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ABSTRACT
Stochastic models can be difficult to test due to their com-
plexity and randomness, yet their predictions are often used
to make important decisions, so they need to be correct.
We introduce a new search-based technique for testing im-
plementations of stochastic models by maximising the dif-
ferences between the implementation and a pseudo-oracle.
Our technique reduces testing effort and enables discrepan-
cies to be found that might otherwise be overlooked. We
show the technique can identify differences challenging for
humans to observe, and use it to help a new user understand
implementation differences in a real model of a citrus disease
(Huánglóngb̀ıng) used to inform policy and research.

CCS Concepts
•Software and its engineering → Software creation
and management; Software testing and debugging;

Keywords
computational models; testing; search-based optimisation

1. INTRODUCTION
Stochastic models are used to inform key decisions on a

wide variety of topics, ranging from finance [4] and health-
care [21] through to epidemiology [6] and conflict [11], as
well as in other important areas in industry and science.
Over half of scientists develop more software now than they
did 10 years ago [16]. In a recent survey [23], 70% of bio-
logical, mathematical and physical science researchers said
they develop software as part of their job and 80% claimed it
would be impossible to conduct their work without such soft-
ware. Scientists need to have confidence in their models, be-

cause the predictions they make can have far-reaching con-
sequences. For example, during the Space Shuttle Columbia
incident, NASA dismissed the predictions of their model be-
cause it was thought to be over-conservative [40], but during
descent the Shuttle disintegrated and the crew were killed.

Computational models can be challenging to work with
because of their high levels of essential and accidental com-
plexity [37]. Essential complexity occurs due to the need
to represent the intricate details of biological, chemical or
physical real-world systems. For example, in epidemiology,
computational models are used to describe behaviour over a
range of spatiotemporal scales. These models often involve
complex interactions between biological species, with non-
linear dynamics. Accidental complexity arises from a lack of
clarity in model implementations due to programming lan-
guage restrictions and performance optimisations. Scientists
are typically trained in their own field of research rather than
in software engineering, so may develop programs that are
disorganised and difficult to read [34].

One frequent source of essential complexity is stochastic-
ity. Stochasticity is incorporated into a model to capture
non-deterministic elements of the phenomenon being stud-
ied, or if there are unquantified sources of error to account
for. Stochasticity introduces new difficulties into testing
models, due to the inherent randomness of the output. For
each set of inputs that are of interest, the output is unlikely
to be unique. To test the model we must therefore consider
the distributions produced over multiple executions.

This paper introduces a new technique to test stochastic
computational models by applying search-based optimisa-
tion to the parameter values of multiple independent imple-
mentations (developed by different people), to maximise the
differences in their output. Our technique is based on the
concept of pseudo-oracles (also known as differential test-
ing [31], dual coding [45] and N -version programming [22]).
The discrepancies between implementations may initially be
subtle, but our technique is able to find parameter values for
which the differences are more obvious. The nature of these
differences can then provide insight into the causes of the
discrepancy. For example, if the model contains many vari-
ables but the difference is much more pronounced in one of
those variables, the programmer can start their investigation
by inspecting the lines of code dealing with that variable.
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We demonstrate this technique on two case studies: (i)
artificially introduced discrepancies in implementations of a
simple epidemiological model, and (ii) differences between
two real implementations of a more complex model, includ-
ing the ‘wrapper’ code written to interface with the imple-
mentations by a scientist who was learning how to use them.

The paper is organised as follows: Section 2 provides some
background concerning pseudo-oracles, Section 3 explains
our technique and Section 4 introduces the models we apply
it to; We describe our research questions and experiments
in Sections 5 and 6; The results are analysed in Section 7,
the threats to their validity in Section 8; We detail related
work in Section 9 and present our conclusions in Section 10.

2. TESTING USING PSEUDO-ORACLES
Automated oracles are important for testing software thor-

oughly and efficiently [2]. Pseudo-oracles are used to test
software for which no oracle is available, either because it is
too difficult to determine what the correct output should be,
or because an oracle is impossible to produce [45]. Pseudo-
oracles compare the outputs of multiple independent imple-
mentations and check to see if there are any discrepancies.

Pseudo-oracles have been applied to a wide variety of soft-
ware, such as compilers [31], access control systems [27] and
refactoring engines [8]. For example, pseudo-oracles were
used to test 9 commercial packages for seismic oil exploration
[22]. These packages were found to produce significantly dif-
ferent results on the same input data, due to problems such
as off-by-one errors. Predictions made from the packages
were substantially different, such that people using them
would come to different conclusions, potentially leading to
$20 million oil wells being dug in the wrong place [22]. Other
recent research into pseudo-oracles includes [5] and [46].

Finding a suitable pseudo-oracle may not necessarily be
easy, as models are often developed for highly specialised
purposes. However, two implementations do not have to
be completely identical in intended function; as long as they
can be parametrised/restricted to behave the same way, they
can be treated as partial pseudo-oracles for each other. Our
technique can be used to identify the differences between in-
dependent implementations of a model, so they can be ad-
dressed appropriately through pre/post-processing scripts.

NB: Scientists often use ‘model’ to refer interchangeably
to both a theoretical model and the software in which that
theoretical model is implemented. In this paper, we distin-
guish those two concepts: we use model to refer only to a
theoretical (usually mathematical) model, and implementa-
tion to refer only to the software implementation.

3. SEARCHING FOR DIFFERENCES
The technique introduced in this paper applies search-

based optimisation to improve the accuracy of a pseudo-
oracle approach for identifying differences between multiple
implementations of a stochastic model. Statistics are col-
lected to characterise the distributions of outputs produced
by each implementation (for a given set of input param-
eters) and search is used to move through the parameter
space and maximise the difference between the distributions
of each implementation. By making the differences more ap-
parent, information is provided to the scientist (e.g., which
model variable(s) are affected, and with what timing) that
make it easier to identify the causes of any discrepancies.

3.1 Comparing implementation outputs
Quantifying the ‘difference’ between the outputs of stochas-

tic implementations is non-trivial, and a suitable methodol-
ogy must be chosen. To account for the inherent random-
ness in the output, we run each implementation a number
of times. Maximising the difference (e.g., squared error) of
the means of some output produced by these runs might
be the simplest approach, but would ignore the potentially
large variance due to stochasticity. It is also not feasible to
compare every possible pair of outputs, as this would require
too many comparisons. We have therefore chosen to collect
a set of summary statistics to characterise the outputs of
each implementation. Our algorithm then maximises the
differences between those summary statistics.

Although our technique can be applied to test a wide
range of software, we have chosen to focus on time series,
because many stochastic models output information in this
form. Time series can be characterised by fitting a parametrised
distribution to their data, then using the distribution’s pa-
rameters as summary statistics. However, this requires the
distribution to be chosen in advance. We have taken a more
general approach, recording certain key features from the
time series [35]. The statistics we record from each time se-
ries are: (i) the area under the curve (AUC), (ii) the value
of the peak and (iii) the time at which the peak occurs.
For other types of models, e.g. financial models, choosing
different statistics may improve algorithm performance.

We use the summary statistics (AUC, peak time, peak
value) to characterise the time series output by each im-
plementation. Running the implementations multiple times
produces sets of these statistics. For each summary statis-
tic we compare the outputs of our two implementations us-
ing the Kolmogorov-Smirnov test [29], a nonparametric test
for the difference of two probability distributions. We use
the resulting p-values as a measure of difference (note we
are not performing hypothesis testing). The Kolmogorov-
Smirnov test is preferable compared to other tests, such as
those based on mean or median difference, because it takes
into account the shape of the distributions (program out-
put distributions may be different, even if they have the
same mean). Finally, we take the lowest of these resulting
p-values, and use this — denoted f — as the measure of
difference between the outputs of the two implementations.
We use f (see Equation 1) as the objective function for our
search-based optimisation, described in the next section.

f = min
k∈{1...κ}

ks(peak valuek,1, peak valuek,2)
ks(peak timek,1, peak timek,2)

ks(AUCk,1,AUCk,2)

 (1)

(κ is the number of time series, ks(a, b) is the
Kolmogorov-Smirnov test p-value for a and b, peak valuek,1 is
the set of peak values recorded for all times series of type k

(e.g., ‘number of infected individuals’) from implementation 1,
and similarly for the other statistics.)

3.2 Search-based optimisation
We use search-based optimisation to find sets of input pa-

rameters that optimise (maximise) the difference between
the outputs of the two implementations we are testing. The
landscape of fitness values produced by Equation 1 is highly
noisy due to stochasticity. Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [18] has been shown to be
effective on noisy landscapes [20]. In addition, this paper



Algorithm 1 Optimising model parameters θ

Input: µθ (initial means for parameters), σ (initial standard deviation for Gaussian adaptation), λ (population size), n (num-
ber of simulations for each candidate), κ (number of time series), M1,M2 (model implementations)

1: repeat
2: cov ← identity matrix
3: f ← {}
4: for i ∈ {1 . . . λ} do # iterate over the population
5: θi ← N (µθ, σ

2cov)
6: for m ∈ {1, 2} do # iterate over the implementations
7: for k ← {1 . . . κ} do
8: pvmk ← {}, ptmk ← {}, aucmk ← {}
9: end for

10: for j ∈ {1 . . . n} do
11: Y ←Mm(θi) # Mm(θi) is a stochastic simulation from the implementation
12: for k ← {1 . . . κ} do
13: pvmk .append(max(Yk))
14: ptmk .append(argmax(Yk))
15: aucmk .append(AUC(Yk))
16: end for
17: end for
18: end for
19: f.append(mink∈{1...κ}(ks(pv

1
k, pv

2
k), ks(pt1k, pt

2
k), ks(auc1k, auc

2
k))

20: end for
21: sort {θi} with respect to {fi}
22: update µθ, σ and cov # using maximum likelihood estimation [18]
23: until stopping condition met

offers a proof of concept for our technique, which may be
used on more complex software, with other forms of input.
One attractive feature of CMA-ES is that it operates effi-
ciently without the need for much parameter tuning. We
use the latest CMA-ES libraries for Python [17] and R [42].

CMA-ES represents the search neighbourhood using a mul-
tivariate Gaussian distribution [18]. Gaussian adaptation
takes advantage of existing candidate solutions by selecting
nearby values more frequently (to be added to the popu-
lation), but still allows values farther away to be explored.
CMA-ES uses a scaling factor and covariance matrix to de-
termine the size and shape of the neighbourhood distribu-
tion. By using multiple dimensions of variance, it is possible
to fit the distribution more closely to the fitness landscape.

Algorithm 1 describes how we optimise the vector of model
input parameters θ, from an initial mean µθ and standard
deviation σ. The parameters are all represented as doubles
(optimised within the bounds given in Section 6), but fol-
lowing the advice of Hansen [19], each element of θ is scaled
to the range [0, 10] (with µθ = 5 and σ = 2). At each iter-
ation, λ new parameter sets are generated and run n times
on each implementation. The covariance matrix cov is au-
tomatically updated (along with µθ and σ), but is initially
set to the identity matrix as there is no prior information to
take into account. Time series Y are generated from model
implementations M1 and M2, then characterised using peak
value pv, peak time pt and area under the curve auc.

4. CASE STUDY MODELS
Stochastic epidemiological models are often used to help

researchers understand epidemics (e.g. by estimating the
total number of cases that will result from an epidemic). In
this section we describe the two epidemiological models that
are used in this paper as case studies for our technique.

4.1 The SEIR Model
The SEIR model has been used to make predictions about

the spread of a wide variety of diseases (including Measles
[25] and Ebola [14]). It tracks the number of hosts (e.g.
people) through several exclusive compartments: Suscep-
tible (not infected), Exposed (infected but not infectious),
Infectious and Removed (dead or recovered).

Within the basic structure of an SEIR model, there are
many options: the model may be continuous or discrete (in
time and/or host in each compartment); it may incorporate
explicit spatial/contact heterogeneity or assume the law of
mass action. The version featured in our experiments is non-
spatial, assumes homogeneous contact of hosts (i.e., mass
action) and has discrete host numbers and continuous time.
A graphical description of the model is shown in Figure 1.

Figure 1: SEIR model schematic

In the notation used for chemical reactions (hosts in com-
partments on the left of the arrow transition to hosts in com-
partments on the right, at the rate given above the arrow),
host transitions between compartments occur as follows:

I + S
β−→ I + E

E
γ−→ I

I
µ−→ R

(2)



β is the infection rate, γ is the rate at which Exposed hosts
become Infectious, and µ is the rate at which Infectious hosts
are Removed. We start each simulation with 10 Infected
hosts and 1990 Susceptible hosts, and simulate the epidemic
progression using the stochastic Gillespie algorithm [12] with
Binomial-tau leap approximation [13]. An example of the
time series produced by the simulation is shown in Figure 2.

Figure 2: Example SEIR Time Series

To evaluate our technique against potential implementa-
tion discrepancies, we created a simple implementation of
this model [39]. We choose values for the parameters, then
modify those parameter values to simulate new implemen-
tations. Specifically, we choose a value for β, run the imple-
mentation with this value, then slightly increase β, run the
implementation again, and so on. We do the same for γ.

4.2 The SECI Model
In addition to artificial discrepancies in the SEIR model,

we also apply our technique to explore differences between
two real implementations of a theoretical SECI model used
for predicting the spread of Huánglóngb̀ıng (HLB), also known
as citrus greening. HLB is caused by bacteria of the genus
Candidatus Liberibacter and spread by psyllids [3]. It is
characterised by stunted tree growth and misshaped bitter
fruit, that stay green underneath. HLB is considered the
most destructive citrus disease in the world, leading to re-
ductions in yield between 30% and 100% [15].

It is important to understand how these implementations
differ, as if used incorrectly, their predictions might give con-
flicting information. We therefore illustrate how our tech-
nique can be used to help someone, using these implemen-
tations for the first time, understand the assumptions and
outputs of each implementation so that they can run the
desired simulations and interpret the outputs correctly.

Figure 3 shows a graphical description of the SECI model.
It includes compartments for: Susceptible (not infected),
Exposed (infected but neither infectious nor showing symp-
toms), Cryptic (infectious but not showing symptoms) and
Infectious (infectious and showing symptoms) hosts. When
hosts die they should be transferred to the Removed com-
partment. However, since we are modelling the disease over
a short period of time (and all hosts start in the Susceptible
compartment), they never reach this stage. Therefore, this
compartment is not explicitly included in the model.

Figure 3: SECI model schematic

The rates at which hosts move between compartments in
the model depend upon the choice of parameters (α, β, ε, γE
and γC). In this study, we fix the values of γE and γC , and
adjust α, β, ε by our search-based optimisation technique.

Movement between the compartments is conceptually sim-
ilar to that for the SEIR model, but more complicated be-
cause this HLB model is spatially explicit (and for that rea-
son we omit reaction equations for this model). When there
are no Cryptic or Infectious trees, the amount of time be-
fore a given Susceptible tree moves to the Exposed com-
partment is exponentially distributed with rate parameter
ε. This process reflects infectious material coming from out-
side the citrus grove (brought by people or by wind), and is
therefore termed ‘primary infection’. The times spent in the
Exposed and Cryptic compartments are also exponentially
distributed, with rate parameters γE and γC respectively.
The number of Cryptic and Infectious trees increases the
rate at which Susceptible trees become infected (through
‘secondary infection’). The rate at which a Susceptible host
i becomes infected at time t when there are some number of
Cryptic and/or Infectious trees is given in Equation 3.

φi(t) = ε+ β
∑
j

k(
rji
α

) (3)

The probability HLB will spread over a certain distance
rji is given by the ‘dispersal kernel’ k, where k(u) = exp(−u).
rji is the distance between a Cryptic or Infectious tree j and
a Susceptible tree i. Each distance is scaled by the α pa-
rameter, then the kernel evaluations are summed up and
multiplied by β, the rate of secondary infection. Since the
summation is restricted to trees j that are Cryptic or In-
fectious, when there are no Cryptic or Infectious trees, this
equation reduces to the primary infection term ε.

We compare two implementations of this HLB disease
model. The context of this comparison was that a scien-
tist was learning how to use the two implementations, and
seeking to produce consistent outputs so as to be confident
of using the implementations correctly. For that reason, the
differences identified were due to the scientist using the im-
plementations incorrectly, or due to ‘wrapper’ code that the
scientist wrote to compare the outputs. The implementa-
tions were one developed by Parry et al. [38] (which, along
with the wrapper code, we label M1) and one developed by
Cunniffe et al. [7] (which, along with the wrapper code, we
label M2). We strongly emphasise that none of the findings
of this study affect in any way the results or conclusions
of those papers, or indicated that there were any faults in
the original code. M1’s parameters were estimated using
data from a commercial citrus plantation in Florida, USA,
which had been surveyed for disease between 2005 and 2007.
M2 is presented in a more general study of optimal culling



strategies to combat plant disease1. M1 is implemented in
C++ and Python, and M2 in C and Python. Program code
was obtained from the respective authors. We made minor
changes to M1 to make it theoretically identical to M22.
Simulations were started with 2000 Susceptible hosts, spa-
tially distributed to represent part of a commercial planta-
tion in Florida (part of the dataset used by M1 [38]).

5. RESEARCH QUESTIONS
This section presents our research questions concerning

the effectiveness of the search-based pseudo-oracle technique
presented in this paper; Section 7 provides our answers.

RQ1: Can the time series comparison metric reveal
small discrepancies between implementations?
Before we apply search-based optimisation to max-
imise the differences between the implementations un-
der test, it is important to ensure we are providing the
optimisation technique with information about the dis-
crepancies to learn from and build upon. To determine
the size of the smallest error our technique can distin-
guish, we need to control the discrepancies introduced.

We do this by adding an increasing amount of error to
the β and γ parameter values of the SEIR implementa-
tion, to simulate implementations with varying sizes of
discrepancy (keeping the input parameters and char-
acterising statistics the same). Kolmogorov-Smirnov
tests are applied multiple times to compare the dis-
tribution of outputs from each ‘implementation’. We
should expect that as the discrepancies get larger, the
p-values will become lower. This indicates that, when
used as an objective function, the p-values should help
guide the optimisation towards larger differences.

RQ2: Is the search-based technique more effective at
finding differences than random testing?
It is common practice when evaluating search-based
optimisation techniques, to assess whether they per-
form better than a random approach. This allows us
to determine if it is able to utilise patterns of fitness in
the input domain, rather than just aimlessly exploring
the landscape. To answer this research question, we
run the search-based pseudo-oracle technique on the
SEIR implementation with varying β and γ alongside
random testing, to evaluate which approach is able to
achieve a higher level of fitness (i.e. lower p-values)
more quickly.

RQ3: Does the search-based technique find discrep-
ancies between real implementations of a model?
Our technique can only be considered effective if it
helps us identify and understand the differences be-
tween real implementations of a model. We therefore
investigate the effectiveness of our technique by apply-
ing it to two implementations of the SECI HLB model.

1M2 [7] contains a case study of HLB, but with different
parameters. To ensure the models are the same, we use the
parameters given in M1 [38].
2There are several options in M1 for the amount of time a
host spends in the Exposed compartment; for consistency
with M2, we set the amount of time to be distributed ac-
cording to an exponential distribution.

There will always be some degree of difference in the
output, due to stochasticity, so we need to determine
whether the differences found by our technique are gen-
uine or just due to randomness. We therefore investi-
gate them further by running the parameters selected
by the technique more times. If the differences we find
are consistent with our previous results, we conclude
this does indicate a genuine discrepancy.

We inspect the output of each implementation and
consider how the differences in their time series might
have been caused. Each time we discover that the
implementations are being used incorrectly, we make
corrections as appropriate and then re-run the same
input parameters multiple times to determine whether
or not the difference has gone away.

6. EXPERIMENTAL METHODOLOGY
Experiments were conducted using two models: the simple

SEIR model (to which we introduced discrepancies artifi-
cially) and the more advanced SECI HLB model (for which
we compared two real implementations used to inform policy
and research, as modified with wrapper code by a scientist
learning how to use the two implementations). To each of
these models, we applied search-based optimisation to min-
imise the p-values for the Kolmogorov-Smirnov tests of vari-
ous statistics (AUC, peak time, peak hosts and total hosts).
In other words, we maximised the differences between the
distribution of time series for each implementation.

We used our technique to identify the artificially intro-
duced differences in the SEIR implementation, first for the
parameters (where time has units T and S, E, I and R have
units [S]) β = 0.003 [S]−1T−1, γ = 1 T−1 and µ = 1 T−1,
then by evolving new parameter values within the range
[0,0.006] for β, [0,2] for γ and [0,2] for µ. In both this and
the SECI HLB experiments, we allowed our search-based
optimisation technique 30 generations in each trial and we
ran 50 trials in total. This number of generations was cho-
sen because we found on average that each trial took ap-
proximately one hour on the desktop computer we used to
perform the experiments (Intel Core i7, 8GB of memory).
We consider this a reasonable amount of time for a compu-
tational modeller to wait for the results.

We identified differences between M1 and M2, the two im-
plementations of the SECI HLB model (along with wrapper
code) using a similar approach. Each test case (set of input
parameters) is run 100 times to address stochasticity. Test
cases are generated within the plausible ranges [0,20] m for
α, [0,0.1] yr−1 for ε, and [0,1000] m2yr−1 for β′ (which we
had originally considered identical to β with units yr−1, but
see Section 7.3 for the distinction). We then used the results
of our tests to identify differences in the time series output
of the two implementations (M1 and M2). This informa-
tion was used as a guide to help us inspect the code for the
reasons behind these differences in output behaviour.

7. RESULTS

7.1 Answer to RQ1
RQ1 is evaluated by artificially introducing discrepancies

into the SEIR implementation through slight increases to β
or γ. The aim is to discern whether our technique can iden-
tify small differences and gain insight into the size and type



of differences that can be detected. (Note in this section we
are not performing any optimisation). We collect statistics
from 100 simulations for each increase on each parameter
and record the distribution of minimum p-values produced
by the Kolmogorov-Smirnov tests (see Figure 4 and Figure
5). It is also possible to count the false positives/negatives
by introducing a threshold (e.g. p < 0.05), but since this
is somewhat arbitrary, we plot the distribution of p-values.
Larger increases produce lower and less variable p-values (as
can be compared with the original model at 0% increase).
This indicates our technique can detect differences and pro-
vides information that may be used by the search.

Changes to β and γ affect the SEIR implementation in dif-
ferent ways. Increasing β raises the rate of infection, whereas
increasing γ raises the rate at which hosts become infectious.
The changes in the curves produced by the increased values
of β and γ are subtle, but our technique can still detect
them, as it uses a variety of metrics. Table 7.3 shows that
beta discrepancies were found using Peak Value and Peak
Time metrics, whereas gamma discrepancies could only be
found using the AUC of E. If only one metric was used, dis-
crepancies might be overlooked, but by combining multiple
metrics, our technique can be made highly effective.

Many of the differences are difficult for a human observer
to spot, especially when the size of error in β or γ is small.
To illustrate the qualitative nature of the changes in a dis-
cernible way, Figure 6 shows the changes produced by a 4%
increase in β and Figure 7 shows a 2% increase in γ. These
increases were chosen for illustration, as they consistently
resulted in low p-values - see Figure 4 and Figure 5).

Increasing β makes host move faster from S into E, chang-
ing the peak of E and reducing the AUC of S. Differences
can be seen in Figure 6 for the peak value of E and R, peak
time of E, and AUC of S and R. Since the epidemic is faster,
this also affects I, but is less noticeable from the figure. Our
technique is able to detect these differences, as can be seen
from Table 7.3, which shows the median p-values that were
recorded for each statistic. Discrepancies in γ are more diffi-
cult to observe (see Figure 5). Increasing γ makes host move
faster from E into I. This increases the AUC of E, but due
to the stochasticity of the model it is challenging to spot
this. Nevertheless, our technique can detect the difference
and Table 7.3 clearly shows a low p-value for this statistic.

The p-values for larger increases indicate a difference on
every simulation, but as difference gets smaller the chance
of a high p-value occurring increases. It is possible that very
small differences may be overlooked, or that p-values will
occasionally be low even when there is no difference. Con-
sider for example that increases of 0.25% on β (see Figure
4) or 0.1% on γ (see Figure 5) have essentially the same dis-
tribution of p-values as the original model. It is helpful to
consider a range of statistics (as we have done), since dis-
crepancies can have various effects. By taking the minimum
of these p-values, we are always looking at the greatest dif-
ference. However, when the discrepancy is very small, it is
necessary to search for input values that make differences in
the output more apparent. This helps to ensure the correct
identification of differences between implementations.

7.2 Answer to RQ2
We evaluate RQ2 by comparing the progress of evolution-

ary optimisation (CMA-ES) with random search. Both ap-
proaches are applied to find input parameter values that

make the differences produced (when increasing γ by 0.1%)
more obvious, starting from the initial values (β = 0.003,
γ = 1 and µ = 1) used in the previous question. The lower
bounds of each parameter in the search are 0; the upper
bounds are 0.006 for β, and 2 for γ and µ. Figure 8 indicates
the search-based technique to be slightly faster at achieving
low p-values for increases in γ than random search. How-
ever, both random search and CMA-ES achieve low p-values
within a reasonably short space of time (less than one hour).

Evolutionary optimisation could allow the search to be
terminated earlier and the differences still be identified (see
Figure 8). This might make the technique more attractive
to scientists as it would not take as long to test their models.
Another appealing aspect of CMA-ES is that since it main-
tains a multivariate distribution of useful parameter values
during the search it is less likely the values chosen at the end
will have had a low p-value due to random chance (this is a
definite danger, since even when we had not introduced any
difference, some low p-values were encountered). The evo-
lutionary optimisation approach therefore has the potential
to lead to faster and more consistent testing.

Figure 9 shows the distribution of p-values for 100 simu-
lations using the parameter values chosen by CMA-ES and
random search. Although the range of p-values produced for
random search is slightly wider than CMA-ES, the difference
is small when compared with the distribution for the original
parameter values. Similarly, Figure 10 shows the CMA-ES
is not always faster. When optimising parameter values for
the SECI HLB model, it achieved a low p-value around the
same time as random search. This suggests either approach
would be suitable for use with our technique.

7.3 Answer to RQ3
RQ1 is evaluated by applying the search-based pseudo-

oracle technique to the outputs of two real implementations
along with wrapper code (M1 and M2) of a model used to
make policy decisions for HLB, as used by a scientist learning
to use those two implementations. Once again, we empha-
sise the differences between M1 and M2 are not faults in the
original code (and in no way affect the results or conclusions
of [38] or [7]), but are rather differences relating to model
settings, output formats, and conversion code written by the
scientist learning how to use the two implementations.

We ran our search-based technique 50 times and inves-
tigated the reasons for the differences we observed in the
output of M1 and M2. Each time we found the cause of a
difference, we modified the code to make M1 and M2 give
the same result. In many cases, we believe the differences
we found were linked to the same cause because when we
changed the code these differences disappeared. Details are
provided of five unique differences we identified between M1
and M2 (illustrated in Figure 11), which we believe to have
been the cause of the differences in output we observed. The
parameter values used to find the differences are shown in
Table 2 and the p-values of the Kolmogorov-Smirnov test on
100 time series for each difference are shown in Table 3.

1) Scaling factor. The first difference the scientist identi-
fied when using our technique was that epidemics simulated
by M2 can progress much more quickly than those simulated
by M1. For example, Figure 11b shows the Cryptic com-
partment reaches its peak earlier in M2 than in M1. Our
technique found very low p-values for many of the statistics
(see Table 3), indicating that the difference was large.



Figure 4: Introducing Discrepancies into β

Figure 5: Introducing Discrepancies into γ

Figure 6: Identifying Discrepancies in β

Figure 7: Identifying Discrepancies in γ

Table 1: Median p-values for 100 simulations with 4% increase in β and 2% increase in γ

Parameter
Peak Value Peak Time AUC

S E I R S E I R S E I R
β 1.000 0.000 0.008 0.001 1.000 0.010 0.016 0.211 0.003 0.581 0.417 0.006
γ 1.000 0.211 0.211 0.211 1.000 0.367 0.417 0.468 0.367 0.000 0.581 0.281



Figure 8: Progress of Evolutionary Optimisation
and Random Search on the SEIR Model

Figure 9: p-values reached at end of optimisation

On inspection of the code, the scientist learnt that in M1
the input parameter β′ is adjusted by a scaling factor 1/α2,
so that the model parameter (see Equation 3) is β = β′/α2.
To make the two implementations have the same behaviour,
we changed the wrapper code of M2 so that it performed
the same conversion.

2) Start time/age category. After making this change,
our technique found cases in which epidemics simulated by
M1 progressed slightly faster than those simulated by M2.
For example, Figure 11b shows the Exposed compartment

Figure 10: Progress of Evolutionary Optimisation
and Random Search on the SECI HLB Model

reaches its peak earlier for M1 than M2. The scientist used
this information to learn that the rate at which hosts move
from the Exposed compartment to the Cryptic compartment
depends on their age (i.e. γE is different). Age categories
do not exist in M2, so M1 and M2 had different values for
γE until trees were old enough to change category.

The time at which the epidemic starts is given by t0; be-
fore t0, ε is effectively 0, so none of the trees become in-
fected. The scientist had presumed the starting time was
not relevant for his purposes, so set t0 = 0. However, as well
as controlling the starting time, t0 also affects the age cate-
gory, thus impacting the rate at which HLB spreads because
younger trees move from Exposed to Cryptic more quickly.
This difference was picked up by the Kolmogorov-Smirnov
test (see Table 3) and we resolved the issue by setting t0 = 1.

3) Distribution of time spent in Cryptic compartment. In
M2, the time spent in the Cryptic compartment is expo-
nentially distributed (as is common for disease models), but
in M1 it was gamma distributed. Although this was de-
scribed in [38], it was overlooked by the scientist using the
model. This means that even when M1 and M2 had identi-
cal means, the distributions were different, so the time series
were not the same (see Figure 11c). The most obvious dif-
ference is that in M1, the Cryptic curve rises further ahead
of the Infectious curve than in M2. Our technique made this
difference more prominent by maximising β′ (see Table 2).
The scientist removed this difference by modifying the code
of M1 to use an exponential distribution.

4) Initial number of Susceptibles. All the simulations were
started with 2000 Susceptible hosts, so the peak of the Sus-
ceptible curve should not change. However, the Kolmogorov-
Smirnov test (see Table 3) showed this value was different
between M1 and M2. Upon closer inspection, we found the
initial number of Susceptible hosts in M1 was 1999 (see Fig-
ure 11d). This was caused by a mistake in the mechanism
we created to make the output formats of M1 and M2 the
same. The state after the first transition from Susceptible



(a) Difference 1 (b) Difference 2

(c) Difference 3 (d) Difference 4 (e) Difference 5

Figure 11: Differences identified between M1 and M2

to Exposed was output to times prior to that transition.
5) Modified output/truncation. For extremely low values

of ε (see Table 2), the rate at which hosts become infected
is so small that there are simulations in which no infections
occur. The wrapper code for M1 output a single-line output
comprising only the initial state (with all hosts Susceptible).
It was expected to contain the state at subsequent times as
well, but these were not produced. This meant that the area
under the Susceptible curve was often very low (see Figure
11e). The difference was found by the Kolmogorov-Smirnov
test (see Table 3) in the Susceptible AUC statistic.

Table 2: Model Parameters used to Find Differences

Parameter
Difference

1 2 3 4 5
α (m) 11.645 11.801 18.087 7.270 2.139

β′ (m2 yr−1) 475.685 31.744 998.182 449.415 179.576
ε (yr−1) 0.091 0.013 0.090 0.086 5.124×10−6

8. THREATS TO VALIDITY
In our experiments, we compare time series using a par-

ticular set of statistics (AUC, peak value, peak time) and
statistical test (Kolmogorov-Smirnov). It is possible other
statistics and tests may perform better. However, we delib-
erately chose the Kolmogorov-Smirnov test as it is widely
used to compare probability distributions and the statistics
we have chosen can detect large range of discrepancies (as is
demonstrated by its detection of increases to β and γ in the
SEIR implementation). The technique we have presented in

this paper can be applied to a variety of different time series
and it is straightforward to incorporate different statistics
or tests should the user choose to do so.

Table 3: p-Values used to Find Differences

Statistic
Difference

1 2 3 4 5
AUCS 0.000 0.005 0.556 0.961 0.000
AUCE 0.556 0.099 0.794 0.193 0.344
AUCC 0.047 0.000 0.000 0.443 1.000
AUCI 0.000 0.005 0.794 0.155 1.000
PTS 1.000 1.000 1.000 1.000 1.000
PTE 0.000 0.047 0.992 0.894 0.344
PTC 0.000 0.069 0.000 0.677 1.000
PTI 0.000 1.000 0.443 0.296 1.000
PVS 1.000 1.000 1.000 0.000 1.000
PVE 0.000 0.894 0.556 0.961 0.344
PVC 0.000 0.994 0.000 0.677 1.000
PVI 0.000 0.003 0.261 0.717 1.000

Since the software under test is stochastic, the outputs
may be different each time it is run. For a given sample size,
there is a chance the outputs from a faulty implementation
will follow the same distribution as those from the correct
implementation (we could fail to find a fault) or the out-
puts from two correct implementations may have different
distributions (we may incorrectly presume there is a fault).
We have addressed this issue by incorporating a search algo-
rithm into our technique, to identify parameter values that



consistently reveal a difference if one exists. In addition, we
recommend the user to run their model with the parameter
values multiple times, once the search is complete, to record
the distribution of p-values (in our experiments we ran the
implementations 100 times). If the resulting p-values are
consistently low, this suggests there is a difference, which
can then be checked by an inspection of the program code.

Our search technique optimises the minimum p-value pro-
duced using the statistics. The benefit of this approach is
that it ensures that at least one of the resulting differences
is as large as possible. Another way to aggregate the statis-
tics is to minimise the average p-value. However, this may
lead to parameter values that alter all the time series by
such a small amount that the difference is not visible. In
our preliminary experiments, we also found that this more
vulnerable to stochasticity than our chosen approach.

There is a danger that movement around the parame-
ter space could be dominated by noise, even when search-
based optimisation is used. This may explain why in our
experiments the CMA-ES did not perform much more ef-
ficiently than random search. However, the p-values that
were recorded at the end of each search (using either tech-
nique) were consistently low and we were able to find real
differences between implementations of an important model.
Therefore, even when the model we are testing is highly
stochastic, we are still able to find parameter values that
make the differences between implementations apparent.

Finally, in the SEIR example, we saw that small changes
to β and γ did not necessarily produce changes in the dis-
tribution of p-values (consider the 0.5% increase to β or the
0.2% increase to γ). We might worry that this could lead to
a false sense of security when the discrepancy between two
implementations is very small. Yet, even in these cases, our
technique was able to use search to find input parameters
that consistently reduced the p-values to a low level that
made the differences clear. Obviously there is a limit to
the size of discrepancy our technique can detect, even when
using search, as the precision of a computer is not infinite.
However, our technique was even able to detect differences
that were so small to be unobservable to a human.

9. RELATED WORK
Search-based software testing is a highly popular research

area [33]. A large number of search-based techniques have
been applied to generate test cases that achieve control flow
coverage [30, 43, 26, 10]. This is the first attempt, however,
at applying search-based optimisation to the challenges in-
volved in testing implementations of stochastic models.

Search-based techniques have been used previously to iden-
tify differences between multiple versions of the same pro-
gram. For example, McMinn [32] applied a genetic algorithm
to maximise the difference in output between artificially pro-
duced pseudo-oracles. However, most search-based testing
techniques assume the output can be compared precisely. A
tool [24] has been developed to compare the relative error
produced by syntactic mutants using a threshold, but as of
yet it has not been applied to a search-based technique.

There has been very little research into testing stochastic
software. Murphy et al. [36] used metamorphic relations
(descriptions of properties that should remain true in every
execution) to test machine learning algorithms, but did not
address to potential for these relations to occasionally fail
due to stochasticity. Yoo [47] also applied metamorphic test-

ing to machine learning, but used the Mann-Whitney U test
to assess whether the output was different under stochas-
ticity. Whereas Yoo tested a program that output Boolean
values [47], the implementations we tested output complex
time series; Yoo assessed significance for a particular confi-
dence interval, but we also used the p-values of each of our
Kolmogorov-Smirnov tests to drive the optimisation.

10. CONCLUSIONS
We have presented a novel technique for testing stochas-

tic software, using search-based optimisation and pseudo-
oracles. Optimisation is conducted to find input parameters
for which the output distributions of the implementations
differ as much as possible, so the causes of these differences
can be determined. We identify differences and direct the
search by applying Kolmogorov-Smirnov tests to sets of sum-
mary statistics, derived from the time series outputs. Com-
pared with simpler approaches, such as tolerance thresholds
or measuring the difference in means, our technique is more
robust and can identify subtle differences in the output dis-
tributions. We illustrate our technique on a simple non-
spatial model and describe how it helped a scientist become
familiar with the correct use of two implementations for a
more complex spatial model of a real disease (HLB).

11. FURTHER WORK
In this paper, we chose to use a Kolmogorov-Smirnov test

to compare the distributions of output from each implemen-
tation, but this is not the only method of comparison. The
Anderson-Darling test [1] gives more weight to the tails of
the distribution and there is some evidence it is more sensi-
tive to small differences than the Kolmogorov-Smirnov test
[9]. It would be worthwhile to compare these techniques
along with other approaches (especially in cases with cycli-
cal or bifurcated time series), to discover if they allow us
to maximise differences between outputs more efficiently.
There are also many other optimisation algorithms (genetic
algorithms, stochastic hill climbing etc.) we could apply to
this problem, some may be better suited than others [44].

Our technique identifies differences in implementations of
stochastic models, but does not tell us where to look in the
code. Automated debugging techniques, such as slicing [41]
and statistical debugging [28] record which statements are
exercised each time an error occurs to predict where the
fault may be. Unfortunately it is not possible to use these
techniques in the model implementations we tested, as their
control flow is fairly linear, i.e. the same statements are run
whenever the implementation is used. It may be possible
instead to predict likely locations in code based on a measure
of their contribution to the final output value.
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