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a b s t r a c t

Resting state functional magnetic resonance imaging (fMRI) was used to measure whole brain functional
connectivity within specific networks hypothesised to be more affected in dementia with Lewy bodies
(DLB) (a disease characterised by prominent attentional deficits, spontaneous motor features of
parkinsonism and depression) than in Alzheimer's disease (AD) and controls. This study involved 68
subjects (15 DLB, 13 AD and 40 controls) who were scanned using resting state BOLD (blood-oxygen-
level-dependent) fMRI on a 3 T MRI scanner. Functional connectivity was measured using a model-free
independent component analysis approach that consisted of temporally concatenating the resting
state fMRI data of all study subjects and investigating group differences using a back-reconstruction
procedure. Resting state functional connectivity was affected in the default mode, salience, executive and
basal ganglia networks in DLB subjects compared with AD and controls. Functional connectivity was
lower in DLB compared with AD and controls in these networks, except for the basal ganglia network,
where connectivity was greater in DLB. No resting state networks showed less connectivity in AD
compared with DLB or controls. Our results suggest that functional connectivity of resting state networks
can identify differences between DLB and AD subjects that may help to explain why DLB subjects have
more frequent attentional deficits, parkinsonian symptoms, and depression than those with AD.

& 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Dementia with Lewy bodies (DLB) is the second most common
cause of neurodegenerative dementia after Alzheimer's disease
(AD) (McKeith et al., 1996, 2005; Geser et al., 2005). The clinical
symptoms of DLB and AD can overlap, a fact that makes differ-
entiating the disorders difficult. Neuroimaging is used in dementia
to better understand neurobiological changes underpinning key
symptoms and clinically to enhance diagnostic accuracy. Com-
pared with the literature on AD, few neuroimaging studies have
investigated DLB, and the neural changes responsible for the
distressing symptoms of attentional deficits, motor features of
parkinsonism, and depression that are characteristic of DLB are not
well understood.

Resting state BOLD (blood-oxygen-level-dependent) functional
magnetic resonance imaging (fMRI) shows temporal correlations
in spontaneous low-frequency fluctuations (SLFs) (at o0.1 Hz)

between distant but anatomically connected brain regions (Biswal
et al., 1995), representing functional connectivity (Fox and Raichle,
2007). Both independent component analysis (ICA) (Beckmann
et al., 2005) and seed-region (Damoiseaux et al., 2006) approaches
can be used to organise brain regions into at least 10 resting state
networks that plausibly represent different sensory and cognitive
processes.

Initially, resting state fMRI studies focussed on the default
mode network (composed of posterior cingulate, precuneus,
lateral parietal, lateral temporal and medial frontal regions), which
is active at rest and deactivates when a task is performed (Raichle
et al., 2001). This network has been shown to be affected in AD,
with abnormalities increasing as the disease progresses (Zhou
et al., 2010; Zhang et al., 2011; Damoiseaux et al., 2012), but more
recently it has been shown that other resting state networks are
also affected in AD, for example, the sensory motor, dorsal atten-
tion and salience networks (Brier et al., 2012; Zhou et al., 2010).
Few studies have investigated functional connectivity in DLB, and
those studies which have considered this group have used slightly
different analytical approaches and, perhaps as a consequence,
came to different conclusions.
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Previously, we investigated functional connectivity in DLB
and AD using a seed-region approach and showed abnormally
increased connectivity compared with findings in controls in the
posterior cingulate and putamen in DLB, in the hippocampus in
AD, and in the caudate and thalamus in both DLB and AD (Kenny et
al., 2011, 2013). Galvin et al. (2011) used a similar approach but
focussed solely on precuneus connectivity and used the whole
structure as the seed region. Their study showed both increased
connectivity with putamen and parietal regions and decreased
connectivity with prefrontal and primary visual cortices (Galvin
et al., 2011).

In the current study, instead of measuring connectivity with
predefined regions of interest, we adopted a model-free indepen-
dent component analysis (ICA) approach. This approach enables
investigation of whole brain functional connectivity ensuring
optimal use of the study data. The ICA method was used in DLB
subjects by Franciotti et al. (2012), who reported no abnormalities
in default mode network connectivity in DLB but did not report
analysis of other identified networks (Franciotti et al., 2012). Here
we investigated the wider set of resting state networks in DLB
subjects. We hypothesised that functional connectivity would be
significantly altered in DLB compared with control and AD subjects
within the following networks:

(a) Default mode, salience and executive networks because of the
attentional deficits which are greater in DLB than AD subjects
(Ballard et al., 2001).

(b) Basal ganglia and limbic networks, specifically the caudate
because of its role in emotional regulation and the greater
severity of depression in DLB, the putamen because structural
pathology and neurotransmitter abnormalities here are asso-
ciated with parkinsonian symptoms in DLB (Walker et al., 2002;
O’Brien et al., 2004), and the thalamus which is involved in
maintaining consciousness (Perry and Perry, 2004) and fluctuat-
ing cognition is a core feature of DLB (McKeith et al., 1996).

2. Methods

2.1. Participants

This study involved 68 subjects aged over 60 years: 15 DLB, 13 AD and 40
control subjects; the same subjects have also been investigated in previous studies
(Kenny et al., 2010, 2011, 2013). DLB and AD subjects were recruited from clinical
Old Age Psychiatry, Geriatric Medicine and Neurology outpatient services; controls
were recruited through local advertisement or were partners of the dementia
subjects. The study was approved by the local ethics committee, and all subjects
gave signed informed consent for participation. DLB subjects met consensus criteria
for probable DLB including the presence of two or more core clinical features
(fluctuating cognition, visual hallucinations and/or parkinsonism) (McKeith et al.,
1996, 2005). AD subjects fulfilled National Institute of Neurological and Commu-
nicative Diseases and Stroke/Alzheimer's Disease and Related Disorders Association
(NINCDS/ADRDA) criteria for probable AD (McKhann et al., 1984). Diagnoses were
made by consensus between two experienced clinicians, a method previously
validated against autopsy diagnosis (McKeith et al., 2000). All of the DLB subjects
who underwent 123I-labelled N-(3-fluoropropyl)-2ß-carbomethoxy-3ß-(4-iodo-
phenyl) nortropane (123I-FP-CIT) single photon emission computed tomography
(SPECT) imaging during their clinical diagnostic assessment (n¼9) showed reduced
dopamine transporter uptake in the basal ganglia consistent with their diagnosis.

Detailed physical, neurological, and neuropsychiatric examinations were car-
ried out as follows: the Mini-Mental State Examination (MMSE) (Folstein et al.,
1975) to assess cognitive status, the Geriatric Depression Scale (GDS) to assess
depressive symptoms (Sheikh and Yesavage, 1986), the Neuropsychiatric Inventory
(NPI) to assess neuropsychiatric symptoms (Cummings et al., 1994), the Clinical
Assessment of Fluctuation Scale (CAFS) to assess fluctuating cognition (Walker et
al., 2000), and the motor subsection of the Unified Parkinson's Disease Rating Scale
(UPDRS III) for motor features of parkinsonism (Fahn and Elton (1987)). Exclusion
criteria were severe concurrent illness (apart from dementia in the DLB and AD
groups), the presence of space-occupying lesions on MRI, stroke history and any
contraindications to MRI. None of the control subjects had a history of psychiatric

illness. A larger control group size was used to obtain a robust depiction of the
brain networks in the older brain.

2.2. Imaging

All subjects were scanned on the same 3 T MRI system (Intera Achieva scanner,
Philips Medical System, Eindhoven, The Netherlands). An eight-channel head coil was
used to collect resting state fMRI scans using a gradient-echo echo-planar imaging
sequence. The scan timings and parameters were as follows: 25 axial slices, 128
volumes, anterior–posterior acquisition, in-plane resolution¼2�2mm2, slice thick-
ness¼6mm, repetition time¼3000 ms, echo time¼40ms, field of view¼260
�150�260mm3, acquisition time¼6.65 min. Conventional structural 3D T1-
weighted scans were also collected and used for co-registration of the functional scans.

2.3. Resting state fMRI analysis

2.3.1. Data pre-processing
Data were analysed using the FMRIB's Software Library (FSL) tools (version

4.1.9) (www.fmrib.ox.ac.uk/fsl) (Smith et al., 2004). Pre-processing using FMRI
Expert Analysis Tool (FEAT) (version 5.98) involved head-motion correction
(Jenkinson et al., 2002), removal of non-brain tissue (Smith, 2002), spatial
smoothing (Gaussian 6-mm full width at half-maximum), high-pass temporal
filtering (120 s), affine-registration to the subjects' anatomical T1-weighted scan
and subsequently to the Montreal Neurological Institute (MNI) 152 standard space
template (Jenkinson and Smith, 2001).

2.3.2. Independent component analysis
First, resting state networks in every study subject were identified using a

model-free independent component analysis (ICA) approach, multivariate explora-
tory linear optimised decomposition into independent components (MELODIC)
(Beckmann et al., 2005; Beckmann and Smith, 2004, 2005). Spatiotemporal
components for each subject were examined, and components that clearly
corresponded to noise (e.g., scanner-related or physiological artefacts) were
removed (FSL software tool fslregfilt) based on their spatial patterns and temporal
frequency characteristics (Beckmann and Smith, 2005), similar to previous studies
(de Bie et al., 2012). The filtered and noise-free data were then used for the group
analysis. This involved combining all subjects' (n¼68) resting state scans into a
single 4D data set, which was then decomposed into spatio-temporal components
(multi-session temporal concatenation approach) (Beckmann et al., 2005). These
component maps were divided by the standard deviation of the residual noise and
thresholded at a posterior probability threshold of p40.5 (i.e., an equal loss is
placed on false positives and false negatives) by fitting a Gaussian/gamma mixture
model to the histogram of intensity values (Beckmann and Smith, 2004). The
number of components was restricted to 25, which has previously been shown to
be the optimal number to split fMRI datasets into a final set of spatially
independent components (Damoiseaux et al., 2006, 2012). These independent
components were inspected visually, and specific networks were identified for
further analysis, following spatial correlation against resting state networks
previously reported (Beckmann et al., 2005; Smith and Nichols, 2009), i.e., default
mode, salience, executive control, basal ganglia and limbic networks (see Fig. 1), as
they were expected to be affected in DLB based on the symptom profile.

2.3.3. Dual regression approach
For the networks shown in Fig. 1 (identified from the group ICA analysis), functional

connectivity differences among DLB, AD and control subjects were investigated on a
voxel-wise basis using a dual regression approach (Filippini et al., 2009; Veer et al.,
2010), carried out separately for each independent component, similar to previous
reports (Cole et al., 2010; Filippini et al., 2012). This involved the following:

i. Representations of the networks identified in all subjects were created in every
individual subject: First regression to extract individual time series associated
with each subject and the component of interest followed by a second
regression to obtain subject specific maps that were then transformed into z-
scores.

ii. Assessment of statistical differences between DLB, AD and controls: FSL Randomise
(version 2.1) and threshold-free cluster enhancement (TFCE) (Smith and
Nichols, 2009) were used to derive separate null distributions of t-values for
the contrasts reflecting the between- and within-group effects by performing
5000 random permutations and testing the difference between groups or
against zero for each iteration (Nichols and Holmes, 2002). Thus, a three-group
comparison was carried out to investigate connectivity differences between
DLB, AD and controls for each network and the resulting statistical maps
thresholded at po0.05 (only family-wise error [FWE] corrected p-valueso0.05
were accepted and thus the chance of one more false positives occurring over
space is no more than 5% and so a 95% confidence of no false positives in the
image). Group comparisons were masked using the network identified from all
study subjects (see Supplementary material Fig. 1) so that only differences
within the network of interest were investigated (Veer et al., 2010). Brain
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regions showing significant differences between groups were localised using
the Talairach atlas in the FSL atlas tools (Talairach and Tournoux, 1988;
Lancaster et al., 2000, 2007).

To compare the group demographics, one-way analysis of variance (ANOVA)
was used for cross-group comparisons and the independent-samples t-test for
between-group comparisons (po0.05) with the Statistical Package for Social
Sciences (SPSS) (version 15.0.1) (SPSS for Windows, 2006).

3. Results

3.1. Demographics

Table 1 shows the clinical characteristics of the study subjects.
Groups were similar in age and sex. As would be expected, controls
had significantly higher cognitive test scores (MMSE) compared with

DLB and AD subjects. There were no significant differences between
DLB and AD subjects for age at onset, duration of dementia, or MMSE
scores. In DLB, scores on the UPDRS, NPI, CAFS and GDS were
significantly higher compared with AD, indicating greater severity
in DLB of the motor features of parkinsonism (po0.001), neuropsy-
chiatric disturbances (po0.001), fluctuating cognition (p¼0.027)
and depressive symptoms (p¼0.003), as would be expected based
on the known symptom profile of DLB.

At the time of study, 21 subjects were taking acetylcholinester-
ase inhibitors: 11 AD (donepezil [7 subjects] and galantamine
[4 subjects]) and 10 DLB (donepezil [5 subjects], galantamine
[4 subjects] and rivastigmine [1 subject]) subjects. No subjects
were taking memantine. Seven subjects (6 DLB and 1 AD) were
taking antidepressants (citalopram, mirtazapine, trazodone,
venlafaxine or paroxetine) and one DLB subject was taking a
non-benzodiazepine (zopliclone) as a hypnotic.

Fig. 1. Resting-state networks identified across all study subjects following multi-session temporal concatenation. Axial images in radiological convention (left side of the
brain¼right side of the image as viewed). ICs show Z slices: 21–23, Z MNI coordinates: 12, 16, and 20. Colour bar shows Z statistic scores.
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3.2. Functional connectivity results

3.2.1. Default mode networks
Fig. 1 shows the four independent components (ICs) involving

brain regions of the default mode network, identified across all
study subjects following multi-session temporal concatenation.
Peak connectivity clusters were localised to the following areas:
cingulate gyrus (IC 2), frontal pole (IC 7), paracingulate gyrus
(IC 12) and precuneus cortex (IC 13). ICs 2 and 13 are examined in
further detail in Figs. 2 and 3, following dual regression to identify
significant differences among DLB, AD and control groups. Func-
tional connectivity was less in DLB compared with AD and controls
within a number of brain regions including the precuneus (Fig. 2A
and C), inferior parietal (Fig. 2A), middle frontal (Fig. 2C), inferior
temporal (Fig. 2A), lingual gyrus (Figs. 2A and 3B) and the poster-
ior lobe of the cerebellum (Fig. 3A and B). Table 2 summarises the
voxels, p-values and t-statistics for these brain regions. There were
no regions of less connectivity in AD subjects compared with
control or DLB subjects, or in controls compared with AD subjects.
Only one network showed greater connectivity in DLB subjects,
and this was compared with controls in superior temporal regions
(Fig. 2B). Group comparisons for ICs 7 and 12 are displayed in
Supplementary material Figs. 2 and 3 with the brain regions
showing significant differences presented in Supplementary
Table 1.

3.2.2. Salience and executive control networks
Fig. 1 shows the three ICs identified corresponding to brain

regions known to be involved in salience and executive control
across all study subjects. Peak connectivity clusters were localised
to the following areas: frontal pole (IC 3), insular cortex (IC 5) and
paracingulate gyrus (IC 18). Figs. 4 and 5 examine frontal (IC 3) and
insular (IC 5) components in further detail following dual regres-
sion to identify significant differences between the DLB, AD and
control groups. Functional connectivity was less in the DLB group
compared with the AD and control groups in a number of brain
regions including frontal (Figs. 4A and 5A and B), occipital
(Fig. 5A), and parietal (Figs. 4A and 5A) cortex. Table 2 summarises
the voxels, p-values and t-statistics for these brain regions. There
were no regions of less connectivity in AD subjects compared with

control or DLB subjects, or in controls compared with DLB or AD
subjects. Group differences for IC 18 are shown in Supplementary
material Fig. 4 with the brain regions presented in Supplementary
Table 1.

3.2.3. Basal ganglia and limbic network
One network was identified across all study subjects corre-

sponding to the basal ganglia and limbic network, with the peak
connectivity cluster localised to the thalamus (Fig. 1, IC 23). Fig. 6
shows this network in further detail following dual regression to
identify significant differences among the DLB, AD and control
groups. Functional connectivity of the basal ganglia and limbic
network was affected in DLB subjects only, with functional con-
nectivity greater compared with controls in frontal and limbic
regions (Fig. 6A and Table 2). These regions (left superior frontal
and left anterior cingulate) were then investigated further by
correlating the z-statistic score in the peak coordinates (see
Table 2 for coordinates) with the UPDRS and fluctuation (CAFS)
scores, an analysis that showed that higher UPDRS and CAFS
scores (indicating greater severity of symptoms) in DLB signifi-
cantly correlated with a higher z-statistic score (UPDRS: r¼0.625/
p¼0.013, CAFS: r¼0.525/p¼0.045, see Fig. 7 and Table 3).

Table 4 provides a summary of the above results showing the
specific resting state networks investigated in this study and the
differences identified among DLB, AD and control subjects.

4. Discussion

4.1. Study findings

Previous research by our group investigated resting state func-
tional connectivity using a model-based/seed-region approach
(Kenny et al., 2011, 2013). This approach was selected because
we had prior hypotheses (formed from previous neuroimaging
studies) of the regions we expected to be functioning abnormally/
normally in DLB. The disadvantage of that approach is that it only
tests connectivity with a predefined brain region. Thus, in the
present study, a model-free/ICA approach was used to measure
whole brain functional connectivity, an approach that enables
comparison in multiple distributed voxels (Cole et al., 2010).

Table 1
Demographic and neuropsychological data of study subjects.

Demographic and neuropsychological data DLB AD Controls p-value ANOVA/t-test

N 15 13 40
Age (years) 80.676.0 75.578.2 77.874.5 0.061a

Sex (M:F) 9:6 7:6 20:20 0.958b

Age at onset of dementia (years) 77.276.7 71.978.4 0.080 c

Duration of dementia (months) 40.2720.3 43.0722.4 0.737 c

MMSE 19.574.2 21.573.7 29.171.2 o0.001 an d.f.¼2, F¼88.77
UPDRS 22.1711.9 6.274.5 o0.001 cn d.f.¼26, t¼4.8
NPI 23.1711.5 7.076.8 o0.001 cn d.f.¼21.4, t¼4.4
CAFS 6.775.3 1.973.8 0.027 cn d.f.¼22, t¼2.4
GDS 7.173.3 3.572.4 0.003 cn d.f.¼26, t¼3.3

Values expressed as mean7standard deviation. Abbreviations: CAFS¼Clinical Assessment of Fluctuation Scale; GDS¼Geriatric Depression Score; MMSE¼Mini-Mental State
Examination; NPI¼Neuropsychiatric Inventory; UPDRS¼Unified Parkinson's Disease Rating Scale (subsection III).
� MMSE: Con4AD and DLB (po0.001, d.f.¼2, F¼88.77)a.
� UPDRS: DLB vs. AD (po0.001, d.f.¼26, t¼4.8)c (i.e. DLB subjects had greater motor features).
� NPI: DLB vs. AD (po0.001, d.f.¼21.4, t¼4.4)c (i.e. DLB subjects had greater neuropsychiatric symptoms).
� CAFS: DLB vs. AD (p¼0.027, d.f.¼22, t¼2.4)c (i.e. DLB subjects had greater fluctuations).
� GDS: DLB vs. AD (p¼0.003, d.f.¼26, t¼3.3)c (i.e. DLB subjects had greater depressive symptoms).

a The p-values were calculated using one-way analysis of variance.
b The p-value was calculated using the Pearson Chi-Square Test.
c The p-values were calculated using the independent samples t-test.
n The p-value iso0.05.
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Functional connectivity within specific resting state networks was
hypothesised to be more affected in DLB subjects compared with
AD and control subjects based on the symptom profile of DLB.

Default mode, salience and executive control networks were
more affected in DLB subjects (functional connectivity generally
less compared with control and AD subjects), findings that were as
hypothesised based on attention, alertness and executive function
deficits in DLB. Similar brain regions showed less connectivity in
DLB as follows: precuneus (default mode network), inferior
parietal (default mode network), middle frontal (default mode
network, salience and executive control), lingual (default mode
network, salience and executive control) and postcentral gyri
(salience and executive control). In DLB subjects compared with
AD and control subjects, functional connectivity was less in
occipital regions (e.g., middle occipital cortex and cuneus) in
default mode, salience and executive control networks, which
could be related with visual hallucinations, which are a core
feature of DLB.

In DLB subjects, the basal ganglia and limbic network showed
greater connectivity compared with controls, a difference that
could be related to the parkinsonian symptoms and mood dis-
turbances which are common in DLB. Greater connectivity in DLB
subjects was only found compared with controls (not AD subjects)

and in fewer brain regions—superior temporal (default mode
network) and superior frontal and the anterior cingulate cortex
(basal ganglia and limbic network)—and generally the cluster size
was of a smaller magnitude compared with other networks
showing greater connectivity in controls and AD subjects com-
pared with DLB subjects, i.e., 3–8 voxels showing greater con-
nectivity in DLB subjects compared with controls in the basal
ganglia network.

In our study the dementia subjects were well matched for age
and disease severity; however, we still showed important differ-
ences in functional connectivity between DLB and AD subjects for
default mode, salience and executive control networks. Functional
connectivity was altered in DLB subjects compared with AD and
control subjects, whereas in AD subjects the resting-state net-
works investigated remained unaffected compared with controls.

4.2. Previous studies

We previously showed that basal ganglia regions were more
affected in DLB using a different analytic approach (seed region) to
investigate connectivity between the caudate and thalamus and all
other brain regions (Kenny et al., 2013). Our findings here are
entirely consistent with that study in that we also showed greater

Fig. 2. Resting-state functional connectivity for the default mode network (peak connectivity cluster¼anterior cingulate gyrus). Red–yellow overlay: Default mode network
functional connectivity in controls, AD and DLB subjects combined (ICA MELODIC, multi-session temporal concatenation approach, z statistic 41.0, note that the maps are
shown with a lower than significant z-threshold to highlight the relationship between network nodes and adjacent pixels). Blue overlay: Brain regions showing significant
differences between groups. Regions showing significantly less connectivity in DLB compared with controls (Left) and AD (Right), and greater activity in DLB compared with
controls (Centre) (po0.05). Axial images are in radiological convention, i.e. left side of the brain¼right side of the image as viewed. Left) Con4DLB (Z slices shown, Z MNI
coordinates 28, 32, 36, 48, 52, and 56). Centre) DLB4Con (Z slices shown, Z MNI coordinates: �52, �48, and �44 ). Right) AD4DLB (Z slices shown, Z MNI coordinates: 8,
12, 16, 28, 32, and 36).

Fig. 3. Resting-state functional connectivity for the default mode network with peak connectivity localised to the precuneus cortex. Red–yellow overlay: Functional
connectivity in controls, AD and DLB subjects combined (z statistic 41.5, note that the maps are shownwith a lower than significant z-threshold to highlight the relationship
between network nodes and adjacent pixels). Blue overlay: Brain regions showing differences between subject groups: Less connectivity in DLB compared with Controls and
AD (po0.05). Axial images are in radiological convention, i.e. left side of the brain is right side of the image as viewed. Left) Con4DLB (Z slices shown, Z MNI coordinates:
�24, �20, and �16). Right) AD4DLB (Z slices shown, Z MNI coordinates: �12, �8, �4, 8, 12, and 16).
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connectivity in DLB subjects compared with controls in the basal
ganglia and limbic network. Greater connectivity of the basal
ganglia and limbic network in DLB could explain some of the
characteristic symptoms and heightened responses in DLB, which
have been linked with regions that form part of this network. For
example, greater connectivity of the thalamus could be linked
with fluctuations in cognition in DLB as this region is involved in
maintenance of consciousness, and it has been shown that DLB
subjects with disturbances of consciousness have increased nico-
tinic receptor binding in the thalamus (Pimlott et al., 2006).
Greater connectivity of the caudate in DLB could be linked with
depressive symptoms in DLB as this structure is involved with
emotional regulation, and in a previous study we showed greater
functional connectivity with the caudate in late-life depression
compared with controls (Kenny et al., 2010). The putamen is
involved in the control of motor functions, and therefore abnormal
functioning here and with the networks it forms could be linked
with the motor features of parkinsonism which are common
in DLB.

In this study we investigated this further by correlating the z-
statistic of the basal ganglia network regions showing greater
connectivity in DLB compared with controls with UPDRS and
fluctuation (CAFS) scores in DLB subjects. We showed that higher
UPDRS and CAFS scores (indicating greater severity of symptoms)
in DLB significantly correlated with a higher z-statistic score. Thus,
in the DLB subjects with greater symptom severity, the basal

ganglia and limbic network were even more affected than in the
DLB subjects with less severe symptoms.

In contrast to our findings in this study, we previously showed
greater posterior cingulate connectivity in DLB subjects compared
with controls (Kenny et al., 2011). This may be explained by the
fact that the DLB subjects in our previous study showed connec-
tivity between the posterior cingulate and brain regions (e.g.,
culmen and cerebellar tonsil) that are not necessarily part of the
normal posterior cingulate resting state network; thus, when we
look within this network only, these differences are not evident.
Although in this study we showed less functional connectivity in
DLB subjects compared with AD and control subjects in the
posterior default mode network, this network showed less overall
connectivity with different regions, i.e., not the regions where we
had found greater connectivity in our previous study, e.g., the
declive and lingual gyrus, indicating that the two different analytic
approaches were identifying different resting state networks.

To date, there has only been one other resting state study using
an ICA approach in DLB, and this only investigated the default
mode network (Franciotti et al., 2012). Similar to our findings,
Franciotti et al. (2012) also showed reduced functional connectiv-
ity in DLB compared with controls. They reported similar affected
regions of reduced inferior parietal connectivity in DLB compared
with controls. In contrast to our study, they showed less con-
nectivity in AD compared with controls and no differences in
functional connectivity in a direct comparison between AD and

Table 2
Brain regions showing significant differences between groups, corresponding to Figs. 2–6 of the restingstate networks.

Corresponding figure and resting state network Group differences po0.05 Brain region Coordinates Voxels p-value t-statistic
(uncorrected)

Fig. 2: Default mode, cingulate gyrus (anterior) A) Con4DLB R cuneus/occipital (BA 18) 6, �78, 8 543 0.001 2.65
R inferior parietal (BA 40) 62, �42, 24 153 0.001 3.12
L caudate head �10, 10, �4 12 0.029 3.95
R middle occipital (BA 18) 34, �94, 4 9 0.004 2.84
L lingual gyrus (BA 18) �14, �54, 4 4 0.037 3.15

B) DLB4Con L superior temporal (BA 38) �30, 6, �48 81 0.012 4.25
C) AD4DLB R precuneus/parietal (BA 7) 6, �54, 40 1067 0.004 2.67

R thalamus 6, �6, 8 351 0.018 4.35
R precentral gyrus (BA 6) 42, �6, 48 196 0.016 3.01
R subgyral/frontal (BA 8) 22, 30, 40 6 0.033 2.89
R middle frontal (BA 9) 42, 34, 28 6 0.036 2.77
L middle occipital (BA 18) �26, �86, �8 4 0.042 4.86
L middle frontal (BA 6) �38, 2, 52 3 0.019 2.87

Fig. 3: Default mode, precuneus cortex A) Con4DLB L declive/posterior lobe �2, �62, �16 4 0.039 4.38
B) AD4DLB L lingual gyrus (BA 18) �22, �78, �4 148 0.018 4.43

R lingual gyrus (BA 18) 18, �86, �8 42 0.025 3.31
R parahippocampal gyrus (BA 30) 18, �50, 4 29 0.043 3.46
L declive/posterior lobe �2, �62, �16 2 0.048 3.63

Fig. 4: Salience and executive control, frontal pole A) AD4DLB R middle frontal (BA 6) 42, 2, 48 154 0.031 3.33
R postcentral/parietal (BA 1) 62, �22, 40 18 0.031 4.41

Fig. 5: Salience and executive control, insular cortex A) Con4DLB R fusiform gyrus/occipital (BA 19) 46, �78, �12 57 0.014 3.60
R lingual gyrus/occipital (BA 17) 22, �102, �8 23 0.021 3.99
L postcentral gyrus/parietal (BA 2) �66, �22, 36 17 0.035 3.56
R lingual gyrus/occipital (BA 18) 26, �58, 4 7 0.029 3.19
L precentral gyrus/frontal (BA 6) �58, �2, 48 5 0.031 3.38
L inferior frontal (BA 9) �62, 22, 24 5 0.022 3.78
R middle occipital (BA 19) 50, �82, 8 3 0.022 3.78

B) AD4DLB L cingulate (BA 24) �2, �2, 44 168 0.021 3.52
L precentral gyrus (BA 4) �10, �26, 68 74 0.030 3.85
R middle frontal (BA 6) 38, 10, 52 22 0.036 3.53
R middle frontal (BA 6) 22, 2, 64 7 0.041 3.35
R medial frontal (BA 6) 6, 6, 60 7 0.037 3.04

Fig. 6: Basal ganglia and limbic, thalamus A) DLB4Con L superior frontal (BA 10) �26, 54, �8 8 0.043 4.02
L anterior cingulate/limbic (BA 25) �6, 18, �16 3 0.048 2.41
L superior frontal (BA 11) �22, 42, �24 3 0.036 4.21

A) DLB4Con L superior frontal (BA 10) �26, 54, �8 8 0.043 4.02
L anterior cingulate/limbic (BA 25) �6, 18, �16 3 0.048 2.41
L superior frontal (BA 11) �22, 42, �24 3 0.036 4.21

BA, Brodmann's area.

E.R. Lowther et al. / Psychiatry Research: Neuroimaging ∎ (∎∎∎∎) ∎∎∎–∎∎∎6

Please cite this article as: Lowther, E.R., et al., Lewy body compared with Alzheimer dementia is associated with decreased functional
connectivity in resting state networks. Psychiatry Research: Neuroimaging (2014), http://dx.doi.org/10.1016/j.pscychresns.2014.06.004i

http://dx.doi.org/10.1016/j.pscychresns.2014.06.004
http://dx.doi.org/10.1016/j.pscychresns.2014.06.004
http://dx.doi.org/10.1016/j.pscychresns.2014.06.004


DLB subjects. However, Franciotti et al. (2012) used a different
approach; ICA was used to identify the default mode network,
from which key seed regions were identified, the mean BOLD
signal time course extracted, and the z-score measured to inves-
tigate group differences (Franciotti et al., 2012), instead of the dual
regression approach used in the present study.

Similar to our findings of less connectivity in DLB, a previous
study that investigated resting state functional connectivity in
DLB with a model-based/seed-region approach also showed less
connectivity in the same regions, specifically the precuneus and
occipital regions in DLB compared with control subjects (Galvin
et al., 2011). Additionally, Galvin et al. (2011) also showed less

connectivity in DLB compared with AD subjects, a finding con-
firmed in the present study.

Consistent with our findings, previous studies have also shown
enhanced connectivity of salience networks in AD (Zhou et al.,
2010). This network is involved in social–emotional and visceral
autonomic processing (Seeley et al., 2007), and it has been shown
to anti-correlate with the default mode network (Fox et al., 2005).
Less connectivity in this network in DLB subjects compared with
control and AD subjects could be related to mood disturbances
which are common in DLB. We might have expected to see less
functional connectivity in AD subjects compared with controls

Fig. 4. Resting-state functional connectivity for salience and executive control
networks with peak connectivity localised to the frontal pole. Red–yellow overlay:
Functional connectivity in all study subjects (controls, AD and DLB subjects
combined, z statistic 41.0, note that the maps are shown with a lower than
significant z-threshold to highlight the relationship between network nodes and
adjacent pixels). Blue: Regions showing differences between groups, less connec-
tivity in DLB compared with AD (po0.05). Axial images in radiological convention;
left side of brain¼right side of image. AD4DLB (Z slices shown, ZMNI coordinates:
8, 12, 16, 28, 32, and 36).

Fig. 5. Resting-state functional connectivity for salience and executive control networks with peak connectivity localised to the insular cortex. Red overlay: Functional
connectivity in all study subjects (controls, AD and DLB subjects combined, z statistic 40.5, note that the maps are shown with a lower than significant z-threshold to
highlight the relationship between network nodes and adjacent pixels). Blue overlay: Regions showing differences between groups, less connectivity in DLB compared with
controls (Left) and AD (Right) (po0.05). Axial images in radiological convention, i.e. left side of brain¼right side of image. Left) Con4DLB (Z slices shown, Z MNI
coordinates: �20, �16, and �12). Right) AD4 DLB (Z slices shown, Z MNI coordinates: 36, 40, 44, 48, 52, and 56).

Fig. 6. Resting-state functional connectivity for basal ganglia and limbic network
with peak connectivity localised to the thalamus. Red–yellow overlay: Functional
connectivity in all study subjects (controls, AD and DLB subjects combined,
z statistic 41.5, note that the maps are shown with a lower than significant
z-threshold to highlight the relationship between network nodes and adjacent
pixels). Blue overlay: Brain regions showing differences between subject groups,
less connectivity in controls compared with DLB (po0.05). Axial images are in
radiological convention, i.e. left side of the brain is right side of the image as
viewed. DLB4Con (Z slices shown, Z MNI coordinates: �20, �16, �12, �8, �4,
and 0).
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within the posterior default mode network as shown in previous
studies (Damoiseaux et al., 2012), but no such finding emerged in
the present study. Differences between our study and others could
be caused by a number of factors, e.g., differences in dementia
duration, severity of the disease and age of subjects, thus making it
difficult to directly compare studies. Our findings in AD could be a
compensatory effect; for example, Damoiseaux et al. (2012) in the
same study also showed increased connectivity in other default
mode networks, but at follow-up with disease progression there
was a loss in connectivity in all networks. Therefore, we may be
seeing a compensatory effect in AD (greater connectivity in some
networks/regions to compensate for poor functioning of other
networks/regions) and future work looking at disease progression
may highlight different changes. Similar to Damoiseaux et al.

(2012), we also showed greater connectivity of the anterior default
mode network in AD.

4.3. Strengths and limitations

Strengths of this study were that the DLB and AD groups were
subject to a thorough diagnosis by consensus between two experi-
enced clinicians. The dementia groups were well matched for onset
age, duration of illness, MMSE score. This study used a model-free
analytic approach which is advantageous as it allows whole brain
functional connectivity to be investigated, whereas when using
model-based/seed-region approaches, connectivity can be missed if
a brain region does not show direct connectivity with the seed.
Model-free methods do not require predefined seeds or a temporal
model, and their lack of specificity can make results difficult to
interpret. To correct for any potential lack of specificity in this study,
we investigated connectivity only within specific resting state net-
works that we had hypothesised may be more affected in DLB based
on the symptoms of disturbances in attention and alertness, execu-
tive dysfunction, spontaneous motor features of parkinsonism and
depression in DLB. Resting state studies are advantageous as no task
has to be practised or performed, which is particularly beneficial for
studies involving cognitively impaired subjects for whom it may be
more difficult to adhere to a task. Also, in the resting state approach,
time in the scanner for the subject is kept to a minimum.

Fluctuations of non-neuronal origin (e.g. cardiac (Chang and
Glover, 2009) and respiratory (Wise et al., 2004; Birn et al., 2006)
related) can affect resting state data by also correlating in grey
matter brain regions and, as they are non-neuronal, they should be

Fig. 7. Mean Z statistic score across peak regions in the basal ganglia and limbic network in DLB subjects showing significant correlation with UPDRS (r¼0.625, p¼0.013, left
figure) and CAFS (r¼0.525, p¼0.045, right figure) scores.

Table 3
Mean z-statistic score across peak regions in the basal ganglia and limbic network in DLB subjects showing significant correlation with UPDRS and CAFS scores.

DLB subjects UPDRS score CAFS score Basal ganglia network
(mean z-statistic)

DLB subjects UPDRS score CAFS score Basal ganglia network
(mean z-statistic)

1 12 0 3.48 10 12 4 1.55
2 53 16 8.79 11 25 4 1.93
3 19 12 5.00 12 9 9 1.67
4 13 4 0.87 13 16 0 1.96
5 33 9 1.36 14 25 9 5.51
6 39 16 5.07 15 16 0 4.55
7 25 6 0.91
8 14 8 �0.26
9 20 3 �0.37

Table 4
Summary of resting state networks investigated and any significant differences
identified between groups.

Resting state networks Group differences

Default mode networks
Fig. 2: Cingulate gyrus (anterior division) Con4DLB; DLB4Con; AD4DLB
Fig. 3: Precuneus cortex Con4DLB; AD4DLB

Salience and executive control networks
Fig. 4: Frontal pole AD4DLB
Fig. 5: Insular cortex Con4DLB; AD4DLB

Basal ganglia and limbic networks
Fig. 6: Thalamus DLB4Con
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removed from the data. The analytic approach we used in this study
produces noise components separate from the components of
interest, and therefore connectivity patterns are not influenced. The
resting state is difficult to control, as it can vary greatly between
subjects depending on how active a subject's brain is at rest and
what the subject is thinking at the time of scanning, but by the same
token how well a subject adheres to a task can be variable.

Other resting state networks might be affected in DLB and AD
which we did not investigate here, and in future work it will be
important to investigate these networks also in relation to specific
symptoms in these disorders. Additionally, future work could investi-
gate whether functional connectivity changes are associated with loss
in structural volumes in AD and DLB or whether functional connec-
tivity measures relate to processes beyond structural degeneration.

There is currently no definitive clinical diagnosis for DLB or AD, so
the validity of diagnostic groups cannot be confirmed until autopsy.
However, the clinical diagnostic criteria used in this study have been
well validated against autopsy diagnosis (McKeith et al., 2000). More
recently, criteria have been developed which show that the com-
bined use of cerebrospinal fluid and imaging (structural/functional/
metabolic) biomarkers can improve the accuracy of the antemortem
diagnosis of AD (Jack et al., 2011; McKhann et al., 2011).

The dementia subjects in this study were not medication-free
and potential effects on connectivity cannot be ruled out. Previous
studies have shown that AD subjects taking memantine exhibit
increased connectivity compared with AD subjects not taking
memantine (Lorenzi et al., 2011); in this study, however, no
dementia subjects were taking memantine. Additionally, we iden-
tified different patterns of connectivity and significant differences
between the dementia groups (and both groups were taking
medication), which provides support for the findings not being
medication-related. However, potential medication effects cannot
be ruled out and, to investigate this further, a longitudinal study of
subjects before and after medication would be required.

In conclusion, the main findings of this study were lower
functional connectivity in default mode, salience and executive
control networks in DLB subjects compared with AD and control
subjects, and greater connectivity in the anterior default mode and
basal ganglia networks in DLB subjects compared with controls.
These findings may aid in greater understanding of what factors
underlie the symptom profile of DLB.
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