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ABSTRACT
Motivation: By collecting multiple samples per subject, researchers
can characterise intra-subject variation using physiologically relevant
measurements such as gene expression profiling. This can yield
important insights into fundamental biological questions ranging from
cell type identity to tumour development. For each subject, the
data measurements can be written as a matrix with the different
subsamples (e.g., multiple tissues) indexing the columns and the
genes indexing the rows. In this context, neither the genes nor
the tissues are expected to be independent and straightforward
application of traditional statistical methods that ignore this two-way
dependence might lead to erroneous conclusions. Herein, we present
a suite of tools embedded within the R/Bioconductor package HDTD
for robustly estimating and performing hypothesis tests about the
mean relationship and the covariance structure within the rows and
columns. We illustrate the utility of HDTD by applying it to analyze
data generated by the Genotype-Tissue Expression consortium.
Availability: The R package HDTD is part of Bioconductor. The
source code and a comprehensive user’s guide are available at
http://bioconductor.org/packages/release/bioc/html/HDTD.html.
Contact: A.Touloumis@brighton.ac.uk
Supplementary information: Supplementary materials, including
R code, data and results from the data analysis, are available at
Bioinformatics online.

1 INTRODUCTION
The term “transposable data” refers to data that are naturally written
in a matrix whose dimensions correspond to two distinct features
of interest, while the term “high-dimensional” reflects the fact that
the dimension of the subject-specific data matrix is larger than the
number of subjects. High-dimensional transposable data can be
found in genetics, e.g., when, for each subject, gene expression
levels are measured in multiple tissues (Piccirillo et al., 2015),
in different fragments of the same tumour (Sottoriva et al., 2013)
or in a well-defined spatial order (Petretto et al., 2010), in yeast
expression studies (Smith and Kruglyak, 2008), in protein-signaling
networks (Sachs et al., 2005), in eQTL analysis (Bhadra and

∗to whom correspondence should be addressed

Mallick, 2013) and in other studies with EEG, fMRI and time-
series data (cf. Touloumis et al., 2014). To analyze robustly such
datasets, we developed the R package HDTD (High-Dimensional
Transposable Data).

In multiple-tissue gene expression studies, the rows correspond
to genes and the columns to tissues, and genes and tissues might
to be correlated with each other. Ignoring a potential tissue-wise
correlation could be misleading in determining the strength of the
gene-wise correlation (Touloumis et al., 2014) and it may hinder
the discovery of differentially expressed genes, since traditional
ANOVA-type tests suffer from extremely low power and/or false
positive findings (Touloumis et al., 2015). The unique feature of
HDTD is the implementation of sound statistical methods that
account for and estimate both the tissue- and gene-wise correlation,
thus facilitating reliable inference about the form of the mean
gene expression levels and the functional relationship among genes
and/or tissues.

2 STATISTICAL BACKGROUND
To introduce the notation, suppose that the gene expression levels
for subject i are recorded in an r× c matrixXi with rows the same
set of r genes and columns the same set of c tissues. We assume
that X1, . . . ,XN are independently and identically distributed.
Inference about the mean relationship of the genes across the tissues
and about the dependence structure relies on estimating and/or
testing hypotheses about the mean matrix M , the gene covariance
matrix ΣR, and the tissue covariance matrix ΣC. In particular, the
(a, b) element ofM determines the mean expression level for gene
a in tissue b, the (c, d) element ofΣR the covariance of genes c and
d, and the (e, f) element of ΣC the covariance of tissues e and f .
The covariance structure between two elements of a typical X has
a Kronecker product form: Cov(Xij , Xlm) = ΣRilΣCjm.

In practice it is often of interest to identify differentially expressed
genes. For example, it is important to assess whether the overall
mean pattern of gene expression levels remains constant across all
or pre-specified tissue groups. To do this, HDTD implements the
testing methods proposed by Touloumis et al. (2015).

To estimate ΣR and ΣC, shrinkage approaches are employed.
These have been found to be extremely useful in constructing
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reliable gene networks (see Schäfer and Strimmer, 2005). The
novel shrinkage covariance estimators derived in the Supplementary
Material are statistically efficient and practical because they are
invertible and easy to calculate regardless the number of genes
and tissues. In addition, HDTD allows users to study correlation
patterns of the genes or tissues by testing against known covariance
structures (Touloumis et al., 2014). The non-parametric nature of
our analysis provides some robustness against non-normality.

3 MULTIPLE TISSUE EXAMPLE
Melé et al. (2015) investigated variability in the human
transcriptome across multiple tissues by analyzing RNA sequencing
(RNAseq) data from the Genotype-Tissue Expression project. This
project identified, among other things, genes whose expression
signature characterized particular tissues. To accomplish this, Melé
et al. (2015) used essentially all available tissue-samples from
each of the 175 individuals by aggregating gene expression levels
across the tissue tested and the remaining tissues (see §3.5 in
Supplementary Material in Melé et al., 2015). This approach does
not acknowledge the tissue-wise correlation and consequently, this
can affect the discovery of tissue-specific gene lists (Touloumis
et al., 2015). Since HDTD requires measurements from the same
set of tissues across subjects, we considered a subset of this dataset
including only the subjects (N = 11) with available RNAseq
samples across all the most frequently collected tissues (skin, nerve,
adipose, artery, lung, skeletal muscle, heart, blood and thyroid). A
44, 781 × 9 data matrix was created for each subject, with rows
corresponding to genes, columns corresponding to the samples from
the nine tissues and entries corresponding to the RPKM values. We
use RPKM values for consistency with the original publication but
we excluded genes where the sum of the RPKM values across the
tissues was less than 0.1. To illustrate benefits when utilizing HDTD,
we focused on two important inferential aspects: i) study of the
dependence structure among the nine tissues and ii) corroboration
of the gene signatures when the dependence between tissues is
accounted for.

To study the tissue-specific variability, we estimated the
corresponding covariance matrix Σ̂C (Table 1 in the Supplementary
Material). Blood was by far the most variable tissue (SE = 870.4),
with SE at least four times that of the other tissues. To study the
tissue-wise correlation, we calculated the correlation matrix from
Σ̂C (Table 2 in the Supplementary Material). We observed that
lung, skeletal muscle, heart and thyroid were mildly correlated
with each other (correlations ≥ 0.1), while the remaining tissues
showed weaker strength of correlation. To investigate the statistical
significance of our observation, we employed the sphericity test
(Touloumis et al., 2014) to all possible tissue pairs so as to identify
correlated pairs of tissues. After applying an FDR correction, we
failed to reject the sphericity hypothesis for the tissue pairs listed in
Table 3 in the Supplementary Material. To summarize these results,
there seems to exist a weak but statistically significant tissue-wise
correlation pattern that needs to be considered when analyzing the
gene expression pattern across tissues.

Melé et al. (2015) generated lists of genes that showed tissue-
specific expression (Table S5 in Melé et al., 2015). For a given
tissue, we tested the hypotheses of conservation of the overall mean
gene-expression levels of the corresponding genes-list between this

tissue and any of the other eight, leading to a total of eight
p−values, to which we applied an FDR correction. Failure to reject
all hypotheses means that we do not have enough evidence that
these genes are tissue-specific in their expression. After performing
this analysis, we confirmed the validity of the tissue-specific gene-
lists for skin, nerve, lung, skeletal muscle, heart and blood tissue.
However, we failed to confirm that the overall mean gene-expression
levels of the thyroid-specific gene-list is different in skeletal muscle
(p-value = 0.782); that of the adipose-specific gene-list different
in the skin (p-value = 0.105), and that of the artery-specific
gene-list different in skin (p-value = 0.668), in adipose (p-value
= 0.716), and in blood (p-value = 0.145). We also failed to
reject the hypothesis that the mean gene-expression pattern for the
artery-specific genes is simultaneously preserved across artery, skin,
adipose and blood tissues (p-value= 0.412), which is in accordance
with the pairwise tissue analysis. The difference in our conclusions
compared to those in Melé et al. (2015) presumably arises because
the methods in HDTD account for the presence of the tissue-wise
correlation, regardless of its strength, a key inferential property that
is not discussed by Melé et al. (2015).

4 SUMMARY
Although HDTD was motivated by and illustrated using multi-
tissue gene expression data, we emphasize that HDTD is suitable
for analyzing other types of high-dimensional transposable data
including single-cell transcriptomics data (see Lee et al., 2014;
Lovatt et al., 2014) sampled from different tissues. In these studies,
HDTD should lead to more robust inference since it accounts for
both the gene- and tissue-wise correlation and is reliable for large
numbers of cells without a dramatic increase in the computational
cost.

5 ACKNOWLEDGMENT
We acknowledge the support of The University of Cambridge,
Cancer Research UK (C14303/A17197) and Hutchison Whampoa
Limited.

REFERENCES
Bhadra, A. and Mallick, B.K. (2013). Joint high-dimensional Bayesian variable and

covariance selection with an application to eQTL analysis. Biometrics, 69, 447–457.
Lee, J. H., et al. (2014). Highly multiplexed subcellular RNA sequencing in situ.

Science, 343, 1360–1363.
Lovatt, D., et al. (2014). Transcriptome in vivo analysis (TIVA) of spatially defined

single cells in live tissue. Nature Methods, 11, 190-196.
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