should only be tested against a frac-
tion of the complex rules RC and none of the rules in RS again in
software.

The basic idea behind the interval strategy is that groups of con-
secutive simple rules Gk = {Ri, . . . ,Ri+α} in R can be mapped
to intervals Ik = [M(Ri),M(Ri+α )], where M(Ri) is the index of
the generated match unit for Ri. For instance, the simple rules
from the example rule set in Figure 4 form three groups G1 =
{R1,R2},G2 = {R4},and G3 = {R6}, with the corresponding inter-
vals I1 = [1,2] , I2 = [3,3] ,and I3 = [4,4], respectively. Each inter-
val represents a range of matchIDs, which may be computed by the
FPGA for an incoming packet P. It is important to note that, if P is
shunted to the host, then the matchID computed on the FPGA falls
into exactly one of these intervals. The interval strategy exploits
this fact by precomputing the chain of complex rules Ck for every
interval Ik, that could potentially contain a more highly prioritized
matching rule for a packet P whose hardware-computed matchID
falls into interval Ik (i. e., P matches a simple rule in group Gk).
In the example shown in Figure 4, C1 is empty, since there are no
complex rules in R that are more highly prioritized than the simple
rules R1 and R2. In contrast, C2 = {R3}, as the complex rule R3
is more highly prioritized than the simple rule R4 and thus could
match on packets which have been assigned to R4 by the FPGA.
Similarly, C3 would be set to {R3,R5}, as both complex rules R3
and R5 are more highly prioritized than the simple rule R6.



(a) Full set strategy. (b) Cut set strategy. (c) Interval strategy.

Figure 3: Different strategies to implement the complex rule set RA in the software filter.

Now, whenever a packet P is shunted to the host, the FPGA
driver fetches the <matchID, ARS,P> tuple from the hardware, which
are 28 and 4 bit values, respectively. Then, the FPGA driver code
on the host uses the matchID to perform a binary search over the
precomputed intervals in order to find the index k of the interval
Ik that contains the matchID. Before the actual netfilter packet
classification starts, the index k as well as the hardware action code
ARS,P are written to the most significant 28 and least significant 4
bits of the netfilter mark field, which is a 32 bit metadata field
attached to the packet P.

These efforts are justified by the fact that netfilter supports
tests on the mark field. We exploit this fact in order to achieve
two goals: first, we want to limit the set of complex rules which
must be tested in netfilter to only those which are more highly
prioritized than the first matching simple rule. Second, we want to
apply the hardware-computed action ARS,P in netfilter without
the need to re-traverse any simple rule in software.

To this end, the rules which are installed in netfilter for the
interval strategy are generated as follows: the netfilter rule set
starts with a sequence of rules which implement a binary search
over the interval index k encoded in the most significant 28 bits of
the mark field. This is done in order to quickly locate the chain of
relevant complex rules Ck during the matching process, as sketched
in Figure 3c. The generated rule set also contains each chain Ci
as a linear list, which contains the complex rules that are mapped
to interval Ii. Finally, the last rule in every chain Ci ends with a
jump to a small set of fallback rules (one for each possible action),
which use the least significant four bits of the mark field in order to
apply the action ARS,P to the shunted packet P if no complex rule
matches.

Figure 4: Intervals in the rule set R.

In comparison to the full set and cut set strategies, the interval
strategy requires more complex preprocessing in case of a rule up-
date, as the intervals for the complex rules have to be re-computed
and communicated to the hardware driver. Furthermore, the net-

filter binary search tree encoded in the filter rules must be re-
generated. However, this strategy provides the best classification
performance in software, as the number of traversed rules for each
shunted packet P can be orders of magnitude smaller than in the full
set and cut set strategies, as indicated by our evaluation. Further-
more, this approach does not require a change of the netfilter

source code in order to use the hardware-computed matching infor-
mation. Instead, we completely rely on existing netfilter match
functionality in order to accelerate the software match process.

5. SYSTEM ARCHITECTURE
We implemented the hybrid algorithm on our HyPaFilter sys-

tem, which consists of two functional units. One part is a standard
host system, used to run the software firewall and the toolchain for
managing the system. This can even be an already existing firewall
appliance which should be upgraded in terms of performance. This
system is extended by the second part, a general purpose FPGA

Figure 5: Proposed structure of a HyPaFilter system. The host can
be any COTS system capable of carrying the additional FPGA NIC.



addon card, as shown in Figure 5. These units must provide a suf-
ficient communication path for transferring data and settings be-
tween them.

FPGA Networking Card
This card is a suitable FPGA platform which can provide the re-
quired interfaces to both communicate with external Ethernet net-
works as well as acting as a regular network interface card in re-
gard to the host system. Both FPGA plug-in cards we used during
our evaluation – the VC709 [5] and the NetFPGA SUME – have
proven to be suitable. They provide multiple network ports and can
be plugged into a COTS system via PCI Express (PCIe). This card
acts as the primary network interface connected to both internal
(e. g., LAN) and external network (e. g., Internet). The hardware
based filtering is handled exclusively on the FPGA on the card.

Host System
The host system carries the FPGA NIC and communicates with it,
for example via PCIe. The host runs the operating system where
the back-end netfilter with iptables is installed, supplies the
tools to configure the FPGA and provides a user interface for ad-
ministrating HyPaFilter.

These two units are connected through several communication
channels. For quick and simple settings, the host system is able
to set and read predefined 32 bit registers on the FPGA. Network
traffic between FPGA and host is handled through direct memory
access (DMA). On the host side, a driver provides the functionality
and interfaces so that the operating system can access the FPGA
like a regular NIC. This is important since we do not want to rely
on non-standard customizations to netfilter or other core com-
ponents for HyPaFilter to work. By using a programming inter-
face, the configuration of the FPGA can be updated. A software
toolchain of the FPGA vendor, in our case Xilinx Vivado, is used
to generate the FPGA configuration based on a given rule set. For
convenience, it is also installed on the host.

Operation
Packets received from any connected network are first matched
against the rules implemented on the FPGA. Based on its deci-
sion and the validID, packets are either dropped, forwarded directly
(without interaction of the host system), or shunted to the host for
further processing. The host can send packets through the supplied
driver interface, which applies to both packets shunted through the
software firewall and packets generated by the host itself. These
packets are directly forwarded by the FPGA to the corresponding
network interface. The flow of packets through this structure is
visualized in Figure 6.

The two reasons for packets being shunted are a) not synthesiz-
able rules appearing at positions in the rule set that would other-

Figure 6: Flow of packets through the HyPaFilter system.

wise be forwarded, or b) an update to the rule set at these positions.
For updating, this technique copes with the problem that changes
to logic-level optimized rule sets cannot be selectively integrated.
While a new filter’s source code can be quickly generated, the syn-
thesis and implementation of the new FPGA bitfile requires a sig-
nificant amount of time – in our test setup about 45 minutes.

The information about which index in the rule set matched on
the hardware is not discarded, as it is needed to remove the redun-
dancy by applying the interval strategy. For operation, the adminis-
trator uses a central management tool. In our implementation, it is
a Python command line interface. The general workflow for using
HyPaFilter is shown in Figure 7.

5.1 Rule Set-Specialized Hardware Filter
The dataflow through the FPGA can be shown in two layers.

The underlying structure for general networking and communica-
tion tasks is based on the NetFPGA SUME pipeline. The actual
core which is responsible for filtering is embedded into this pipeline
and connected via the AXI4 stream protocol as shown in Figure 8.

Internally, the HyPaFilter core uses a data bus width of 512 bits,
with the pipeline running at 180 MHz. The theoretically achievable
throughput of 85.83 Gbit/s is therefore enough to fully saturate all
four 10 Gbit/s Ethernet ports. The NetFPGA SUME currently uses
a bus width of only 256 bits which are converted before and after
the hardware core. Packets coming into the hardware core are first
distributed (cloned) into a classification path and a data path, with
the latter being a simple FIFO queue of 64 kB. In the classifica-
tion path, the Header Parser extracts relevant information from in-
coming packets. For a versatile operation, the header parser should
take care of the data alignment due to VLAN tags or various header
lengths. It is therefore implemented as a multi-stage non-blocking
pipeline architecture. The preprocessed data is forwarded to the
filtering module, which is automatically generated by the manage-
ment toolchain. After the classification, the decision is forwarded
to the Output Processing, where the determined action is executed:
DROP (read from FIFO and discard), FORWARD, or SHUNT by
adapting the output port field in the packet’s metadata. The register
interface can be accessed from the host directly via PCIe. Figure 9
shows the described parts in the module. The match logic is able to
classify packets in constant time. Hence, a reader might note that
the separation into data and classification path yields no advantages
in terms of maximum throughput. However, as we aim to support
more complex decisions in hardware in our future work, this struc-
ture allows for more flexible development. Since the hardware fil-
tering logic contains no components that could cause a congestion,
it is clear that the HyPaFilter hardware core is never the limiting

Figure 7: HyPaFilter workflow with the central management tool.



Figure 8: Simplified dataflow structure of the NetFPGA SUME.
The dashed elements are available, but not used in our evaluation.

factor for raw data throughput in this setup. The hardware filter
core is able to extract and classify incoming packets against a va-
riety of parameters like IPv4 address, IPv6 address, protocol type
(UDP, TCP, ICMP, ARP), media access control (MAC) address,
TCP/UDP ports, and several flags.

Previous work has shown that the resource utilization of typi-
cal rule sets on FPGAs can be significantly reduced by including
the actual rule set in the logic optimization process, rather than us-
ing a generalized filtering logic [15, 17]. As firewall rule sets in
general are not static, an FPGA’s reconfigurability allows to ex-
ploit this potential in practical applications. Thus, in our HyPaFil-
ter prototype, we combine such a rule set tailored hardware filter
with a generic software filter residing on the host. However, the
proposed HyPaFilter approach does not strictly rely on this type
of specialized hardware filter and could also utilize another hard-
ware matcher (e. g., a TCAM), as long as the driver interface which
provides the matching information is maintained.

5.2 Software Filter for Incremental Updates
and Complex Rules

Although hardware-based parallel packet filtering, as explained
in the previous section, can achieve high throughputs of 40 Gbps
or higher, it suffers from two fundamental drawbacks: on the one
hand, incremental updates to the rule set are time-consuming. On
the other hand, the flexibility of hardware-based filters is much
more constrained than that of software-based filters. Most hardware-
based approaches are restricted to simple equality, range, or prefix
checks on incoming header fields [17, 19, 20]. In contrast, many
software-based packet filters, such as netfilter [3] or pf [4], sup-
port much more complex matching criteria. Examples are the state
of the flow that corresponds to the examined packet, probability-
based matches for rate limiting, or even arbitrary Berkeley Packet
Filter (BPF) expressions, to name only a few. Furthermore, new fil-
tering functionality like, e. g., support for a new protocol or the ad-
dition of further options for an existing one, can be added relatively
quickly. However, a full-fledged in-circuit implementation which
supports all of these features is notoriously difficult, as dedicated
hardware it typically optimized for a very limited functionality.

In order to achieve the advantages of both software- and hardware-
based packet processing, i. e., (1) high throughput, (2) fast incre-
mental updates, and (3) powerful rule set semantics, we combine

Figure 9: Dataflow inside the HyPaFilter hardware core.

fast specialized matching circuitry with the flexibility and expres-
siveness of a CPU-based packet filter, namely netfilter.

6. EVALUATION
In our evaluation, we focus on three of the most important perfor-

mance metrics for packet classification architectures: packet rate,
rule set update latencies and consumption of resources. This stands
in contrast to raw data throughput measurements, which are more
targeted at the data flow structure. Therefore, we conducted the
following experiments:

• determining the maximum number of rules which can be fit-
ted onto the FPGA,

• measuring the maximum packet rate of the NetFPGA SUME
architecture,

• measuring the performance of the HyPaFilter system and
comparing the impact of rule updates using different strate-
gies,

• measuring the network latency,

• measuring delays of the update process and number of rules
and

• comparing against a commercial OpenFlow software-defined
networking (SDN) setup.

To generate a high workload on the classification engine, we
used small packets at a high rate. Packets carry just five arbitrarily
chosen bytes as payload. For our evaluation, we set up a typical
bridging firewall scenario as shown in Figure 10.

Traffic is generated and received by two dedicated machines,
based on Intel Core i7 960 with a dual-port 10 Gbit/s NIC. The
hosts run Ubuntu Linux. We generated rule sets and traffic using
the ClassBench suite [33], which is widely used in this context. The
system is easily capable of saturating the connected networks with
traffic. These sender and receiver hosts are connected to the Hy-
PaFilter system via optical fibre. We counted the number of pack-
ets received by the MAC-Core MAC0 on the NetFPGA and those
arriving on the network interface of the receiver. Further network
connections between the systems to remotely start the test cycles
and collect the results are not shown.



Figure 10: Evaluation setup showing the relevant components.
Traffic is generated on the sender and directed through the bridging
HyPaFilter firewall.

The HyPaFilter system consists of the following relevant compo-
nents: Intel Xeon E5-1650 v3 based host, Intel 82599ES dual-port
10 Gbit/s NIC, NetFPGA SUME PCIe card, Ubuntu Linux, net-
filter framework and iptables v1.4.21, Xilinx Vivado 2014.4,
as well as the HyPaFilter management tools. The hardware filter
core is integrated into a modified data pipeline based on the refer-
ence NIC project of the NetFPGA SUME release 1.0.0.

6.1 Test Rule Sets
To evaluate the classification performance under replicable con-

ditions, we generated our test rule sets with ClassBench [33]. The
number of rules we could fit onto the FPGA was limited by the tim-
ing constraints and resulted in a maximum of 1100 rules. For eval-
uating our classification algorithm and strategy, we created three
different UDP rule sets acl1k1, fw1k1 and ipc1k1, with all rules
applying the action ACCEPT. This way, the number of dropped
packets can be regarded as the packet loss solely due to the archi-
tecture.

ClassBench’s trace_generator was used to generate trace files
corresponding to the rule sets. We wrote a C program for generat-
ing and transmitting the test packet stream from such a trace file,
because no sufficiently fast solution could be found for this task
under the given conditions. The rule sets as well as the traces we
used are publicly available at [14].

For each test, the rule set was translated by the HyPaFilter man-
agement tool, integrated in the NetFPGA SUME pipeline and af-
terwards synthesized and implemented into an FPGA configuration
bitfile. Table 1 shows the resource utilization of the FPGA configu-
ration for a Virtex 7 690T. The relevant parameters are usage of flip-
flops (FF), look-up tables (LUT), LUTs used as memory elements
(Memory LUT), and block random access memory (BRAM). Dif-
ferences can be caused by the different rule sets and heuristic algo-
rithms used during the implementation process in Vivado.

To measure the impact of changes or occurrences of complex
rules to the the rule set we added in each test new rules to cer-
tain positions, starting from the end of the rule set. We used string
matching rules for this purpose:

-m string --algo bm --string BAD -m statistic\

--mode random --probability 0.99

These complex rules are especially interesting as the use of the
full capabilities of netfilter is one of the core features of Hy-
PaFilter.

Resource acl1k fw1k ipc1k
FF 9.12%/0.86% 9.12%/0.86% 8.26%/0.86%
LUT 15.07%/1.69% 16.22%/2.85% 13.38%/1.83%
Memory LUT 1.07%/0.01% 1.10%/0.01% 1.10%/0.01%
BRAM 16.73%/2.72% 16.73%/2.72% 14.01%/2.72%

Table 1: FPGA resource utilization overall/HyPaFilter core with
different rule sets.

6.2 Architecture Packet Rate
Forwarding packets directly in hardware provides the lowest la-

tency and highest packet rate. Therefore, the first experiment was
used to measure the maximum packet rate dependent on the per-
centage of packets bridged to the software. We will later compare
the packet rate of the different strategies against these values.

As the generated packets by the sender will match the rule set at
certain positions with a predefined distribution, the hardware filter
was used in combination with the validID to shunt parts of the traf-
fic to the software. There were no rules loaded into netfilter, all
incoming packets are forwarded by the Linux bridge.

We compared the number of ingress packets vs. packets received
at the receiver, which is the inverse of packets being dropped in the
firewall. Each data point shows the average packet rate of ten 20
second test runs, with distribution of the workload being set by the
validID as the variable parameter. The average number of ingress
packets arriving at the HyPaFilter network interface in each test run
before any classification is 2.3 million in 20 s. Figure 11 shows the
percentage of packets arriving at the receiver, the standard devia-
tion was too small to be visible in the plot. The architecture of the
host system and the NetFPGA SUME used as a simple NIC is only
capable of processing on average 6.4% of the packets which arrive
at the NetFPGA input interface. Increasing the validID and there-
fore reducing the fraction of shunted packets increases the overall
amount close to 100% when all packets are directly forwarded by
the FPGA NIC.

6.3 Strategy Comparison
To evaluate the performance of the different strategies described

in Section 4.2, the setup described in Section 6.2 was now adapted
to use firewalling. Starting with a hardware only scenario, we mea-
sured the impact of rule insertions without updating the hardware
filter definition. This subsequently causes an increasing amount of
packets to be shunted to the software firewall.

We conducted our experiments by following a certain test cycle
for all three strategies and repeated them for each of the three sam-
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Figure 11: Packet rate of the underlying architecture as a function
of the fraction of packets forwarded through hardware. At validID
= 0 all packets are shunted to the software, while at validID = 1100
all packets are forwarded.



ple rule sets acl1k1, ipc1k1, and fw1k1. During the test cycle,
we measured the average packet throughput rate after iteration n
following these steps:

1) implement the sample rule set onto the FPGA and set validID
to match everything in hardware

2) for test run n = 0 insert a new rule at position P0 = 1100 and
set validID = P0

3) for test run n+1 insert a new rule at position Pn+1 = 1100−
100(n+1) and set validID = Pn+1

4) repeat last step until Pn = 0.

For the first part of this test, we used the full set strategy and
loaded the complete rule set in netfilter. As mentioned in Sec-
tion 4.2, this leads to a high redundancy in the matching. For ex-
ample, an update at position index P = 500 sets validID = 500,
therefore all packets with matchID ≥ 500 will be shunted. These
packets will, however, never match the first 500 rules in netfilter
(counting from index zero), making them essentially useless.

For large validIDs, the tests confirmed the assumption that sig-
nificant performance gains can already be achieved by removing
the parts of the netfilter rule set that correspond to matchID <
validID (cut set strategy). The interval strategy proved to be a
useful additional measure when the amount of packets shunted to
software is large or the hardware and software rule sets intersect
at a high priority. Figures 12a, 12b, and 12c show the speedup as
a factor of the received packet rate compared to using netfilter

without any hardware acceleration and string matching rules for
insertion. The error bars show the standard deviation.

For the full set strategy, it can be clearly seen that the packet rate
behaves non-monotonic and dips near validID = 800. This can be
explained by the combination of two contrary effects: first, with
the validID decreasing, an increasing amount of shunted packets
causes the software performance to reach its limit. Second, with
the validID increasing, the packets that are shunted will only match
a smaller and smaller part at the end of the software rule set. This
means that the average number of rules traversed by the packets
will also increase, regardless of the constant total number of soft-
ware rules.

To get a better overview of the performance increase by apply-
ing the improved strategies, their packet rate has to be compared
against the full set strategy. This relative speedup, again for using
complex string matching rules in the insertion process, can be seen
in Figures 13a, 13b, and 13c. Large gains of performance of both
the cut set and interval strategy can be seen due to the reduction of
the long path effect which is causing the equivalent dip for with the
full set strategy near validID = 800. With an increased amount of
complex software rules with high priority (low validID), the advan-
tage of our hardware assisted binary search algorithm used in the
interval strategy becomes clear.

6.4 Network Latency
While the packet classification rate is the most interesting pa-

rameter to measure for evaluation, the additional latency which is
added by security appliances can be a major issue for certain ap-
plications, e. g., in data centers. Our network latency measurement
splits into two parts: the additional delay of the HyPaFilter hard-
ware core in the NetFPGA SUME pipeline, and the actual delay
which can be seen on network packets.

The internal additional delay in the FPGA could be determined
in the Vivado Simulator and is fully deterministic at 24 clock cy-
cles. With a clock rate of 180 MHz, the core therefore adds an ad-

ditional delay of 133 ns compared to the NetFPGA SUME in NIC
operation.

In order to check for the overall network latency imposed by
the HyPaFilter system, the round-trip time (RTT) was measured
with ping, sending 50 packets per test. While a direct connection
between sender and receiver (without the NetFPGA SUME) shows
a one way latency of 51 µs (σ = 3.2 µs), with the HyPaFilter system
present and forwarded packets only we saw a tolerable increase to
52 µs (σ = 5.4 µs). For packets shunted through software without
any firewall interaction it further increased to 73 µs (σ = 3.5 µs),
the highest average delay of 96 µs (σ = 7 µs) occurred with shunted
packets and an active software rule set of 1100 rules loaded into
netfilter.

With the limitation of the uncertainty of the measurement method,
the results show that our hardware filtering algorithm is suitable for
low latency requirements.

6.5 Rule Set Parameters
The strong influence of the number of rules in a software firewall

to its classification performance leads to the question how many
rules are loaded into the firewall for the three different strategies
after applying the update cycle. These numbers were determined
by exporting the rules with iptables-save and counting the cor-
respondent lines. As HyPaFilter uses a binary tree searching algo-
rithm, we also evaluated the worst case path length, i. e., the highest
number of potentially traversed rules for incoming packets. Fig-
ure 14 gives an overview over the actual number of rules which are
active in netfilter for different strategies, as well as the number
of rules which have to be evaluated in the worst case.

The synthesis and implementation process that is used to gen-
erate the new bitfile with one of the test rule sets requires about
45 minutes on the described HyPaFilter evaluation host, using Vi-
vado 2014.4. The Xilinx tool xmd, which is used to configure the
FPGA with this bitfile via the programming interface finishes in
17.38 s. During this time, the network is interrupted. In our test
cycles, no hardware update was required to reach the stated results.

6.6 Update Delay
Another interesting parameter is the time required for different

types of updates required for different strategies. We therefore mea-
sured the time for inserting rules, updating the validID register in
the FPGA and uploading a new configuration to the FPGA. Ac-
cording to our test cycle, the delays for the insertion were deter-
mined for consecutive insertions of rules at certain positions, i. e.,
the test at validID = 900 is executed with the assumption of rules
preliminary inserted at position 1100 and 1000. The update pro-
cess involves different operations for each strategy: a) for the full
set strategy, inserting a single rule with iptables and setting vali-
dID b) for the cut set strategy, truncating the rule set, inserting and
loading this set with iptables-restore, setting validID c) for
the interval strategy, calculating intervals, inserting the chained rule
set with iptables-restore, updating the driver and setting vali-
dID. Figure 15 shows the result of this test, as an average of 10
test cycles for each data point. Setting the validID register on the
FPGA alone takes 1 µs. The measured time confirms our assump-
tions about the cost for rule insertions (see Section 4.2). However,
even the most demanding updates of the interval strategy could be
carried out with a tolerable delay.
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(a) acl1k1 rule set.
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(b) fw1k1 rule set.
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Figure 12: Speedup of HyPaFilter with complex inserted rules and
different strategies over a software-only netfilter setup.

6.7 OpenFlow SDN
The logical division into a hardware filtering unit with a software

backend is in several aspects similar to the concept of an SDN. In
a typical SDN switch setup, a controller would place flows dynam-
ically into the hardware, allowing fast transmission of matching
packets. For a firewall application, the requirements are more com-
plicated than for a simple switch. Therefore, a controller with fire-
walling functionality was required.

We replaced the NetFPGA with a Quanta Computer LB8 48-port
SDN [27] switch running PicOS. For a fair comparison, we used
a publicly available and stable controller, OpenIRIS v2.2.1 [9],
which was installed on the HyPaFilter host system. The Open-
Flow 1.3 protocol is used for the communication with the switch.
OpenIRIS includes a firewall module which can be controlled via
the REST API [29]. The number of incoming packets was deter-
mined through the web interface of OpenIRIS.

We noticed several issues of the OpenIRIS firewall module dur-
ing our evaluation:

• Rules could not be added to certain positions. Although it
is possible to define a ruleid, the parameter seems to be
ignored and replaced by a random value which is not related
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Figure 13: Speedup of the enhanced strategies with complex in-
serted rules, compared to the full set strategy.

to the actual (logical) position of the rule. New rules are
always prepended to the current rule set.

• The source and destination port could not be specified as a
range.

• The port fields could not be set to values higher than 32767,
obviously due to sign conversion problems.

The update process therefore has to be carried out by first delet-
ing all rules and then adding all rules of our rule set in reverse order.
Loading 1100 rules into the module with the REST API takes 3.9 s
on average. During our evaluation we found out that the firewall
only placed flows into the hardware for ICMP ping packets and
established TCP sessions. Our test data (UDP packets), as well
as generic TCP packets do not trigger this mechanism, therefore
forcing each packet into the slow path to the controller. Although
not configurable, this behaviour may be a protection against SYN
flooding of the flow table, i. e. purposefully trying to fill the flow
table with useless entries. We concluded that due to these effects, a
fair comparison against our setup was not possible. Further inves-
tigation of these issues is out of the scope of this paper.
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7. CONCLUSION
In this work we introduce HyPaFilter, a hybrid packet classifi-

cation approach which combines the parallel matching capabilities
of specialized hardware with the extensive matching semantics of
widely used software packet filters. HyPaFilter accomplishes this
task by partitioning the implemented packet processing policy into
a simple and a complex part, where the simple part can be han-
dled directly in hardware and the complex part is installed in the
software filter. Incoming network packets are first processed in
hardware and are shunted to the software filter only in the case
where complex processing is required. We present a novel strategy
how the software-implemented part of the rule set can be organized
in order to reuse matching information from the hardware. This
strategy can be used on top of netfilter and does not require
changes of the netfilter source code. The actual hardware fil-
ter is not limited to our evaluation example, it can be any suitable
algorithm which provides the match index. Our evaluation of Hy-
PaFilter based on a combination of a NetFPGA SUME device and a
Linux host system demonstrates significant increases in the achiev-
able throughput over a software-only approach, even with rule set
constellations where the majority of incoming packets must be pro-
cessed in software.

Possible future work includes the integration of a fast dynamic
state table on the FPGA which can be used to directly handle state-
ful rules in hardware. This way, stateful rules could be handled
entirely in hardware and would not require the bridging of packets.
Ideally, this table would still allow access from the host so that the
software is able to shunt acknowledged sessions in hardware.
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