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Abstract: Earth embankment dams are one of the most commonly constructed hydraulic 4 

infrastructures worldwide. One mode of dam failure is piping through the embankment, which 5 

is initiated by internal erosion of soil particles inside dams. In this study, the applicability of 6 

microbially induced carbonate precipitation (MICP) for internal erosion control is examined in 7 

the laboratory using sand-kaolin mixtures of different particle sizes. A series of internal erosion 8 

tests are conducted using a newly designed rigid-wall column erosion test apparatus, which 9 

allows independent control of MICP treatment. Erosion rate/coefficient, volumetric change and 10 

permeability are characterized during the internal erosion process. It is found that MICP 11 

treatment facilitates the reduction of erosion and volumetric contraction of sand-clay mixtures 12 

investigated in the current study. Carbonate precipitation increases the erosion resistance of 13 

sand-clay mixtures by absorbing/coating fine particles directly and bridging the contacts of 14 

coarse particles. An improved effectiveness of internal erosion control is observed in the sand-15 

clay mixture having a higher gap ratio. This observation is due to the inherently large porosity, 16 

which hosts more carbonate precipitation. The difficulty of bacteria and chemical injection in 17 

sand-clay mixtures triggers the flushing of produced calcium carbonate, which reduces the 18 

overall carbonate content and MICP treatment efficiency. The spatial distribution of 19 

precipitation within the soil is also altered. 20 
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Introduction 21 

Earth embankment dams are one of the most commonly encountered hydraulic 22 

infrastructures worldwide. These are often designed with different functional zones to 23 

minimize the likelihood of failures. A typical earth embankment dam has an earth core, 24 

upstream and downstream granular filters, and upstream and downstream rockfills. The earth 25 

core is often constructed using locally available soils, including clay, sand-clay mixtures, sand-26 

silt mixtures, and in some cases, with gravel (Fell et al. 2005). Clay is particularly erodible and 27 

is dislodged easily by seepage flow (Shaikh et al. 1988). Differential settlement or hydraulic 28 

fracturing often induces transverse cracks within the impervious dam cores, creating 29 

preferential flow pathways through inside the dam cores (Arulanandan and Perry 1983). If the 30 

downstream granular filters are inappropriately designed and constructed, the interface 31 

between the earth core and downstream filter is likely to be damaged, resulting in the formation 32 

of unprotected exits for seepage flow (Fell et al., 2005). Eroded clay may be transported 33 

through such unprotected exits. This process typically works its way backward to the upstream 34 

side of the dam until a through-piping forms (Bendahmane et al. 2008). It has been reported 35 

that piping (which is initiated by internal erosion of soil particles) is the second most frequent 36 

failure mode of earth dams after overtopping and accounts for around 46% of all dam failures 37 

(Foster et al., 2000). It is therefore of importance to develop engineering countermeasures to 38 

prevent piping and internal erosion.  39 

    The understanding of seepage-induced soil internal erosion phenomena relies on laboratory 40 

experiments (e.g. Fannin and Slangen 2014). Early experimental studies focused on the effect 41 

of particle size distribution on internal erosion (Kenney and Lau 1985; Lafleur et al. 1989; 42 

Tomlinson and Vaid 2000; Foster and Fell 2001; Wan and Fell 2008). The significance of 43 

hydraulic-dependent erosional responses was later recognized, and the hydro-mechanical 44 

coupling phenomena in internal erosion processes were extensively investigated. Skempton 45 
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and Brogan (1994) correlated the critical hydraulic gradients with various particle size 46 

distributions to identify the initiation of piping. Moffat et al. (2011) qualitatively observed the 47 

spatial and temporal migration of fine particles, and quantitatively measured the axial 48 

displacement of tested soils under increased hydraulic gradient by using a large-scale rigid-49 

wall permeameter. Chang and Zhang (2013a) developed a triaxial erosion test device to 50 

examine the effect of stress state on the hydraulic gradient that initiates internal erosion. Ke 51 

and Takahashi (2012, 2014) experimentally established the relationships between erosion 52 

weight, permeability evolution and soil deformation under both rigid-wall and triaxial cell 53 

conditions. Based on these experimental studies, it has been widely recognized that the 54 

potential for internal erosion depends on the geometric constraints of soils (e.g. particle size 55 

distribution and fines content). On the other hand, erosion initiation is determined by hydro-56 

mechanical conditions within soils (e.g. imposed hydraulic gradient, effective stress, and soil 57 

density). More recently, Fannin and Slangen (2014) summarised that the distinction of internal 58 

erosion phenomena relied on three variables: (i) mass loss, (ii) volumetric change and (iii) 59 

permeability change. These previous studies indicate that any erosion mitigation methods 60 

should target the modification of soil geometric and/or control of hydro-mechanical conditions 61 

in the soil. 62 

    There have been several internal erosion mitigation methods proposed and implemented in 63 

recent years. These include chemical stabilization (Indraratna et al. 2008; Adams et al. 2013) 64 

and seepage flow control/reduction (Fell et al. 2015; Engemoen 2012). Though these methods 65 

are able to reduce internal erosion effectively in certain conditions, they still experience 66 

problems such as having a failure to appropriately control permeability (chemical stabilization) 67 

and requiring large excavation and installation workload (seepage control and reduction).  For 68 

example, Fell et al. (2005) noted that the installation of protective filter drains and slurry 69 
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trenches in existing earth dams for erosion and seepage control inevitably involved substantial 70 

construction effort.  71 

    Microbially induced carbonate precipitation (MICP), a bacteria-induced bio-mineralization 72 

process, has been investigated extensively in civil, environmental and infrastructure 73 

engineering applications (van Paassen et al. 2010; Cuthbert et al. 2013; DeJong and Montoya 74 

2013; DeJong et al. 2013; Jiang and Soga 2014; Jiang et al. 2014; Montoya et al. 2013; Al 75 

Qabany and Soga 2013; Chen et al. 2016; Phillips et al. 2016). The urea hydrolysis by 76 

indigenous or exotic urease-producing bacteria (e.g., S. pasteurii and B. megaterium) is one of 77 

the most commonly pathways for bio-mediated carbonate precipitation (Cheng et al. 2014; 78 

Soon et al. 2014). The carbonate precipitation via ureolysis involves several stages: synthesis 79 

of enzyme through bacteria metabolic activities (Krajewska 2009); catalysis of ureolytic 80 

reactions by enzyme and massive production of ammonia (NH3) and dissolved inorganic 81 

carbon (DIC) (Eq. 1); alkalinity accumulation at the proximity of bacteria cells (Eqs. 2 and 3); 82 

formation of carbonate precipitation on nucleation sites (i.e. bacteria cell surfaces) in the 83 

presence of available calcium source (Eq. 4) (Ferris et al. 2004).    84 

(NH2)2CO + H2O → 2NH3 + CO2         (1) 85 

2NH3 + 2H2O ↔ 2NH4
+ + 2OH-           (2) 86 

CO2 + 2OH- ↔ HCO3
- + OH- ↔ CO3

2- + H2O   (3)  87 

Ca2+ + CO3
2- ↔ CaCO3 (s)        (4) 88 

The produced carbonate precipitation preferentially accumulates at particle-particle contacts 89 

(Al Qabany et al. 2012), which is primarily attributed to the microbe’s natural preference to 90 

avoid exposed particle surfaces, and remain close to smaller surface features (DeJong et al. 91 

2010). Therefore, carbonate precipitation contributes to additional cementation at particle-92 

particle contacts (pore throat). Because of this preference of cementation at pore throat 93 
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locations, large pores are kept relatively open so that the change in permeability is rather small 94 

even though the cementation enhances the soil stiffness (Whiffin et al. 2007; Dawoud et al. 95 

2014a). This is an attractive feature of the MICP technique for internal erosion control. Based 96 

on previous studies, the MICP technique gives at least the following highlighted features: (1) 97 

Enhancing soil strength and stiffness (Montoya et al. 2013; Al Qabany and Soga 2013); (2) 98 

Retaining soil permeability at small calcium carbonate precipitation content (usually smaller 99 

than 5-6%) (Martinez et al. 2013; Whiffin et al. 2007; Dawoud et al. 2014a); (3) energy-100 

efficient treatment in the field compared to conventional chemical grouting (DeJong et al. 2014; 101 

Dawoud et al. 2014b; Gomez et al. 2015); (4) Fast bio-geochemical reaction rate (Martin et al. 102 

2012; Jiang et al. 2016).  103 

It should be noted that clogging may form in the treated soils, especially at high levels of 104 

carbonate precipitation. Feng and Montoya (2016) observed significant heterogeneous 105 

precipitation distribution when the soil was heavily-cemented by carbonate precipitation 106 

(above 3.5%). Lin et al. (2016) also reported that a carbonate content as low as 1.6% already 107 

induced substantial non-uniformity of calcite distribution within the treated soil.    108 

Previous research indicates that effective MICP treatment distances range from 0.2 - 1.0 m 109 

(Cuthbert et al. 2013; DeJong et al. 2014; Gomez et al. 2015), due to local clogging. These 110 

distances are smaller than what conventional chemical grouting is normally able to achieve 111 

(Flora et al. 2013). However, in order to achieve a satisfactory treatment distance, conventional 112 

chemical grouting methods usually require substantial energy to inject or mix binders into the 113 

soil. This observation is attributed to the high viscosity of the injected conventional binder 114 

slurry, especially under high cement-water ratios (Flora et al. 2013). In contrast, the injection 115 

of low-viscosity bacteria and cementation solutions can potentially avoid this problem. 116 
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    Given the aforementioned benefits, the MICP technique can be used to bond fine soil 117 

particles (predominantly clay) with coarse fractions in dam cores and consequently, reduce 118 

their potential for erosion under seepage flow. Meanwhile, since the MICP technique has the 119 

potential to retain existing soil permeability, substantial changes in pore pressure in upstream 120 

and downstream zones are avoided, which benefits the structural stability of the dam as a whole. 121 

In practice, the MICP technique can be used during the construction of new dams, where 122 

bacteria and cementation solutions are mixed with the core fill materials. MICP technique can 123 

be also used for emergency remediation of existing dams, where bacteria and cementation 124 

agents are injected into the dam cores to reduce ongoing piping/internal erosion. The current 125 

study only focuses on the internal erosion control within built dams. The injection method is 126 

effective for built dams, since the amount of injected bacteria and cementation solutions is 127 

adjustable. Moreover, the injection method facilitates the application of MICP at critical 128 

locations based on field situations. 129 

 In this study, the MICP technique was tested for internal erosion control in sand-clay 130 

mixtures. A series of internal erosion tests were conducted using a newly designed rigid-wall 131 

column erosion test apparatus, which allowed independent control of MICP treatment. The 132 

progression of internal erosion in three different sand-clay mixtures with/without MICP 133 

treatment was examined under increased hydraulic flow rate. Erosion rate/coefficient, 134 

volumetric contraction and permeability were monitored during the entire internal erosion test. 135 

Finally, the appraisal of MICP treatment for internal erosion control was interpreted in terms 136 

of observed hydro-mechanical coupling responses and carbonate precipitation distributions in 137 

treated soils.  138 

Experimental program and procedure 139 

Testing Materials 140 
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Tested soils 141 

Liner and core materials in embankment dams and levees are often composed of sand-clay 142 

mixtures (Marot et al. 2009). In the current study, sand and kaolin clay were used to create 143 

internally unstable mixed soils. Three different British Standard graded sands (Fraction B, C 144 

and D, supplied by David Ball Group plc.) were used as the coarse fraction. Two graded kaolin 145 

clays (PolwhiteTM B and E, supplied by Imerys) served as the fine fraction in the binary mixture. 146 

The particle size distributions of the sands, kaolin-clays and their mixtures are shown in Fig. 147 

1. The sands and kaolin clays were then mixed in three different combinations as shown in 148 

Table 1. In all three combinations, the ratio between sand and clay was 4:1 based on dry weight 149 

(i.e. fine content is 20%). The notations BB, CB and DE in Table 1 represent the mixtures of 150 

80% Sand B with 20% Kaolin B, 80% Sand C with 20% Kaolin B, and 80% Sand D with 20% 151 

Kaolin E, respectively. The fines content was consistent with Fell et al. (2005), who proposed 152 

that at least 15% particles passing 0.075 mm are needed inside earthfill dams to achieve the 153 

required low permeability. This relatively low fines content (i.e., 20%) also aided the injection 154 

of bacteria into soil, as the MICP technique is not effective in clayey soils due to the 155 

geometrical constraint for bacteria (Rebata-Landa and Santamarina 2006). The binary mixtures 156 

were categorized as gap-graded soils based on the criteria proposed by Lafleur et al (1989). 157 

The gap ratio, which is defined as the ratio of the minimum particle size of the coarse fraction 158 

and the maximum particle size of the fine fraction in the particle size distribution curve (Chang 159 

and Zhang 2013b), was calculated for each sand-clay mixture. Based on the stability criterion 160 

for gap-graded soil with fine particles (Chang and Zhang 2013b), the three mixed soils used in 161 

this study were deemed to be internally unstable, and were therefore susceptible to seepage-162 

induced internal erosion. BB was the most unstable mixture as it had the largest gap ratio. 163 

Bacteria and cementation solutions for MICP treatment 164 
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    The urease-active strain used in this study was Sporosarcina pasteurii (ATCC 6452). This 165 

strain was chosen as its urease-synthesis behaviour has been well-defined, and its ureolytic 166 

activity has been demonstrated to be higher than many other alternative species (Hata et al. 167 

2013; Seagren and Aydilek 2010). This bacterium strain was cultivated under a sterile aerobic 168 

batch condition in the NH4-YE medium (20 g/L yeast extract, 10 g/L (NH4)2SO4, and 20 g/L 169 

agar in 0.13 M Tris buffer in pH 9.0). After 24 hours incubation at 30 °C, the culture was 170 

harvested and stored at 4 °C. Before MICP treatment, bacteria colonies extracted from the NH4-171 

YE medium were introduced into in a urea-rich NH4-YE solution medium (without agar, with 172 

an extra 0.5 M urea) and placed in a shaking incubator for 24 hours. This ensured that the final 173 

solution contained live bacteria for use in the MICP treatment. The average optical density at 174 

600 nm (OD600) of the final solution was 0.22, which was lower than those reported in some 175 

previous studies (Al Qabany and Soga 2013). The purpose of using low initial bacteria 176 

concentration was to facilitate the injection into the sand-clay mixtures and avoid clogging. 177 

The average specific urease activity of the final solution was 2.08 mM min-1 OD-1, which was 178 

sufficient to induce ureolytic reactions (Whiffin, 2004). 179 

The cementation solution used in this study comprised 1.0 M urea, 1.0 M calcium chloride 180 

(CaCl2), and 3 g/L nutrient broth, which was consistent with several previous studies that 181 

showed effective MICP treatment (Cheng et al., 2013; Al Qabany and Soga, 2013). 182 

Testing apparatus 183 

A rigid-wall column erosion test apparatus, which allowed independent control of the MICP 184 

treatment, was used to conduct the internal erosion tests in this study (Jiang and Soga, 2014). 185 

A schematic diagram of the test apparatus is shown in Fig. 2. This apparatus consisted of a 186 

rigid-wall column chamber, an upper water reservoir, a peristaltic pump, a pressure indicator, 187 

a turbidity meter with data acquisition system, and a collection flask.  188 
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The rigid-wall column chamber was composed of a hollow Plexiglas column with a height 189 

of 140 mm and inner diameter of 50 mm. The column was mounted with top and bottom plates 190 

using four threaded rods. O-rings sealed the gaps between the column and plates. A funnel-191 

shaped draining system was created inside the bottom plate to avoid particle clogging. A steel 192 

perforated plate with an opening size of 1 mm was installed between the column chamber and 193 

the bottom plate. On top of the perforated plate, a nylon filter with an opening size of 100 μm 194 

was placed, which only permitted clay particles to pass through. The peristaltic pump was used 195 

in a flow-rate-controlled mode to provide a maximum flow rate of 40 mL/min. The turbidity 196 

meter (Analytic Technology Inc.) was installed to obtain clay particle concentrations in the 197 

outlet effluent solution through optical transmittance measurement (Haghighi et al. 2013). A 198 

calibration was made prior to the erosion test to correlate the optical signal received by the data 199 

acquisition system with the clay concentration in the solution (in an increment of 0.05 mg/L).  200 

It should be noted that it is an inherent limitation of the rigid-wall column chamber apparatus 201 

that preferential flow may form at soil-wall boundaries at high flow velocities, due to larger 202 

pore spaces at the boundary than inside the soil matrix. In terms of the internal erosion test, the 203 

erosion observed at the boundary is expected to be greater than inside the soil matrix. In the 204 

current study, however, the substantial amount of clay particles in soil matrix may mitigate the 205 

preferential flow at soil-wall boundaries, as suggested by Daniel et al. (1985). 206 

Testing methods 207 

Specimen preparation 208 

    Dry sand and kaolin-clay were first mixed thoroughly before being air-pluviated into the 209 

column chamber to achieve the fines content of 20%. Mixed soils were then statically 210 

compacted in three layers to achieve a final height of 100 mm and a dry density of 1.53 g/cm3. 211 

Particle size distribution analysis was conducted after the dry-tamping and confirmed the 212 

uniformity of the sand-clay mixtures with respect to specimen depth. A nylon filter was then 213 
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placed on top of the sand-clay mixtures with the headspace filled with gravel, which served as 214 

a water diffuser during the erosion test. Finally, the column chamber was sealed and a CO2-215 

aided saturation method was used to reduce the saturation time of the sand-clay mixtures 216 

without disturbing their initial states (Xiao and Shwiyhat 2012).  217 

MICP treatment 218 

    The MICP treatment was divided into two stages: (1) bacteria solution injection, and (2) 219 

cementation solution injection. A schematic illustration of the MICP treatment procedure is 220 

shown in Fig. 3. Three different injection strategies (M1, M2 and M3) were implemented to 221 

optimise the MICP treatment for internal erosion control. Optimisation of the MICP process in 222 

terms of injection rate and chemical concentration for sandy soils has been undertaken by Al 223 

Qabany et al. (2012). It was found that an injection rate of below 0.42 mol/L/h with multi-224 

injection and CaCl2/urea concentration up to 1.0 M resulted in an improved MICP treatment 225 

efficiency. Martinez et al. (2013) reported that the injection velocity of 29.7 cm/h and CaCl2 to 226 

urea ratio smaller than 1 with stopped-flow injection technique also optimized the MICP 227 

process. In the current study, the optimized chemical concentration used by Al Qabany et al. 228 

(2012) and the chemical ratio used by Martinez et al. (2013), namely 1.0 M CaCl2 and 1.0 M 229 

urea, were adopted. A smaller injection velocity (6.1-12.3 cm/h in terms of sample cross-230 

sectional area) and fewer injection phases than the two previous studies were applied. These 231 

experimental conditions were used due to the substantial amount of clay particles in the soil 232 

matrix, which would make fast injection difficult to implement.  233 

    In M1, the bacteria solution was injected from the top of the saturated sand-clay mixture 234 

specimens at 2mL/min (6.1 cm/h in terms of the sample cross-sectional area). The total 235 

injection volume was 1.5 pore volume of soil (PV) to ensure all pore spaces were filled with 236 

the bacteria solution. The bacteria were then retained in the soil matrix for 12 hours before one 237 
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phase of 1.5 PV cementation solution was injected in the same manner at 4 mL/min. Finally, 238 

the specimens were cured for another 12 hours before subjected to the seepage erosion test.  239 

In M2, the same volumes of bacteria solution and cementation solution were injected at the 240 

same flow rate as in M1. Retention time was also the same as in M1. The only difference was 241 

that M2 had two phases of 1.5 PV cementation injection with an inter-phase retention time of 242 

10 hours.  243 

    In M3, the same injection regime of bacteria solution and cementation solution was used as 244 

in M2. But a lower injection rate of 2 mL/min was adopted for cementation injection.  245 

    In all three cases, the injection rates for both bacteria and cementation solutions were lower 246 

than the minimum flow rate (4.47 mL/min) in the subsequent erosion test to avoid erosion at 247 

this stage. For direct comparison, erosion tests were also conducted in untreated samples. It 248 

should be noted that the untreated control soil specimens (marked as “U”) were subject to the 249 

same treatment procedure, but only using distilled water (bacteria and chemicals were not 250 

injected). 251 

Internal erosion test 252 

Both untreated and MICP treated specimens were subject to flow-rate-controlled internal 253 

erosion test. Triple samples were tested to ensure the repeatability of the results. The internal 254 

erosion test is schematically shown in Fig. 4. The internal erosion test was initiated with a 255 

downward flow rate of 4.47 mL/min. The downward flow direction in this study differs from 256 

that in the field, which is likely to be parallel to the orientation of the soil lifts. However, this 257 

study is only an element-scale test. The prepared sand-clay mixture specimens are viewed as 258 

an element within the real dam core and are regarded as isotropic hydraulically and 259 

mechanically.   260 
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The peristaltic pump was then run at different flow rates for nine consecutive stages while 261 

the flow rate was kept constant at each stage. When the erosion concentration reached a steady-262 

state condition, the test then proceeded to the next stage with a higher flow rate. Photos were 263 

taken at the start and the end of each stage to facilitate the visual check of onset and progression 264 

of internal erosion. Simultaneously, the overall pressure difference, specimen length, time-265 

dependent clay concentration in effluent solution, and pH, Electrical Conductivity (EC) and 266 

ammonium concentration (c[NH4
+]) of the effluent solution were monitored during the course 267 

of the experiments. Based on these monitoring parameters, the peak erosion rate and 268 

accumulative erosion weight, hydraulic shear stress, permeability, and volumetric contraction 269 

were obtained.  270 

It should be noted that the flow rate and measured hydraulic gradient in this study were 271 

mostly smaller than those reported by Reddi et al. (2000) and Bendahmane et al. (2008). This 272 

specification is attributed to the fact that the flow rate provided by the peristaltic pump reduces 273 

rapidly under increasing pump tube pressure. Preliminary test showed that hydraulic pressure 274 

needs to be kept below 200 kPa (200 m/m) to avoid significant reduction in flow rate. Therefore, 275 

small flow rates were selected in this study to maintain relatively low pump tube pressures. 276 

It is also worth mentioning that the flow rate and measured hydraulic gradient were still 277 

significantly larger than those encountered in the field (i ≈ 1.0). Tests under higher hydraulic 278 

gradient (flow velocity) were conducted to consider the possible shortened flow path in a dam 279 

by backward erosion. In this case, the local gradient is much higher than the global one. 280 

Monitoring techniques 281 

    The pressure difference along the specimen was obtained via an electronic pressure indicator. 282 

The time-dependent kaolin-clay concentration was measured using an ATI turbidity meter at a 283 

recording interval of 1s. The specimen length was measured by a calliper at the start and end 284 



 

13 
 

of each erosion stage. pH and EC of effluent solutions were measured via a Jenway 3510 pH 285 

meter and a Mettler Toledo FiveGo conductivity meter, respectively.  286 

    c[NH4
+] in the effluent solution was measured using the modified Nessler method (Whiffin 287 

et al. 2007). The solution samples were diluted with deionized water to target a range of 0–0.5 288 

mM. 2 mL diluted solution sample was mixed with 100 µL Nessler reagent in a cuvette and 289 

reacted for exactly 1 min. The sample was subject to the optical absorbance measurement using 290 

a Visible spectrophotometer at the wavelength of 425 nm. Absorbance readings were then 291 

converted to c[NH4
+] by referring to the calibration curve from NH4Cl standard solutions. 292 

   In the control MICP treated samples that were not subject to erosion process, carbonate 293 

precipitation content distributions in soil matrix was measured by using an airtight chamber 294 

with a barometer. During the measurement, disaggregated soil samples (using mortar) and 295 

chloride acid were initially placed into two compartments in the chamber. The chamber was 296 

then enclosed and shaken to thoroughly mix the soil with the acid. Pressure readings in the 297 

barometer due to CO2 production were recorded and converted to the corresponding carbonate 298 

contents by referring to the calibration curve obtained from CaCO3 standards.  299 

Results 300 

    The results of the internal erosion tests are analysed in terms of: 1) visual observations; 2) 301 

erosion characterization 3) hydro-mechanical and chemical responses. Comparisons are made 302 

between the untreated and MICP treated soils in terms of the three points. 303 

Visual observations  304 

    Visual observation is a useful method to quickly identify the occurrence and progression of 305 

internal erosion (Moffat et al. 2011). In this study, photos were taken at every stage of the 306 

internal erosion for all samples. Example cases of CB_U (i.e. untreated soil) and CB_M1 are 307 

shown in Fig 5. Similar erosion patterns were observed in most of the other cases. For both 308 
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untreated and MICP treated soils, the increased flow rate resulted in more noticeable fine 309 

particle erosion along the inner surface of the transparent Plexiglas wall, as marked with dashed 310 

red circles. Erosion was also found to be less severe in the MICP treated samples than in the 311 

untreated samples under the same flow rate.  312 

Internal erosion characterization 313 

The most straightforward indication of internal erosion is the concentration of flushed 314 

particles in the downstream flow. Fig. 6 shows the time-dependent clay concentrations in the 315 

effluent of representative samples of CB_U (untreated) and CB_M1 (MICP treated). In both 316 

cases, the clay concentrations peaked at a flow volume less than 0.5 PV and then reduced 317 

gradually. The clay concentrations became stable when the flow volume was approximately 1-318 

3 PV, depending on flow rate. This time-dependent erosion pattern for the representative 319 

samples was confirmed to be consistent for all other samples in this study.   320 

The magnitudes of peak clay concentration in the case of CB_M1 (Fig. 6b) were noticeably 321 

lower than those in the case of CB_U (Fig. 6a) at the flow rate ranging from 4.47 to 25.98 322 

mL/min, inferring that the internal erosion was less severe in MICP treated sand-clay mixtures. 323 

At higher flow rates, the peak clay concentration in the case of CB_U dropped below 0.50 324 

mg/L due to clogging at the near-bottom-mesh part. 325 

The peak erosion rate, which is the maximum erosion weight per unit time per unit cross-326 

section area, has been used extensively as an indication of soil erosion (Bendahmane et al. 2008; 327 

Marot et al. 2012). As the peak erosion rate is attributed to the initial turbulence, or local 328 

vortices (Gruesbeck and Collins 1982), it is considered to be predominantly determined by the 329 

current flow condition while the influence of previous flow stage is negligible.  330 

Comparison is made between the untreated and the MICP treated samples in terms of the 331 

relationship between peak erosion rate and hydraulic shear stress, as shown in Fig. 7. The error 332 
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bars for both peak erosion rate and shear stress are also plotted. The hydraulic shear stress here 333 

is defined after Bendahmane et al. (2008) and Reddi et al. (2000) as: 334 

                                                                
gn

k
h
p
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�� 2

�
�

�                                                                                (5) 335 

where Δp is the pressure difference (Pa); h is the specimen height (m); k is the hydraulic 336 

conductivity of sand-clay mixture (m/s); η is the viscosity of water (1.005×10-3 kg/m s); ρw is 337 

the density of water (1000 kg/m3); g is the gravity acceleration (9.81 m/s2); n is the porosity of 338 

the sand-clay mixture. The calculation of porosity should account for the produced calcium 339 

carbonate precipitation. From Fig. 13, it can be found that the carbonate contents are only less 340 

than 1% of the total weight of soil. Therefore, the weight of carbonate precipitation was ignored 341 

when calculating porosity in Eq. 5. 342 

    The occurrence of particle detachment primarily depends on the shear stress on pore walls 343 

through pore-fluid flow. Khilar et al. (1985) and Reddi and Bonala (1997) specified the 344 

relationship between erosion rate and hydraulic shear stress from the perspective of particle 345 

kinetics as follows: 346 

                                                         � 	cr ��
 ��                                                                                  (6) 347 

where r is the erosion rate (g m-2 s-1); α is the erosion coefficient (10-3 s m-1); τ is the wall or 348 

surface shear stress (Pa); τc is the critical hydraulic shear stress (Pa). Eq. 6 highlights the fact 349 

that erosion only occurs when the shear stress is greater than a critical value.  350 

The evaluated values of τc are marked by the dashed circles in Fig. 7. In the case of BB soils 351 

(Fig. 7a), the τc value for untreated soils was only around 0.26 Pa. For MICP treated samples, 352 

it was around 0.38 Pa. No distinction was found among different MICP strategies (M1, M2 or 353 

M3). In the case of CB and DE soils (Fig. 7b and 7c), however, τc values were almost identical 354 
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for all samples (0.52 Pa for CB soils and 0.70 Pa for DE soils). The effect of MICP treatment 355 

on τc also appeared to be insignificant in the case of CB and DE soils. 356 

Linear fitting was performed between the peak erosion rate and shear stress for the post-357 

critical shear stress stage, as shown in Fig. 7. The peak erosion rate and shear stress showed 358 

strong linear relations in all cases, generally with R2 > 0.95. The erosion coefficient (α) was 359 

determined based on the linear correlations, and the results are shown in Fig. 8. In the case of 360 

the BB soil, the untreated sample had the largest α (= 0.775×10-3 s m-1), followed by M2 361 

(0.596×10-3 s m-1), M3 (0.360×10-3 s m-1), and M1 (0.260×10-3 s m-1).  In the case of the CB 362 

soil, the untreated sample also had the largest α (= 0.465×10-3 s m-1) while α value of the M2 363 

sample (αM2 = 0.303×10-3 s m-1) was the largest among all MICP strategies (αM1 = 0.285×10-3 364 

s m-1 and αM3 = 0.234×10-3 s m-1). The DE soils, however, exhibited different behaviour from 365 

the previous two cases. αM2 (1.931×10-3 s m-1) and αM3 (1.124×10-3 s m-1) were larger than αU 366 

(0.684×10-3 s m-1) while αM1 (0.373×10-3 s m-1) was the smallest. It should be noted that the 367 

untreated soils experienced a significant drop in the peak erosion rate at high shear stresses. 368 

This is because that the soil skeleton was significantly disturbed at the high shear stress. Fine 369 

particles were quickly dislodged, so that the near-bottom-mesh part of the specimen was 370 

clogged, which was also observed by Reddi et al. (2000).  371 

 The magnitudes of τc and α in this study are comparable to the results obtained by Reddi et 372 

al. (2000) and Bendahmane et al. (2008), as shown in Fig. 7. In Reddi et al. (2000), the τc value 373 

of 1.23 Pa and α value of 25×10-3 s m-1 were obtained from 50-mm-high cylindrical sand-clay 374 

mixture samples with 30% fine content. The larger value of τc obtained by Reddi et al. (2000) 375 

was primarily due to smaller height and porosity of the soil sample. The larger value of α was 376 

due to a much larger flow rate (at least one order higher than in the current study) in their 377 

internal erosion test. The magnitudes of τc in this study were quite consistent with that reported 378 

by Bendahmane et al. (2008) ( i.e., 0.7 Pa) for a sand-kaolinite mixture with 20% fine content. 379 
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However, high hydraulic gradient levels, up to 100 m/m used by Bendahmane et al. (2008)  380 

resulted in a higher α value (i.e., 3.2×10-3 s m-1) than those measured in the current study.  381 

No previous studies provide field data for the α-τ relationship. This is attributed to the 382 

difficulty in characterizing shear stress in the field, as the shear stress varies at different 383 

locations in the dam due to heterogeneity of soil properties and flow regime. Instead, flow 384 

discharge and piezometer head are usually monitored, and used as indicators for internal 385 

erosion/piping in the field (Flores-Berrones et al. 2011; Danka and Zhang 2015). To facilitate 386 

the design of erosion-free dams, the α-τ relationship is usually characterized through standard 387 

laboratory element tests such as the hole erosion test (Wan and Fell 2004; Haghighi et al. 2013; 388 

Reddi et al. 2000).  389 

Hydro-mechanical and chemical responses  390 

    Accompanying the loss of fine particles from the sand-clay mixture is an alteration of hydro-391 

mechanical behaviours. In this study, the evolution of volumetric contraction and change in 392 

permeability were monitored during internal erosion to examine the hydro-mechanical 393 

responses of MICP treated sand-clay mixtures. pH, EC and c[NH4
+] of effluent solution were 394 

measured to understand the chemical responses.  395 

Hydro-mechanical responses 396 

    Fig. 9 shows the variations of volumetric contraction and permeability with accumulative 397 

erosion weight. Volumetric contraction induced by internal erosion is regarded as an adverse 398 

mechanical response as it leads to excessive ground settlement. Permeability is a controlling 399 

factor for the hydraulic-barrier performance of earth embankment dams. The initial 400 

permeability of sand-clay mixtures is presented in Fig. 9. The magnitudes of their initial 401 

permeability satisfy the seepage control requirement by USSD (2011), which suggests that the 402 

maximum permeability of broadly graded core materials is around 10-6 m/s. From Fig. 9, it can 403 
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be seen that both permeability and volumetric contraction increased steadily with increasing 404 

accumulative erosion weight, regardless of sand-clay mixtures and MICP strategies. Based on 405 

the conceptual framework proposed by Fannin and Slangen (2014), the observed coupling 406 

relationships between erosion weight, volumetric contraction and permeability in this study fit 407 

the features of suffosion, which means that the loss of fine particles under increased hydraulic 408 

gradient also induces disturbance and rearrangement of coarse particle skeleton (Richards and 409 

Reddy 2007).  410 

It is also found that the permeability of the untreated soils increased less rapidly with 411 

accumulative erosion weight than the MICP treated samples for all three soils. In contrast, the 412 

volumetric contraction of the untreated soils increased more rapidly with accumulative erosion 413 

weight than the MICP treated samples for all three soils. The volumetric contraction – 414 

permeability relations are thereafter presented in Fig. 10. Regardless of soil type and MICP 415 

treatment strategies, untreated soils had consistently smaller permeability values than the MICP 416 

treated samples for a given volumetric contraction.  417 

    For untreated soils, fine particles begin migrating and are flushed out under increased 418 

hydraulic flow rate. If the volumetric change is not accounted for temporarily, the porosity of 419 

untreated soil increases during the process of fines erosion, with an associated increase in 420 

permeability. However, volumetric contraction occurs as the coarse skeleton is disturbed. This 421 

in turn reduces soil porosity and results in the untreated soils becoming less permeable.  422 

For MICP treated soils, the carbonate precipitation via MICP provides particle-particle 423 

contact cementation and improve soil stiffness (Montoya et al. 2013; Al Qabany and Soga 424 

2013), but keeps the pore space open for pore fluid flow. At the same amount of fine particle 425 

loss, the higher stiffness of MICP treated soils results in a smaller volumetric contraction than 426 
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in the untreated soils. The higher stiffness of MICP treated soils also means their permeability 427 

tends to be larger than that of the untreated soils (see Fig. 9).  428 

It is generally understood that the sand-clay mixtures become more brittle after stiffness 429 

enhancement by MICP treatment (Montoya and DeJong 2015). The enhanced stiffness means 430 

that the treated soil is more susceptible to crack-forming under differential settlement. Further 431 

efforts are needed to quantify the effect of MICP treatment on crack-forming resistance of earth 432 

dam cores. On the other hand, the bulk and differential settlements of treated soils are 433 

substantially smaller than in untreated soils. The structural stability of earth dams is therefore 434 

likely to be improved by the use of MICP treatment. 435 

    It should be noted that most previous studies on volumetric contraction during internal 436 

erosion focus on cohesionless soil mixtures. To the knowledge of the authors, there are no 437 

reported cases that address sand-clay mixtures. The magnitudes of volumetric contraction for 438 

untreated sand-clay mixtures in this study are much greater than those reported for cohesionless 439 

soils (mostly less than 1%) (Moffat et al. 2011; Xiao and Shwiyhat 2012).  This is possibly 440 

attributed to the reduced compressibility of cohesionless materials and well-controlled 441 

confining pressure in these previous studies.  442 

Chemical responses 443 

    In order to satisfy regulatory compliance for environmental protection, it is necessary to 444 

demonstrate that MICP is an environmentally friendly technique for internal erosion control. 445 

In this study, the chemical properties such as pH, EC and c[NH4
+] were monitored during the 446 

course of the internal erosion tests. An example from the BB soils is shown in Fig. 11, which 447 

is representative of the typical pattern of chemical responses observed in this study.  448 

It is found that the effluent of the untreated soils attained stable neutrality with pH fluctuating 449 

slightly between 6.9 and 7.3. On the other hand, the effluent pH of BB_M2 soils peaked at 8.5 450 
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(2.8 PV) due to the presence of ureolysis-induced alkaline substances in the pore solution. The 451 

pH value then steadily reduced to neutrality with continuous water flushing (up to 22 PV). It 452 

should be noted that the initial effluent pH value of BB_M2 soils was only 7.4, which is 453 

attributed to the mineralogy of the soil matrix. As kaolin clay used in this study had a pH value 454 

of 5.0, the sand-clay mixture itself was acidic. This explains the low effluent pH value for 455 

BB_M2 soils at the beginning of flushing. With further flushing, the effect of soil mineralogy 456 

on effluent pH became insignificant.  457 

The EC of BB_M2 decreased steadily from around 105 µs/cm to less than 103 µs/cm, 458 

demonstrating a reduction of electrolytic ions in the pore solution with increased water flushing. 459 

Nevertheless, the resulting magnitude of effluent EC for BB_M2 soils was still about 2 orders 460 

of magnitude larger than that of BB_U soils. This indicates that large amounts of electrolytic 461 

ions from the ureolytic reactions were present in the pore solution prior to the erosion test.  462 

    The ammonia concentration c[NH4
+] was initially very high at about 104 mg/L due to the 463 

ureolytic reactions. With water flushing, a reducing trend similar to effluent EC was observed 464 

and c[NH4
+] decreased to 35 mg/L after 22 PV of water flushing. This value was still above 465 

the Aquatic Life Ambient Water Quality Criteria for Ammonia (17 mg/L) (USEPA 2013). 466 

Hence, a proper environmental impact assessment is required to ensure that c[NH4
+] is diluted 467 

to meet the regulatory requirement.   468 

Discussion 469 

Effect of sand-clay mixture types 470 

In order to clarify the influence of the sand-clay mixture types on the efficiency of internal 471 

erosion control by MICP, the magnitudes of erosion coefficient (α), ultimate volumetric 472 

contraction and ultimate relative permeability (the ratio between the permeability at later stage 473 

and the initial value) of all MICP treated samples are normalized based on corresponding 474 
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untreated soils. The normalised values are compared against gap ratio, as shown in Fig. 12.  475 

For soils with large gap ratios or coarse host sands (BB and CB), the 
 values of the MICP 476 

treated soils were reduced by 25% to 75%, compared to the untreated soils. The volumetric 477 

contraction of the treated soils was found 20% to 40% of that for untreated soils. These 478 

observations contrasted to the results of DE samples, which had a smaller gap ratio and smaller 479 

particle sizes. The normalised 
 values of MICP treated DE soils varied between 0.5 and 2.5, 480 

indicating that the treatment was not effective, and sometimes even had an adverse effect in 481 

terms of erosion control. The ability of MICP treated DE soils to restrict erosion-induced 482 

volume contraction was also limited compared to the MICP treated BB and CB soils. The 483 

unsatisfactory performances of MICP treated DE samples are attributed to possible hydraulic 484 

fracturing during the bacteria and chemical injection processes, as internal cracks and/or 485 

preferential flow paths can be generated by hydraulic fracturing. Actually, the recorded 486 

pressure differences during the final chemical injection phase (which created the highest 487 

injection pressure) were 12-19 kPa, 34-40 kPa, and 55-80 kPa for BB, CB and DE soils, 488 

respectively. The DE soils experienced the highest injection pressure, making it more 489 

vulnerable to hydraulic fracturing. Further investigation on this aspect is needed. 490 

The overall carbonate contents in MICP treated BB, CB and DE soils are shown in Fig. 13. 491 

The values of normalised erosion coefficient are plotted against overall carbonate content in 492 

Fig. 14. It can be seen that higher levels of carbonate precipitation occurred in the BB and CB 493 

samples (0.4-0.6% in weight) than in the DE soils (0.2% in weight). Higher porosity in the soil 494 

matrix of BB and CB samples is believed to result in the increased carbonate precipitation 495 

content (Fonseva et al. 2014). Consequently, the higher carbonate precipitation content resulted 496 

in improved erosion resistance in BB and CB soils. From Fig. 14, it can be found that the 497 

erosion coefficient is significantly reduced at higher carbonate content. Fundamentally, 498 

produced carbonate precipitation mitigates internal erosion in two ways: (i) absorbing and/or 499 
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coating fine particles directly due to its high surface area (Al-Thawadi 2012); and (ii) bridging 500 

the contacts of coarse particles to increase soil stiffness (Cheng et al. 2013). The former 501 

mechanism contributes to a smaller amount of fines loss, and the latter mechanism results in 502 

the treated soils being less susceptible to volumetric contraction. An increased amount of 503 

carbonate therefore needs to be precipitated to provide improved erosion resistance for the DE 504 

soils.  505 

It is found that the overall carbonate contents measured in this study are smaller compared 506 

with similar studies using 1.0 M chemical solutions (Whiffin et al. 2007). This is likely to be 507 

attributed to: (i) fewer chemical injections, (ii) smaller host soil matrix (reduced porosity), and 508 

(iii) injection-induced carbonate precipitation flushing.  509 

The efficiency of MICP treatment in this study is shown in Fig. 13. It is defined as percentage 510 

ratio of chemical amount between the measured calcium carbonate after MICP treatment and 511 

injected calcium chloride (Al Qabany et al. 2012). It is observed that the treatment efficiencies 512 

for M1, M2 and M3 were less than 10%, which were significantly less than those reported in 513 

pure sand or other coarser granular soils (Al Qabany et al. 2012; Martinez et al. 2013). This 514 

observation indicates that 1.0 M of chemical concentration is greater than the optimized 515 

concentration for the sand-clay mixtures when OD600 equals to 0.22. In addition, finer host 516 

sand (relatively smaller porosity) is found to correspond to lower MICP treatment efficiency.  517 

The carbonate distribution with respect to specimen depth is presented in Fig. 15. It is found 518 

that carbonate precipitation was preferentially distributed over the upper part of the BB soils. 519 

However, in the CB and DE soils, increased carbonate precipitation was observed over the 520 

lower half of the treated soils. As the BB soil had higher porosity, the formed carbonate 521 

precipitation was subject to less downward hydraulic pressure during MICP treatment so that 522 

they stayed where they were produced. In CB and DE soils, the generated downward pressure 523 
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during cementation injection was much higher due to smaller porosity of soil matrix. 524 

Consequently, produced carbonate precipitation was flushed downwards, which resulted in an 525 

accumulation of carbonate precipitation at the lower half of soil. 526 

Effect of MICP treatments 527 

    In this study, M1 and M2 had the same injection rate, while M2 had one additional chemical 528 

injection. M2 and M3 had the same number of injections, but the injection rate in M2 was twice 529 

that of M3. These differences resulted in varied erosional behaviours of soils subject to 530 

different MICP treatment strategies. More specifically, the M1 soils had a smaller erosion 531 

coefficient than the M2 soils (see Fig. 12), regardless of soil mixtures. The erosion coefficients 532 

of the M2 soils were also higher than the M3 soils, independent of soil mixtures.      533 

 Comparing overall carbonate precipitation content produced by M1 and M2, it can be 534 

observed that higher levels of calcium carbonate was presented in M1 than M2 regardless of 535 

soil mixtures (see Fig. 13). As M1 and M2 had the same injection rate for the bacteria and first 536 

chemical injections, it is concluded that the further chemical injection in M2 resulted in the 537 

loss of carbonate precipitation. If the results of M2 are compared with M3, it can be seen that 538 

the carbonate precipitation was larger in M3 than in M2 regardless of soil mixtures (see Fig. 539 

13). As M2 and M3 had the same number of injections, the lower injection rate in M3 540 

contributed to reduced calcium carbonate flushing. In terms of the efficiency of MICP 541 

treatment, M1 had the highest efficiency among the three strategies. The M2 and M3 soils had 542 

lower efficiency of MICP treatment due to the injection-induced flushing of calcium carbonate 543 

precipitation. 544 

Conclusions 545 

    This paper presents the results of a laboratory investigation on MICP for internal erosion 546 

control in sandy-clay mixtures. Soil samples were subject to different flow rates to monitor the 547 
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erosional, hydro-mechanical and chemical responses when internal erosion was taking place. 548 

The following conclusions are drawn from the experimental results: 549 

(1) The MICP treatment contributed to an enhanced critical shear stress and a reduced 550 

erosion coefficient for sand-clay mixtures with a large gap ratio (using coarser host 551 

sand) when subject to a constant flow rate erosion test. However, the improvement in 552 

critical shear stress and erosion resistance was insignificant for a mixed soil with a small 553 

gap ratio (finer host sand) due to its inefficiency in carbonate precipitation during the 554 

MICP treatment phase. 555 

(2) The tested sand-clay mixtures exhibited steady increase in permeability and volumetric 556 

contraction with increasing accumulative erosion weight. An erosion mode of suffosion 557 

was identified for the sand-clay mixtures. Regardless of the gap ratio of the tested soils, 558 

the MICP treatment resulted in the sand-clay mixtures exhibiting reduced volumetric 559 

contraction when fines were eroded. 560 

(3) The effectiveness of MICP for internal erosion control was mainly dominated by the 561 

amount of produced carbonate precipitation, which absorbed/coated fine particles 562 

directly and bridged the contacts of coarse particles. Sand-clay mixtures with a large 563 

gap ratio were able to produce increased levels of precipitated carbonate, which 564 

corresponded to reduced fines loss and smaller volumetric contraction.  565 

(4) The difficulty with injecting bacteria and chemical solutions into sand-clay mixtures 566 

caused the flushing of produced calcium carbonate. The precipitation flushing reduced 567 

the overall carbonate precipitation content and MICP treatment efficiency. The spatial 568 

distribution of calcium carbonate in the sand-clay mixtures was also modified. 569 

The analysis of erosional and hydro-mechanical responses during the internal erosion 570 

process is of importance in providing practical guidance for potential future field trials of MICP. 571 

Results from this study show that soil properties such as particle size distribution, fine particle 572 
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content and gap ratio are important in determining whether MICP is feasible for internal 573 

erosion control. If MICP is implemented in the field, the content and spatial uniformity of 574 

carbonate precipitation need to be ensured in order to achieve improved control effectiveness. 575 

This research has the following limitations: (1) only one fines content was tested and the 576 

performance of MICP treatment has not yet been validated in soils with different fines content; 577 

(2) the use of the rigid-wall column chamber made the control of confining pressure difficult, 578 

and potential leakage problems may exist at the boundary between soil and the rigid-wall at 579 

high seepage velocities; (3) the downward direction of seepage flow in the tests differs from 580 

the flow conditions in real dams, and the hydraulic pressure/gradients in the tests are 581 

significantly larger than those encountered in the field; and (4)  non-destructive monitoring 582 

techniques can be adopted to observe the interaction between carbonate precipitation and sand-583 

clay mixtures. In the future, further studies need to be conducted to address these problems. 584 
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Table 1 Stability characterization for sand-clay mixtures in this study 768 

Soil properties Sand-clay mixture 
BB CB DE 

Coarse 
fraction  

Soil type Sand B  Sand C  Sand D 
Content, w/w (%) 80 80 80 

Dmin (µm) 1 450 285 130 

Fine fraction 
Soil type Kaolin B Kaolin B Kaolin E 

Content, w/w (%) 20 20 20 
dmax (µm) 2 21 21 21 

Internal 
stability 
analysis 

Gap ratio, Gr  21.4 13.6 6.2 
Stability criterion 3 6 6 6 

Stability U 4 U U 
1 the minimum particle size of the coarse fraction in the particle size distribution curve; 769 
2 the maximum particle size of the fine fraction in the particle size distribution curve; 770 
3 Gr<0.3P, P is the fine content (20% in this study); 771 
4 Internally unstable.  772 

  773 
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Fig. 2 Schematic diagram of the rigid-wall column erosion test apparatus ((a). seepage erosion 776 
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Fig. 3 Schematic illustration of MICP treatment procedure (PV: pore volume of tested soils; 778 

M1, M2 and M3: MICP treatment strategies 1, 2 and 3) 779 

Fig. 4 Schematic illustration of the internal erosion test progress  780 

Fig. 5 Visual observations of sand-clay mixture during the internal erosion test ((a)~(d): 781 

untreated soils; (e)~(h): MICP treated soils) 782 

Fig. 6 Variations of clay concentration in the effluent solution with flow volume ((a). CB_U; 783 

(b) CB_M1)    784 

Fig. 7 Correlations between peak erosion rate and shear stress ((a) BB; (b) CB; (c) DE) 785 

Fig. 8 Erosion coefficient (α) based on Equation (6) 786 
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