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Introduction 

For many years, second language acquisition (SLA) research has focused on revealing 

systematicity in second language (L2) development. The problem with searching for 

systematicity alone is that the identification of systematic patterns often necessitates statistical 

averaging, and averaging conceals individual patterns (Dörnyei, 2009). Indeed, in psychology, it 

is well-known that the averaged pattern can differ from the individual patterns that constitute the 

data (e.g., Heathcote, Brown, & Mewhort, 2000). Therefore, there has recently been a growing 

interest in SLA in understanding the performance of individual learners (van Geert & van Dijk, 

2002; Verspoor, Lowie, & van Dijk, 2008). 

However, studying individual variation requires appropriate analytical tools. 
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Conventional statistical techniques in SLA, such as analyses of variance (ANOVAs), cannot 

appropriately disentangle between- and within-learner variability. With recent developments in 

statistical modeling, however, we can now model and analyze group- and individual-level 

features simultaneously. The technique, called mixed-effects modeling, is now widely used in 

(applied) linguistics, including SLA (e.g., Kozaki & Ross, 2011; Tremblay, Derwing, Libben, & 

Westbury, 2011; see also Cunnings, 2012, and Linck & Cunnings, 2015). In most studies 

employing mixed-effects models, however, the technique has been used to control for individual 

differences in testing the significance of predictors or to study the sources of these differences. 

While this is certainly useful, mixed-effects models can also provide information about the 

amount and pattern of individual variation (Dingemanse & Dochtermann, 2013; Kliegl, Wei, 

Dambacher, Yan, & Zhou, 2011). This article not only reports on tests of the effect of predictors 

but also is focused on individual variation disclosed by mixed-effects models, with the aim of 

demonstrating that mixed-effects analysis can model systematicity and individuality 

simultaneously. 

Nonlinearity in SLA 

Another recent trend in SLA research is the emphasis on the process rather than the product of 

learning (Atkinson, 2011). The learning process, however, is never linear. There is ample 

empirical evidence to demonstrate nonlinearity in L2 development. Perhaps the best known 

examples of nonlinearity include U-shaped development (e.g., Lightbown, 1983) and power-law 

development (e.g., DeKeyser, 1997; Ellis & Schmidt, 1998). In U-shaped development, accuracy 

is high at the beginning, and it temporarily decreases before becoming high again. In power-law 

development, decrement in error becomes progressively smaller as the learner develops. Because 

power-law development covers the entire span of development and does not exhibit a systematic 
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decrease in accuracy in the process, U-shaped and power-law development are mutually 

exclusive. 

Despite the prevalence of nonlinearity in L2 development, researchers are not fully 

equipped with appropriate statistical tools to analyze it. Classical statistical analysis is generally 

incapable of analyzing the learning process, including nonlinearity (Larsen-Freeman, 2011; see 

also Baayen, 2010b). For instance, if researchers want to investigate the effect of a treatment on 

the linguistic complexity of learners’ writing while controlling for their proficiency, there is not 

sufficient evidence to assume a particular functional form between proficiency and linguistic 

complexity; thus, it is not straightforward to statistically control proficiency. As in individual 

differences analysis, however, recent development in statistics allows researchers to model 

nonlinearity. Although this technique—the generalized additive model (Hastie & Tibshirani, 

1990)—is new to SLA, it has been used in other areas of (applied) linguistics including 

psycholinguistics (e.g., Baayen, 2010a; Baayen, Milin, Ðurđević, Hendrix, & Marelli, 2011) and 

sociolinguistics (Wieling, Nerbonne, & Baayen, 2011). This article illustrates its usefullness for 

SLA. 

Aim and Research Questions 

The aim of this article is to introduce to the SLA community two statistical modeling techniques 

that take into account systematicity, individual variation, and nonlinearity. I do so by modeling 

the development of accuracy of English grammatical morphemes in L2 learners. Grammatical 

morphemes were targeted in this exposition because their acquisition has been extensively 

studied in SLA since its early days (e.g., Dulay & Burt, 1973), and much is already known about 

the variables that affect their accuracy. This allows the focus to be on what the new techniques 

can contribute to the field. 
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The status of the morpheme has been challenged as a functional unit of representation 

(e.g., Baayen et al., 2011; Ellis & Schmidt, 1998; Plaut & Gonnerman, 2000). Bybee (1985, 

2010), for instance, demonstrated the essentially gradient nature of grammatical morphemes. In 

the process of grammaticalization (e.g., the lexical item go came to be used as an auxiliary verb 

in the future construction of be going to; Bybee, 2010), for example, the meaning and function of 

a lexical item undergo a gradual change without a clear-cut boundary between a lexical and a 

grammatical item.  The historical account further shows that the word, and not the morpheme, 

has been regarded as the smallest unit of a grammatical system (Blevins, 2013). Given the 

methodological focus of this article, however, this issue is rather marginal. In this article, two 

research questions are posed: 

1. How large is individual variation in the developmental pattern of morphemes? 

2. Do their cross-sectional and longitudinal developmental patterns vary depending on the 

particular morpheme and on whether learners’ native languages (L1s) have an equivalent 

morpheme? 

The background of the first question is that, while SLA has identified prototypical 

developmental patterns, individual learners are hypothesized to exhibit a variety of learning 

curves. Therefore, I investigate the extent to which individual variation is observed in the 

developmental patterns of morphemes. With regard to the second question, in addition to 

individual variation, I address the systematic effect of L1, which is known to affect nearly every 

aspect of L2 development (Jarvis & Pavlenko, 2007; Odlin, 1989), including grammatical 

morphemes (Luk & Shirai, 2009; Murakami & Alexopoulou, 2015). It is not clear, however, how 

L1 influence emerges or changes during the acquisitional process (Jarvis, 2000). 

I further investigate whether the developmental pattern differs across morphemes. Prior 
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research has often drawn distinctions between free versus bound and verbal versus nominal 

morphemes (e.g., Brown, 1973; Goldschneider & DeKeyser, 2001). Slobin (1996) further 

distinguished between the morphemes that encode language-independent concepts (e.g., number 

as expressed by plural –s) and those that encode language-dependent concepts (e.g., definiteness 

as expressed by articles). It would, therefore, be natural to observe differences in developmental 

patterns between morphemes as well. By modeling both systematicity and individuality 

simultaneously, I aim to demonstrate a more comprehensive view of morpheme accuracy 

development. 

The analyses featured here do not presuppose knowledge of generalized additive (mixed) 

models. It is assumed, however, that readers are familiar with the basic ideas of regression 

modeling, including generalized linear models and model comparison based on information-

theoretic measures, such as Akaike information criterion (AIC). It is further assumed that readers 

have basic knowledge of mixed-effects models. Appendix S1 in the Supporting Information 

online provides an introduction to general ideas in regression modeling necessary for this article. 

Data Source and Analysis 

Corpus 

For this study, I employed the EF-Cambridge Open Language Database (EFCAMDAT; 

Geertzen, Alexopoulou, & Korhonen, 2014), which is publicly available at 

http://corpus.mml.cam.ac.uk/efcamdat. The learner corpus includes writings from Englishtown, 

an online school run by Education First. A course in Englishtown consists of 16 levels, with 

eight units each. Learners usually progress from lower to higher levels unit by unit, although 

they are free to go back or skip units. A placement test suggests an appropriate level at which 

learners begin their coursework. At the end of each unit is a free writing task on a variety of 



7 

topics (e.g., shopping, writing an email). A model answer is provided for each writing task, and 

learners can consult the sample and other external resources, such as dictionaries in the process 

of writing. Each writing task specifies length, with assignments ranging from 20 to 40 words in 

Level 1 Unit 1 to 150 to180 words in Level 16 Unit 8. Teachers provide feedback on writing, 

including the correction of erroneous grammatical morphemes. The present study used teacher 

feedback as error tags, which were exploited to calculate accuracy. Error tags are not annotated 

in all of the writings, however. Apart from learners’ writings, EFCAMDAT includes, for each 

text, such metadata as the ID of the learner, his or her country of residence, and the date and time 

of submission. This information allows researchers to track the longitudinal development of 

individual learners. 

Target Morphemes 

The initial set of targets included six English grammatical morphemes: articles, past tense –ed, 

plural –s, possessive –s, progressive –ing, and third person singular –s. These are the morphemes 

that have often been targeted in SLA literature (cf. Goldschneider & DeKeyser, 2001). However, 

possessive –s was dropped because it did not occur frequently enough to allow for the 

investigation of individual variation or longitudinal development. Furthermore, progressive –ing 

and third person –s were dropped because their accuracy was close to 100% throughout learners’ 

development. High accuracy rates made the inspection of development difficult because learners 

who barely achieved 100% accuracy could not be distinguished from those who did so 

effortlessly (i.e., the ceiling effect). Thus, the final set of target morphemes was composed of 

articles, past tense –ed, and plural –s. Articles included both definite and indefinite articles. Past 

tense –ed included only regular past tense forms (e.g., opened) and not irregular ones (e.g., 

thought). Similarly, plural –s included only regular forms (e.g., cups) and not irregular ones (e.g., 
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mice). 

Target L1 Groups and Proficiency Levels 

The current analyses focus on the following 10 L1 groups with the largest amount of data in 

EFCAMDAT: Brazilian Portuguese, Mandarin Chinese, German, French, Italian, Japanese, 

Korean, Russian, Spanish, and Turkish. As EFCAMDAT does not provide direct information 

about learners’ L1s, such information was inferred from the countries in which learners resided, 

providing a close approximation1. L1 Mandarin Chinese learners included those living in 

Mainland China and in Taiwan, and L1 Spanish learners included those living in Spain and 

Mexico. L1 Mandarin Chinese is referred to as L1 Chinese and L1 Brazilian Portuguese as L1 

Brazilian to save space. The Englishtown proficiency levels 1–3, 4–6, 7–9, 10–12, 13–15, and 16 

correspond to levels A1 through C2 in the Common European Framework of Reference (CEFR). 

Subcorpus 

The study only included learners whose sum of obligatory contexts and overgeneralization errors 

in error-tagged texts was 10 or more for each of the three morphemes. In addition, due to the 

high computational cost of some analyses, it was necessary to limit the data to a maximum of 20 

learners from each L1 group. The 20 learners selected were those with the largest number of 

writings within the L1 group. Because the L1 French, Japanese, Korean, and Turkish groups 

included 20 or fewer learners after applying the first selection criterion (i.e., obligatory contexts 

plus overgeneralization errors ≥ 10), the second criterion was not relevant to these four groups. 

Figure 1 shows the distribution of learners and error-tagged writings across L1 groups and 

Englishtown levels. Learner level was operationalized as the learner’s mean level in 

Englishtown. In all, there were 3,323 writings from 158 learners. The subcorpus included 

315,141 words in total, and the mean number of words per writing was 94.8 (SD = 50.0). 
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FIGURE 1 

Accuracy Measure and Data Extraction 

This study employed the ratio between correct uses and errors as a measure of accuracy. The 

number of correct uses was obtained by subtracting the number of omission and misformation 

errors from that of obligatory contexts. Obligatory contexts were operationalized as morpheme 

use in the corrected text, that is, the text in which incorrect portions were replaced with the 

corresponding corrected forms based on error tags. For instance, if a learner wrote, She has a big 

nose and small mouth, and it was corrected to read, She has a big nose and a small mouth, there 

were two obligatory contexts for articles because the article occured twice in the corrected 

sentence. The number of errors was the sum of omission, misformation, and overgeneralization 

errors. This accuracy measure is conceptually equivalent to targetlike use (TLU) scores (Pica, 

1983). In visualizing accuracy, the study used TLU scores, which are calculated by dividing the 

number of correct uses by the sum of the numbers of obligatory contexts and overgeneralization 

errors. R scripts were written to count the frequency of obligatory contexts and each type of error 

in error-tagged texts. The accuracy of the R scripts is reported in Appendix S2 in the Supporting 

Information online. 

The information provided by error annotation leads to intriguing insights into patterns of 

accuracy development, although the use of teacher feedback as error annotation can also 

introduce noise to the data. A manual given to Englishtown teachers asks them to be complete in 

providing feedback, and it explicitly mentions articles, plural –s, and verb tense among the 

features teachers should pay attention to. This briefing should raise the accuracy and 

comprehensiveness of error annotation. 
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Variables and Analysis 

Accuracy was modeled as a function of several variables, and models were compared to address 

the research questions. The dependent variable was accuracy in the form of odds. In the variants 

of logistic regression models employed in this study, the number of correct uses was entered as 

the number of successes, and the number of errors was entered as the number of failures. There 

were four independent variables: proficiency, writing number (writingnum), morpheme, and L1 

type (L1type). 

• Proficiency was represented by the mean Englishtown level calculated from the level and 

unit at which the learner submitted his or her writings. The value was unchanged within 

learners, and the variable was meant to capture between-learner, cross-sectional 

development. Proficiency was standardized to facilitate interpretation. The mean and 

standard deviation of proficiency were 51.8 (Level 7 Unit 4) and 22.6, respectively. 

• Writing number represented the within-learner writing order. One indicated the first 

writing of a learner, two indicated the second writing, and so forth. Writing numbers 

were assigned to both error-tagged and untagged writings so that development over 

untagged writings could be interpolated. This variable was meant to capture within-

learner, longitudinal development, and was standardized over learners after its values 

were centered within each learner. Accordingly, zero in the standardized writing number 

indicated the mean writing number within each learner. The standard deviation of the 

writing number was 15.6. 

• Morpheme was a categorical variable with three levels: one for each morpheme, with 

articles as the reference level. 

• L1 type was a dichotomous variable representing L1 influence and indicating whether a 
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L1 had an equivalent morpheme. The L1 type had two levels: ABSENT and PRESENT. 

The ABSENT group was the reference level. The ABSENT group included L1 groups 

who lacked the equivalent linguistic features in their L1s, and L1 groups for whom the 

marking of the feature is optional. By contrast, the PRESENT group must mark 

equivalent features. For instance, L1 Japanese was considered to be in the ABSENT 

group for the article because it is not obligatory in Japanese to express definiteness, the 

central concept of the English article system. Conversely, Japanese was considered to 

belong to the PRESENT group in past tense –ed because the Japanese morpheme –ta 

roughly corresponds to past tense –ed in English, and it is difficult to express pastness 

without the use of this morpheme in Japanese. This approach to representing the effect of 

L1 is rather crude and oversimplified, but as will be shown, it is useful for capturing L1 

influence (Murakami & Alexopoulou, 2015). The ABSENT group included L1 Chinese, 

Japanese, Korean, Russian, and Turkish for articles; L1 Chinese for past tense –ed; and 

L1 Chinese, Japanese, and Korean for plural –s. The remaining L1s were included in the 

PRESENT group. 

In addition to these variables, some of their interactions were entered into the model as well in a 

stepwise manner. Treatment contrasts were used for categorical variables throughout this article. 

Before running the analyses, observations without any obligatory contexts or 

overgeneralization errors were removed. There were 7,247 nonzero observations across the three 

morphemes. Table 1 shows the mean number and standard deviation of nonzero observations, 

obligatory contexts, omission errors, and overgeneralization errors for learners. Naturally, the 

data size was larger for articles and for plural –s than for past tense –ed due to the higher 

frequency of these two morphemes. All of the statistical analyses were performed with R 
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(version 3.2.1; R Core Team, 2015; cf. Mizumoto & Plonsky, 2015). The R codes and data used 

here are available via the Open Science Framework at https://osf.io/dbuh4. Before moving on to 

the main analysis, a cross-sectional view of the data is presented. 

TABLE 1 

Cross-Sectional View of Morpheme Development 

Figure 2 illustrates the cross-sectional development of the three morphemes across L1 types. 

Each line shows the cross-sectional development in each L1 type. Unlike typical cross-sectional 

data, however, a learner contributed multiple data points to the figure as he or she produced 

multiple writings. C2 level was dropped out of the figure due to its small data size but was 

included in statistical modeling. The fluctuation of accuracy in the graph, which is partially due 

to the small data size of several observations, makes the close examination of the data difficult. 

In the following analyses, variants of logistic regression models were employed; each 

observation was weighed according to its data size in order to investigate whether a significant 

difference in the developmental pattern across groups could be observed and to determine the 

extent to which individual variation was present in the development. 

FIGURE 2 

Taking into Account Individual Variation: Generalized Linear Mixed-Effects Models 

The goal of this analysis was to determine the extent to which developmental accuracy patterns 

varied across individual learners. To quantify individual variation, I employed a generalized 

linear mixed-effects model (GLMM). Mixed-effects models can handle both systematicity and 

individuality because they can deal not only with usual within- and between-learner fixed-effects 

variables, such as morphemes and proficiency (i.e., systematicity), but also with remaining 

variance across and within learners (i.e., individuality). Partly for this reason, mixed-effects 
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models have been widely used in longitudinal data analysis (Long, 2012), including in SLA 

(Barkaoui, 2014; Kozaki & Ross, 2011). 

Model Specification and Model Selection 

I employed a mixed-effects logistic regression model to analyze the relationship between 

accuracy, proficiency, longitudinal development, and morpheme. The model included L1 and 

learner as random-effects factors. Writings were nested within individual learners, who were in 

turn nested within L1 groups. The model thus had a nested random-effects structure where 

variance was partitioned into between-L1, between-learner, and between-writing levels (cf. 

Gries, 2015). Although it would have been possible to construct yet another level by viewing 

data points as nested within writings, this was not attempted in order to avoid further complexity 

of the model. By-L1 random intercepts allowed overall accuracy to vary across L1 groups. 

Variables can also be entered as random contrasts and random slopes. By-L1 random contrasts 

and random slopes, however, were not entered because the small number of L1 levels (10) might 

have resulted in unstable models. 

The role of each random-effects parameter was as follows. When the by-morpheme 

random contrasts were present, the by-learner random intercepts allowed article accuracy to vary 

across individual learners. By-morpheme random contrasts represented individual variation in 

the accuracy difference between morphemes. The by-writingnum random slope similarly 

represented individual variation in morpheme-independent learning rates, implying that some 

writers naturally learned more quickly than others. I was interested in the extent to which I could 

observe such individual differences and whether—and to what extent—systematic variables 

(e.g., proficiency) could account for these differences. 

I constructed multiple models and found the most plausible model by comparing them. 
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There has been no agreement on how best to perform model selection in mixed-effects modeling 

(Gries, 2013). It has been suggested that researchers should use the maximal model, or the model 

with all possible predictors and the largest random-effects structure justified by the design (Barr, 

Levy, Scheepers, & Tily, 2013; Gelman & Hill, 2007; see Baayen, Vasishth, Bates, & Kliegl, 

2015,  and Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2015, for counter-arguments). 

However, because the present model had only 10 L1 groups, I opted for an approach where 

initially the simplest model was built and predictors were added to the model one at a time only 

if it improved the model. More specifically, the following forward selection approach was used 

(cf. James, Witten, Hastie, & Tibshirani, 2013). I first built the so-called unconditional model 

(Bates, 2010) that only included by-L1 and by-learner random intercepts but no fixed-effects 

predictor. I then added, one by one, a predictor that decreased the model’s AIC the most, 

repeating the procedure until no predictor could improve the model further (but see 

Whittingham, Stephens, Bradbury, & Freckleton, 2006, for criticisms of the stepwise approach in 

general). Interaction terms were considered only when the model already included the main 

effects constituting the interactions. Random contrasts were considered only when the variable 

was already in the fixed-effects component of the model. Although restricted maximum 

likelihood (REML) procedures are often used for linear mixed-effects models, I employed 

maximum likelihood estimation because REML does not allow for the comparison of models 

with different fixed-effects structure (Bolker, Brooks, Clark, Geange, Poulsen, Stevens, & White, 

2009) and also because REML estimates are not well-defined for GLMMs (Bates, 2009). All of 

the statistical analyses in this section were carried out with the lme4 package (version 1.1-8; 

Bates, Mächler, Bolker, & Walker, 2015) in R. To avoid convergence failure, the BOBYQA 

algorithm was used as the optimizer, as suggested by Bolker (2014). 
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The unconditional model was called Model 1. In Model 2, morpheme was added to the 

fixed-effects part because it was the predictor that most dramatically decreased the AIC. A 

comparison of Model 1 with Model 2 tested whether different morphemes were at different 

accuracy levels. In Model 3, I added by-morpheme random contrasts to Model 2. A comparison 

of Model 2 with Model 3 tested whether it was worth allowing the accuracy difference between 

morphemes to vary across learners. Likewise, in Model 4 and Model 5, I tested the effects of 

L1type and writingnum, respectively. With Model 6, I further added the by-writingnum random 

slope. In Models 7 through 9, I examined the effects of proficiency, morpheme × proficiency 

interaction, and L1type × writingnum interaction, respectively. 

Table 2 shows the summary of model comparisons. The first three columns give the 

model number and the variables included in the fixed and random effects of the model. The 

fourth column lists the AICs of the model, and the fifth column shows the difference of AIC in 

comparison to the previous model. A negative value means that this model has better predictive 

accuracy than the model that precedes it. The last two columns show the results of likelihood 

ratio tests comparing the model with the previous model. The table indicates that AIC 

categorically decreased until Model 9, and likelihood ratio tests similarly suggested steady 

improvement until Model 9. No other term (e.g., morpheme × writingnum interaction) further 

decreased AIC. 

TABLE 2 

Although Model 9 may appear to be the most plausible model, Model 8 was selected as 

the final model because the decrease of AIC from Model 8 to Model 9 (–2.8) was fairly small 

and the p value of the added parameter (.029 for the L1type × writingnum interaction) was also 

not as low as the p values of other parameters. Given that both models were already highly 
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complex and that AIC tends to prefer more complex models in general (Held & Bové, 2014), I 

opted for the less complex model. As a reference, I also constructed a model that had the same 

structure as Model 8 but that did not include L1type, proficiency, or any interaction terms 

involving them. A comparison between Model 8 and this reference model indicated the extent to 

which L1 type and proficiency explain the variance. 

The forward-selection procedure employed above may result in underspecified models 

because there can be a model that is better than the final model and includes a combination of 

parameters untested in the model selection procedure. To mitigate the potential effect of the 

procedure, a series of models were built in the following manner.2 Instead of adding one variable 

at a time, I added two variables that sequentially decreased AIC the most. I then deleted one 

variable that resulted in the minimum increase in AIC. This procedure was repeated until no 

iteration decreased AIC further. This process partially avoided the potential underspecification 

issue because the procedure allowed for the exploration of part of the parameter combination 

space that was not tested in the pure forward-selection procedure. This 2-in-1-out procedure 

resulted in Model 9 as the final model, thereby partially confirming the robustness of my model. 

For the reason described above, however, I took Model 8 as the final model. 

Interpretation of the Model 

Interpreting Random Effects 

Table 3 presents the random-effects components of the mixed-effects model. It also shows the 

random effects of the Reference Model, against which the effects of predictors in Model 8 were 

tested. In Table 3, the intercept rows represent the standard deviation of random intercepts for L1 

and learner, and the other rows show the standard deviation of by-morpheme random contrasts 

and by-writingnum random slopes. 
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TABLE 3 

The Reference Model indicates that the standard deviation of the by-L1 random intercept 

(Row 2 in the table) was .300, which indicates the dispersion of L1 groups in absolute accuracy 

in the logit scale. Similarly, the by-learner random intercept (Row 4) was .495, which is the 

magnitude of individual differences in article accuracy within each L1 group after progressing 

the mean number of writings (i.e., standardized writingnum = 0). The standard deviations of the 

by-morpheme random contrasts (Row 5-7) was .716 for past tense –ed and .582 for plural –s, and 

denote individual differences in the accuracy difference between articles and the morphemes. 

The standard deviation of the by-writingnum random slope (Row 8) was .192, which represents 

the magnitude of individual variation in the overall learning rate. When the values in Model 8 

were examined, a fair amount of decrease in the by-learner random intercept (.495 → .412, or –

20.0%) was seen. This shows the extent to which learners’ overall proficiency and L1type 

explain individual variation in article accuracy. The by-morpheme random contrast similarly 

decreased in Model 8 (.716 → .613, or –16.8%, for past tense –ed and .582 → .481, or –21.1%, 

for plural –s). This represents the degree to which proficiency (but not L1type due to the absence 

of L1type-morpheme interaction in the fixed-effects structure) explains individual variation in 

between-morpheme accuracy difference. 

Surprisingly, the by-writingnum random slope increased from the Reference Model to 

Model 8 (.192 → .197, or +2.3%). This is rooted in the fact that some of the within-learner 

variance could be reflected as between-learner variance in mixed-effects modeling (Hox, 2002; 

Snijders & Bosker, 1994). As a result, a within-learner predictor might explain both within- and 

between-learner variance. Maximum likelihood estimation (MLE) generally corrects this. 

However, when a predictor is centered or standardized within learners as in the present case, it 
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results in smaller between-learner variation in the average predictor value than that which is 

embedded in the correcting mechanism of MLE. This invites overcorrection by MLE, and 

random effects may increase as a result. Unlike linear mixed-effects models where it is possible 

to analytically compute the parameter values that maximize likelihood functions, in GLMMs we 

can only numerically approximate them (Bolker et al., 2009). The idea is the same, however. 

This, therefore, does not mean model misspecification. 

Because the value is larger in past tense –ed random contrast than in plural –s random 

contrast (see Table 3), a larger individual variation remained in the accuracy difference between 

articles and past tense –ed than in the accuracy difference between articles and plural –s. 

However. because between- and within-learner variability is not completely independently 

quantified even in mixed effects models, random-effects components of different models are not 

strictly comparable. Comparison, however, is a common practice (e.g., Hox, 2002) and is still a 

useful strategy by which to examine the effect of predictors on random-effects components. 

Interpreting Fixed Effects 

I now turn to fixed-effects (Table 4); p values indicated by asterisks are only approximate, but a 

parametric bootstrap—a resampling technique that compares the target model with the reduced 

model that does not include the interested parameters (Pinheiro & Bates, 2000)—agreed with the 

significance of parameters in the table with the significance level of p < .05 based on 1,000 

samples. 

TABLE 4 

Thus, the following observations can be made about the results summarized in Table 4. 

• The main effect of morpheme (Rows 2 to 4 in the table) is significant. At the mean 

proficiency level, the accuracy of plural –s is generally higher than that of articles. 
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• The main effect of L1type (Rows 5 to 6) is also significant. The PRESENT group overall 

outperformed the ABSENT group at standardized writingnum = 0. 

• The main effect of writing number (Row 7) is significant. As learners wrote, morpheme 

accuracy increased. 

• The main effect of proficiency (Row 8) is significant and positive. Article accuracy 

tended to be higher in learners of higher proficiency. 

• The morpheme × proficiency interaction (Rows 9 to 11) shows that the accuracy increase 

over proficiency was smaller in plural –s than in articles. In plural –s, accuracy increase 

per standard deviation of proficiency was nearly negligible (.238 –.224 = .015).3 

Some of the terms that were not significant included the following: 

• The L1type × proficiency and L1type × writingnum interactions are not present in the 

final model. This means that there is no evidence showing different cross-sectional or 

longitudinal developmental patterns between the PRESENT and ABSENT groups. This 

is interesting because the PRESENT group generally outperformed the ABSENT group, 

and the members of this group could have been more likely to approach the ceiling level 

of performance. 

• The morpheme × writingnum interaction was not retained in the final model. This 

outcome shows that the rate of longitudinal development is similar across morphemes. 

To look into the magnitude of individual variation, it is interesting to compare random 

effects in Table 3 with the corresponding fixed effects in Table 4. The fact that the random 

contrast for past tense –ed is .613 and its estimate in the fixed-effects structure is .141 means that 

at the mean proficiency level, the standard deviation of individual variation in the accuracy 

difference between articles and past tense –ed is much larger than the mean accuracy difference 
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between the two morphemes, which in turn indicates that although past tense –ed is more 

accurate than articles on average in this sample, the accuracy order between the two morphemes 

depends heavily on learners. The case of the by-writingnum random slope is similar. The 

standard deviation in Table 3 is .197, while the coefficient in the fixed effects is .082. This 

indicates that while on average learners’ longitudinal development is characterized by increased 

accuracy, for a great proportion of learners, accuracy decreased overall. This is not the case for 

the difference between articles and plural –s, however. Because its random slope (.481) is 

smaller than the fixed-effects coefficient (.787), plural –s was usually (though not necessarily 

always) more accurate than articles in individual learners. At higher proficiency levels, however, 

the mean difference between the two morphemes decreased, as reflected in the negative 

coefficient of the interaction between proficiency and plural –s. The proportion of the learners 

whose accuracy was higher in articles than in plural –s was expected to increase. The discussion 

here illustrates that it is possible to quantify individual variation through GLMMs. 

Summary of the GLMM Approach 

In this section, I demonstrated systematicity (e.g., plural –s is on average more accurate than 

articles) and individual variation in the L2 accuracy of grammatical morphemes. In addition to 

its ability to model systematicity and individuality simultaneously, a particular strength of the 

GLMM is its feature of quantifying individual variation through random effects. Variance in 

random effects is informative as to (a) the extent to which individual variation is present in a 

certain effect (e.g., the standard deviation of the individual variation in article accuracy is .412 in 

logit scale), (b) whether it is larger or smaller compared to individual variation in another effect 

(e.g., individual variation in accuracy difference between articles and past tense –ed is larger 

than the variation in the difference between articles and plural –s), and (c) the degree to which 
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predictors explain variation (e.g., proficiency decreases the accuracy difference between articles 

and plural –s by 21.1%).4 

Accounting for Nonlinearity and Individuality: Generalized Additive Mixed Models 

In the previous section, the analysis assumed a linear change of accuracy in both cross-sectional 

and longitudinal development. The assumption, however, is unwarranted, particularly in light of 

prior SLA research demonstrating nonlinear learning curves (DeKeyser, 1997; Lightbown, 

1983). This section examines whether the developmental path varies depending on learners’ L1 

types and morphemes when nonlinear development is assumed. 

Brief Overview of Generalized Additive Models 

Generalized additive models (GAMs) extend generalized linear models (GLMs) by modeling 

nonlinear relationships between independent and dependent variables. They achieve nonlinearity 

through the use of splines. The following explanation of splines is largely based on James et al. 

(2013) and Hastie, Tibshirani, and Friedman (2009). 

A traditional way of modeling nonlinearity is by using polynomial functions. However, 

they cannot model flexible shapes without spending a large number of degrees of freedom, and 

doing so renders the resulting model unstable. In regression splines, one polynomial function 

models only part of the data, and multiple functions are used to cover the entire data. These 

functions are smoothly connected so that there is no wide jump in the predicted value. This point 

is illustrated in the upper two panels in Figure 3. Figure 3A demonstrates morpheme 

development in hypothetical learners. The dashed line represents the predicted values of 

accuracy based on a cubic function of proficiency (i.e.,TLU = ß0 + ß1 × proficiency + ß2 × 

proficiency2 + ß3 × proficiency3, where ßs are estimated from the data).5 Here, we observe 

relatively large differences between observed (i.e., small circles) and fitted (i.e., dashed line) 
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values. A cubic function is thus inadequate for modeling accuracy development in this dataset. 

The solid line is a piecewise cubic function. Datapoints were horizontally divided into five 

equally spaced regions, and a cubic function was fitted to each region. We see that the predicted 

function is absurd as a whole: The lines are not connected and there are jumps in the fitted value 

as a result. Thus, simply employing multiple piecewise polynomial functions is insufficient for 

modeling nonlinearity. 

FIGURE 3 

To achieve more natural modeling of nonlinearity, certain constraints can be imposed on 

the piecewise polynomial functions. Specifically, it is common to constrain piecewise cubic 

functions so that the values of the function and its first and second derivatives are continuous at 

knots, the points at which cubic pieces connect. This way, the function is not only continuous 

throughout but also smooth at the knots (Zuur, Ieno, Walker, Saveliev, & Smith, 2009). In Figure 

3B, the same data points are modeled by a smoothing spline. Though conceptually somewhat 

different, it is mathematically a variant of the cubic splines discussed above. Based largely on 

cubic functions, the smoothing spline models the data well in the present case. 

The spline balances difference between fitted and observed values and the roughness or 

wiggliness of the curve. If it is allowed to be infinitely wiggly, it goes through all of the observed 

data points and would clearly overfit the data by modeling noise in addition to the underlying 

shape, thereby making it difficult to generalize to new datasets. If, on the other hand, the spline is 

not allowed to be wiggly at all, it would end up being a straight line that models nonlinearity 

poorly. The smoothing spline achieves this bias-variance trade-off through a procedure called 

generalized cross validation, which is an approximation of leave-one-out cross validation 

commonly employed to evaluate statistical models. Conceptually, a spline function with a certain 
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degree of smoothness is fitted to all but one data point, and then the difference between the 

observed value of the omitted data point and its predicted value based on the spline (i.e., error) is 

calculated. This process is repeated as many times as there are data points. The average error in 

this procedure indexes the goodness of the degree of smoothness. This whole process is then 

repeated for a wide range of smoothness values, and the optimal wiggliness is found in which the 

average error is minimized (Wood, 2009; Zuur et al., 2009). 

GAMs are a semi-parametric technique that combines the smooths discussed above with 

parametric terms, thereby allowing a statistical test of the significance of some terms while 

controlling for the nonlinear effects of other terms. The lower two panels of Figure 3 illustrate 

the importance of accounting for nonlinearity through GAMs. These two figures show 

hypothetical accuracy development in two L1 groups: L1 Japanese and L1 Spanish. Both groups 

show clear U-shaped developmental patterns, but the data for L1 Spanish learners were 

generated to mark higher accuracy overall than those for L1 Japanese learners throughout 

development. In Figure 3C, the pattern is modeled by a linear function. It forces linearity on the 

nonlinear shape, resulting in large differences between observed and predicted values. Because 

the model hardly explains variance and the residuals are large, the accuracy difference between 

the two L1 groups is nonsignificant, t(197) = 1.643, p = .102, when proficiency is 

(mis)controlled for, despite the consistently higher accuracy of the L1 Spanish learners. Figure 

3D models the same data with a GAM based on a thin plate regression spline (Wood, 2003), an 

approximation to a thin plate spline (Wood, 2010), which is a generalized form of the cubic 

spline discussed earlier. The model was constructed with the mgcv package (version 1.8-6; 

Wood, 2006) in R. Here, without pre-specifying shape, the GAM accurately models the U-shape. 

This in turn results in much smaller residuals than in Figure 3C, and this time, the effect of L1 is 
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correctly identified, t(191.7) = 7.858, p < .001. Therefore, the GAM was able to model the usual 

parametric term (L1) and nonparametric smooth (nonlinear effect of proficiency) simultaneously. 

An exciting recent development is the incorporation of random effects into GAMs, 

making the model capable of accounting for nonlinear patterns of individual learners. The model, 

referred to as a generalized additive mixed model (GAMM; Baayen, 2014a, Chapter 8, 2014b; 

Wood, 2004, 2006), can construct separate wiggly curves for each learner by penalized factor 

smooths, which achieve the interaction between smooths and factors with the same degree of 

smoothness across learners (Wood, 2014). GAMMs have been used in psycholinguistics (e.g., 

Balling & Baayen, 2012; Mulder, Dijkstra, Schreuder, & Baayen, 2014), sociolinguistics 

(Wieling, Montemagni, Nerbonne, & Baayen, 2014), and SLA (Ning, Shih, & Loucks, 2014). 

Model Specification and Model Selection 

Models assumed binomial error distribution and employed a logit link function. The dependent 

variable and the potential independent variables were the same as the GLMM’s, except that 

nonlinear terms were also considered. The interaction between two nonlinear terms (i.e., 

proficiency × writingnum) was entered as a tensor product smooth. Tensor product smooths 

extend nonlinearity to more than one dimension and model wiggly surfaces between the 

variables of naturally different scales (Hastie et al., 2009; Wood, 2010). A separate smooth was 

constructed for each factor level when L1 type or morpheme interacted with proficiency and/or 

writingnum. For example, in the specification of L1type × proficiency interaction, separate 

proficiency curves were created for each L1 type. Thus, unlike interactions in typical regression 

models, factor-smooth interactions in GAMs also account for the main effects of the continuous 

variables included in the interaction. Due to a centering constraint, factors need to be specified in 

the model separately. 
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Due to the high computational cost of GAMMs, building a model takes a relatively long 

time, and it was impractical to run, in model selection, the forward selection process that requires 

building multiple models at each step. Instead, I started with a model that was conceptually 

equivalent to the final GLMM constructed earlier and tested whether all of the parameters 

included in the model were necessary and whether including additional terms improved the 

model. Model 1, thus, included the following terms: 

• L1type and morpheme as fixed effects, 

• by-L1 random intercepts, by-learner random intercepts, and by-morpheme random 

contrasts at the level of individual learners as random effects, 

• (standardized) writingnum and by-morpheme (standardized) proficiency as smooth terms 

to capture their potentially nonlinear effects, and 

• by-writingnum random wiggly curves at the learner level. 

Smooth terms were specified with thin plate regression splines. Random wiggly curves are 

similar to random slopes but also allow nonlinearity in the longitudinal developmental patterns 

of individual learners. Maximum likelihood estimation was employed. This model was different 

from the final GLMM in that nonlinear effects were assumed in proficiency and writingnum, and 

random wiggly curves were assumed instead of random slopes for individual learners. 

With this model as the starting point, I first tested whether any additional terms improved 

the model. For this purpose, five candidate models were built. 

1. Model 1 + L1type × morpheme interaction in the fixed-effects structure (B = –.004, p 

= .985 for PRESENT – past tense –ed; B = –.125, p = .355 for PRESENT – plural –s). 

2. Model 1 – writingnum smooth + writingnum smooth for each morpheme (i.e., 

writingnum × morpheme interaction (χ2 = .115, p = .735 for the writingnum curve for 
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articles; χ2 < .001, p = .999 for the writingnum curve for past tense –ed; χ2 = .011, p 

= .915 for the writingnum curve for plural –s). 

3. Model 1 + proficiency smooth for each L1 type (χ2 < .001, p = .999 for the proficiency 

curve for the ABSENT group; χ2 = .029, p = .864 for the proficiency curve for the 

PRESENT group) 

4. Model 1 + proficiency × writingnum interaction realized as a tensor-product interaction 

(χ2 = 5.327, p = .419). 

5. Model 1 - writingnum smooth + writingnum smooth for each L1type (i.e., writingnum × 

L1type interaction; χ2 = .027, p = .871 for the writingnum curve for the ABSENT group; 

χ2 = 19.416, p < .001 for the writingnum curve for the PRESENT group). 

The model selection procedure, based on p values in the parentheses (Wood, 2013a, b), suggests 

that Candidate Model 5 is better than Model 1, and AIC-based model comparison supports the 

decision as well (ΔAIC = –8.2). This model is referred to as Model 2. 

The next step was to test whether it was worth adding further terms. The same procedure 

was again followed, except that candidate terms were added to Model 2 this time. The added 

terms were the same as Candidate Models 1 through 4 above. The process indicated that none of 

the terms improved the model (p > .105 for all of the terms). I then examined whether all of the 

terms in Model 2 were needed. The p values of Model 2 parameters indicate that while some 

parameters are nonsignificant (e.g., χ2 = 2.668, p = .102 for the proficiency curve for past tense –

ed), they are restricted to the levels of the factors or the levels of the interaction terms involving 

the factors whose other levels are significant (e.g., χ2 = 21.869, p < .001 for the proficiency curve 

for articles). This indicates that all of the terms should be kept in the model. 

Model 2, however, suggests that the effect of proficiency is linear (EDF = 1.000 for all of 
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the morphemes). The proficiency term, therefore, was moved to the parametric part: Model 3 

included L1type, proficiency, morpheme, and the proficiency × morpheme interaction as fixed-

effects parametric terms. This did not affect AIC (ΔAIC = –.002). To further test whether 

random wiggly curves were necessary, another model was constructed in which random wiggly 

curves in Model 3 were replaced with by-writingnum random slopes. In other words, the model 

assumed linear effects of writingnum at the level of individual learners. Model comparison 

indicated that random wiggly curves needed to be included (∆AIC = 112.5), suggesting that the 

learning curve was nonlinear at the level of individual learners. 

The above did not directly indicate whether separate writingnum curves were needed for 

the two L1 types. To analyze this, a separate curve was estimated on top of the curve for the 

reference level. In other words, to examine whether L1 type affects the longitudinal 

developmental pattern, two separate curves were constructed: one for the ABSENT learners and 

the other for the PRESENT learners on top of the curve for the ABSENT group (Baayen, 2014a, 

Chapter 8; Wieling, 2015; Wood, 2014). If the latter proved to be significant, it would suggest 

that it is worth having an additional curve for the PRESENT group on top of the ABSENT group 

curve, which in turn means that the longitudinal developmental pattern differs across L1 types. 

The results suggested that a separate writingnum curve was needed for the PRESENT group (χ2 

= 13.472, p = .012). Model 3 was thus the final model; it is explored below. 

Interpretation of the Model 

Tables 5 through 7 show the results of the final model. Parametric terms (Table 5) suggest that 

(a) PRESENT learners generally outperformed ABSENT learners (Row 3), (b) higher 

proficiency learners tended to be more accurate in using articles than lower proficiency learners 

(Row 4), (c) learners were more accurate in the use of plural –s than articles at the mean 
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proficiency level (Row 7), and (d) cross-sectional accuracy increase was smaller in plural –s than 

in articles (Row 10). The nonsignificance of L1type × proficiency interaction indicates that the 

cross-sectional developmental pattern can be assumed to be similar across L1 types. 

TABLE 5 

Table 6 shows estimated degrees of freedom (EDF), reference degrees of freedom 

(Ref.df), χ2, and p values for the splines. If the EDF is close to 1 as it was in the effect of 

writingnum in the ABSENT group, the relationship between independent and dependent 

variables is close to linear in logit scale (Baayen, 2010a), and the larger its value, the wigglier the 

curve is. The table shows linearity in the partial effect of writingnum for the ABSENT group 

(EDF = 1.001 in Row 2) but nonlinearity for the PRESENT group (EDF = 3.503 in Row 3). The 

table also indicates significant individual variation in longitudinal development (Row 4). 

TABLE 6 

Table 7 provides the standard deviation of random effects.6 As in the GLMM, between-

L1 variation in absolute accuracy and individual variation in the accuracy difference between 

articles and other morphemes can be observed. Drawing inferences from the above tables, 

however, is not necessarily straightforward: Smooth terms in Table 6 make interpretation 

especially difficult. I turn now to one strategy that can assist in drawing inferences from the 

results: visualizing the fitted values. 

TABLE 7 

Figure 4 shows the fitted nonlinear accuracy development in individual learners. The 

upper panel represents adjustments to logit TLU scores for individual learners across 

standardized writing numbers. If there were no individual variation within each L1 type, 

morpheme, and proficiency level, all of the lines should completely overlap. As we can see, 
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however, large individual variation is present both in terms of absolute accuracy and 

developmental shape. The figure demonstrates large individual variation well, but it does not 

show how learners develop in the scale of TLU scores in a particular morpheme. The bottom 

four panels in Figure 4, therefore, show the fitted values of article accuracy in individual learners 

divided into two proficiency groups (higher vs. lower) and two L1 types (ABSENT vs. 

PRESENT). The cut-off proficiency level for the two proficiency groups was learners’ mean 

proficiency. The thick lines in each panel are locally weighted scatterplot smoothing lines 

(LOESS; Larson-Hall & Herrington, 2010; Singer & Willett, 2003) showing the overall trend. 

Although the parametric terms in Table 5 indicate that the PRESENT group outperformed the 

ABSENT group, this is hardly visible in Figure 4 due to individual variation within each L1 type. 

Furthermore, whereas, on average, higher proficiency learners used articles more accurately than 

lower proficiency learners, this was merely a tendency and only characterized the development 

of the hypothetical “average” learner. Individual variation definitely outweighs the typological 

difference in L1 and can also have a larger impact than general proficiency. Moreover, the 

developmental pattern slightly differs between the ABSENT and PRESENT groups, as Table 6 

indicates. However, the figure also suggests that this difference is marginal compared to the scale 

of individual variation. 

FIGURE 4 

Summary of the GAMM Approach 

The GAMM took into account individual variation and nonlinearity and modeled accuracy 

development as a function of proficiency, longitudinal development, and L1 type. The final 

model demonstrated (a) individual variation in absolute accuracy and in nonlinear development, 

(b) systematic L1 influence and proficiency effects on absolute accuracy, and (c) L1 influence on 
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longitudinal developmental patterns. The empirical and quantified demonstration of nonlinearity, 

individual variation, and systematicity was only achievable through GAMMs. 

Contrasting GLMM/GAMM with GLM/GAM 

Now that both types of models have been explored, they are compared against each other and 

against GLMs and GAMs, the models that do not account for individual variation. The only 

difference between the GLMM and the GAMM is that the GAMM includes the L1type × 

writingnum interaction while the GLMM does not. Recall that the term was at the borderline in 

the model selection process of GLMMs. Figure 4, based on the final GAMM, also shows that the 

difference in the developmental curve between the two L1 types is minute, especially in view of 

large individual variation. Thus, although it is worth including the interaction term in the model 

when nonlinearity is accounted for, I conclude that its effect is nearly negligible from a practical 

perspective. 

It is also interesting to compare GLMM/GAMM with GLM/GAM because such a comparison 

highlights the importance of taking individual variation into account when modeling L2 

development. As in the GLMM, GLMs and GAMs were constructed based on the forward 

selection approach. Both the GLMs and the GAMs used the logit link function and assumed 

binomial error distribution. The final GLM included morpheme, L1 type, proficiency, 

writingnum, morpheme × proficiency interaction, and proficiency × L1type interaction. The final 

GAM included morpheme and L1 type as parametric terms, and as smooth terms separate wiggly 

proficiency curves for each morpheme, separate writingnum curves across L1 types, and a 

proficiency × writingnum wiggly surface. The detailed model selection procedure is provided in 

Appendix S4 in the Supporting Information online. 

The results showed a few conflicting findings between GLMM/GAMM and GLM/GAM. 
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More specifically, the GLM supported the L1type × proficiency interaction and the GAM 

included the proficiency × writingnum interaction, while GLMM and GAMM supported neither. 

In addition, the GAM suggested nonlinear cross-sectional development, while the GAMM 

demonstrated linear development. The findings of the GLMM/GAMM were more conservative 

than those of the GLM/GAM: The GLM/GAM either pointed toward more significant 

parameters than the GLMM/GAMM or suggested nonlinear effects when the GAMM indicated 

linear effects. These are all likely to be rooted in whether individual variation is taken into 

account (GLMM and GAMM) or not (GLM and GAM). Generally speaking, ignoring the nested 

structure of data results in unfairly small standard errors (Hox, 2002; Long, 2012), leading to 

narrower confidence intervals (cf. McKeown & Sneddon, 2014; Wieling, 2015). In the present 

context, because the GLM and the GAM ignore the dependency of data within individual 

learners, their standard errors turned out to be unfairly small, inviting spurious significant results. 

The difference between the models is illustrated in Figure 5, which shows the predicted 

cross-sectional and longitudinal development of article accuracy in two learners, one L1 Russian 

and one L1 Brazilian, who contributed the largest number of error-tagged writings among the 

ABSENT and PRESENT learners, respectively. The point of the figure is the magnitude of 

uncertainty represented by the width of shaded 95% confidence intervals, which are clearly 

wider in the GLMM and the GAMM panels than in the GLM and the GAM panels. The wider 

confidence intervals of the GLMM and GAMM are brought about by their ability to account for 

individual variation. The GLM suggested that cross-sectional developmental patterns varied 

across L1 types because models were (erroneously) certain of the trajectory of each L1 type and 

the trajectories differed, while the GLMM and the GAMM were much less certain that the two 

trajectories were different. Similarly, the GAM judged cross-sectional developmental patterns to 
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be nonlinear because the narrow confidence intervals and a relatively fixed trajectory that 

resulted suggested this, while the wide confidence intervals of the GAMM and the resulting 

uncertainty in the trajectory did not support it. Thus, the GLMM/GAMM results are more 

trustworthy, and the illustration here demonstrates the significance of accounting for individual 

variation in modeling L2 development. 

FIGURE 5 

Discussion 

GLMMs and GAMMs in this article demonstrate nonlinearity and individual variation in the L2 

development of English grammatical morphemes. SLA researchers have shown interest in these 

phenomena but were previously unequipped with the analytical tools to investigate them. With 

sophisticated statistical models of the type employed in this paper, however, complex 

phenomena such as L2 development can be modeled, allowing much less information to be lost 

than when traditional statistical techniques are used. 

More specifically, this article shows that (a) plural –s was more accurate than articles in 

general, (b) learners with an equivalent feature in their L1 outperformed those whose L1s lack 

the feature, (c) article accuracy increased as learners’ proficiency rose, (d) cross-sectional 

developmental patterns varied across morphemes, and (e) large individual variation was present 

in absolute accuracy, the accuracy difference between morphemes, and longitudinal 

developmental patterns. There was no disagreement in the above findings between GLMM and 

GAMM. Thus, these conclusions can safely be accepted. 

The cross-sectional developmental patterns varied between articles and past tense –ed on 

the one hand and plural –s on the other. Articles and past tense –ed underwent more rapid 

increase in accuracy than did plural –s, whose accuracy remained relatively unchanged 
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throughout development. This difference was likely due to the higher accuracy of plural –s and, 

as a result, to the ceiling effect. It is interesting, however, that no significant difference was 

observed between the developmental patterns of articles and past tense –ed despite the fact that 

the article is a nominal free morpheme that encodes a language-dependent concept (i.e., 

definiteness) and past tense –ed is a verbal bound morpheme that encodes tense, a fairly 

language-independent concept. This finding shows that the classic distinctions between 

morphemes may not strongly influence the developmental trajectory of morpheme accuracy. 

Because this article targeted only three morphemes, this observation is merely suggestive rather 

than conclusive. 

The current analyses also demonstrate systematicity, individuality, and nonlinearity in L2 

development. L1 type consistently exerted influence on accuracy, demonstrating that accuracy is 

not determined randomly. However, as has been repeatedly emphasized throughout the paper, 

large individual variation was present as well, both in the absolute accuracy and in 

developmental patterns of morphemes. Together with the complex nonlinear patterns discussed 

earlier, I echo Baayen (2014b, p. 361): 

The results obtained with GAMs can be embarrassingly rich, in the sense that the results 

are far more complex than expected given current models. GAMs will often challenge the 

state of the art of current theories, and the author’s intuition is that they may force the 

field to move more into the direction of dynamic systems approaches to language. 

Although the claim was made in the context of GAMs and GAMMs, it fully applies also to 

GLMMs. 

I now briefly summarize features of the models discussed in this paper and note their 

potential weaknesses. The defining property of GLMMs is that they incorporate both fixed- and 
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random-effects variables. This allows researchers to model systematicity and individuality 

simultaneously. GLMMs, however, are not very flexible in modeling nonlinearity. GAMMs can 

model nonlinearity and individual variation simultaneously. They cannot, however, currently 

handle a correlation parameter in random effects (Wieling, 2015). A further potential drawback 

is that they are less interpretable than other simpler models like GLMs/GLMMs (cf. James et al., 

2013). It is worth noting, however, that interpretability of simpler models may come at the cost 

of less precision. 

This article is not without its limitations. Accuracy was calculated by aggregating all 

error types. However, different mechanisms may operate between omission, misformation, and 

overgeneralization errors or between definite and indefinite article uses. Ideally, error type 

should be incorporated into the model. Additionally, models only included developmental 

measures (i.e., proficiency and writing number) and L1-related variables (i.e., L1 and L1 type) as 

predictors of accuracy. Many more variables are certain to affect accuracy, such as tasks and 

linguistic contexts. Further investigation into the sources of variability should shed light on why 

cross-sectional and longitudinal developmental patterns take the form they do. The dataset itself 

is also a source of limitations. For example, it is worth looking into the potential effects of other 

variables, including tasks, teaching materials in Englishtown, and varying progress rates across 

learners (Alexopoulou et al., 2015). 

Conclusion 

In this present article, I introduced statistical models that capture systematicity, individuality, and 

nonlinearity and illustrated their potential in SLA research with the L2 accuracy development of 

English grammatical morphemes as an example. In light of the nonlinear and variable nature of 

L2 development, these techniques help researchers to better model L2 development and provide 
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insights into the complex, dynamic, and nonlinear process of development. 

Final revised version accepted 4 September 2015 

 

Notes 

1 An alternative approach is to use national language. See Alexopoulou, Geertzen, Korhonen, 

and Meurers (2015) for details. 

2 I thank an anonymous reviewer for suggesting this procedure. 

3 The calculation may not look correct due to rounding, but the value is accurate. 

4 There are two further features of GLMMs that merit discussion but the space does not allow to 

elaborate: the correlation structure of random effects and shrinkage. They are demonstrated in 

Appendix S3 in the Supporting Information online. 

5 Although accuracy is proportional, logistic regression was not employed in order to avoid 

confusion between linearity in probability scale and linearity in logit scale. The same follows for 

the remaining panels. 

6 The values were calculated with the getSD.gam function in the paper package of Wieling et al. 

(2014), available at http://openscience.uni-leipzig.de/index.php/mr2/article/view/41. 
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Table 1 Descriptive statistics for target grammatical morphemes 

 Nonzero 

observations 

Obligatory 

contexts 

Omissions 

errors 

Overgeneralization 

errors 

Morpheme M SD M SD M SD M SD 

Articles 20.08 6.01 140.92 71.20 12.23 8.47 5.53 4.17 

Past tense –ed 6.89 3.07 16.09 7.64 0.66 0.96 1.04 1.27 

Plural –s 18.91 5.92 90.53 47.53 3.44 3.21 1.94 2.00 

  



Table 2 Summary of GLMM model comparisons 

 Model description Test against prior 

model 

Model Fixed-effects Random-effects AIC ΔAIC Statistic p 

Model 1 None By-L1 + by-learner random-

intercepts 

13799.8    

Model 2 Model 1 + morpheme Same as Model 1 13356.4 –443.4  χ2(2) = 447.39 < .001 

Model 3 Same as Model 2 Model 1 + by-morpheme 

random-contrasts at learner 

level 

13276.5 –80.0  χ2(5) = 89.97 < .001 

Model 4 Model 2 + L1type Same as Model 3 13253.7 –22.8  χ2(1) = 24.80 < .001 

Model 5 Model 4 + writingnum 

(standardized) 

Same as Model 3 13240.3 –13.4  χ2(1) = 15.41 < .001 

Model 6 Same as Model 5 Model 3 + by-writingnum 

random-slope at learner level 

13212.7 –27.5  χ2(4) = 35.51 < .001 

Model 7 Model 5 + proficiency 

(standardized) 

Same as Model 6 13197.9 –14.8  χ2(1) = 16.81 < .001 

Model 8 Model 7 + morpheme × 

proficiency interaction 

Same as Model 6 13188.3 –9.7  χ2(2) = 13.67 .001 
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Model 9 Model 8 + L1type × 

writingnum interaction 

Same as Model 6 13185.5 –2.8  χ2(1) = 4.75 .029 

Referenc

e Model 

Morpheme + writingnum 

(standardized) 

Same as Model 6 13229.5    

 



 

Table 3 Random effects structure of GLMM Model 8 and reference model 

Factor Random effects SD in Model 8 SD in reference 

model 

1 L1    

2  Intercept 0.295  0.300  

3 Learner    

4  Intercept 0.412  0.495  

5  Morpheme   

6   Past tense –ed 0.613  0.716  

7   Plural –s 0.481  0.582  

8   Writingnum (standardized) 0.197  0.192  
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Table 4 Fixed effects structure of GLMM Model 8 

 Parameter B SE 

1 Intercept  1.561** 0.123 

2 

Morphem

e    

3  Past tense –ed 0.141 0.098 

4  Plural –s 0.787** 0.063 

5 L1type    

6  PRESENT 0.679** 0.123 

7 Writingnum (standardized) 0.082* 0.027 

8 Proficiency (standardized) 0.238** 0.043 

9 Proficiency (standardized): Morpheme   

10  Proficiency (standardized): Past tense –ed –0.115 0.089  

11  Proficiency (standardized): Plural –s –0.224** 0.059 

Note. *p < .01, **p < .001. 
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Table 5 Parametric terms of GAMM Model 3 

 Parameter B SE 

1 Intercept  1.532***  0.127 

2 L1type    

3  PRESENT 0.685***  0.118 

4 Proficiency (standardized) 0.236***  0.050 

5 

Morphem

e 

 

  

6  Past tense –ed 0.049  0.086 

7  Plural –s 0.741***  0.062 

8 Proficiency (standardized): Morpheme   

9  Proficiency (standardized): Past tense –ed –0.100  0.084 

10  Proficiency (standardized): Plural –s –0.220***  0.059 

Note. *p < .01, **p < .001. 
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Table 6 Smooth terms of GAMM Model 3 

Term EDF Ref.df χ2 p  

1 Writingnum (standardized): L1type     

2  Writingnum (standardized): ABSENT 1.001  1.002 0.026 .872 

3  Writingnum (standardized): PRESENT 3.503  4.300  19.830 .001 

4 By-writingnum random wiggly curve for 

individual learners 

233.053  1415.00

0 

867.258 .002 
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Table 7 Random effects of GAMM Model 3 

Random effects SD p 

By-L1 random intercepts 0.285 < 0.001 

By-morpheme random slopes for individual learners 0.176 < 0.001 



 

 

Figure 1 Number of learners and number of error-tagged writings in each L1 group at each CEFR level. The Total panel has a 

different y-axis scale from the other panels. 
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Figure 2 Cross-sectional development of morphemes across L1 types. 

  



 

55 

 

Figure 3 Illustration of splines and GAM. 

 



 

 

Figure 4 Individual variation in nonlinear longitudinal development. 
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Figure 5 Cross-sectional and longitudinal development of article accuracy across different types of models for different L1 types. 


