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The experimental search for new thermoelectric materials remains largely confined to a limited set of success-
ful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases.1–3 In principle,
computational tools such as density functional theory (DFT) offer the possibility of rationally guiding exper-
imental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric
properties from first principles remains a challenging endeavor,4 and experimental researchers generally do
not directly use computation to drive their own synthesis efforts. To bridge this practical gap between exper-
imental needs and computational tools, we report an open machine learning-based recommendation engine
(http://thermoelectrics.citrination.com) for materials researchers that suggests promising new thermoelec-
tric compositions based on pre-screening about 25,000 known materials, and also evaluates the feasibility
of user-designed compounds. We show this engine can identify interesting chemistries very different from
known thermoelectrics. Specifically, we describe the experimental characterization of one example set of
compounds derived from our engine, RE12Co5Bi (RE= Gd, Er), which exhibits surprising thermoelectric
performance given its unprecedentedly high loading with metallic d and f block elements, and warrants
further investigation as a new thermoelectric material platform. We show our engine predicts this family
of materials to have low thermal and high electrical conductivities, but modest Seebeck coefficient, all of
which are confirmed experimentally. We note that the engine also predicts materials that may simultaneously
optimize all three properties entering into zT ; we selected RE12Co5Bi for this study due to its interesting
chemical composition and known facile synthesis.
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I. INTRODUCTION

For any materials problem, breaking out of “local op-
tima” in composition space to discover entirely new
chemistries remains a notoriously difficult challenge.5

Many of the most notable materials classes under inves-
tigation today–from NaxCoO2 derived thermoelectrics6

to iron arsenide superconductors7–were discovered for-
tuitously. As a result, experimental efforts often gravitate
toward incrementally improving known chemistries (via
doping, nanostructuring, etc.), as these efforts are more
likely to bear fruit than high-risk searches through chem-
ical whitespace for entirely new materials.

The consequence of research communities’ focus on
further exploitation of known chemistries rather than ex-
ploration of unknown chemistries is that much of com-
position space simply remains uncharacterized. We illus-
trate the remarkable chemical homogeneity of most ther-
moelectric materials investigated to date by plotting each
material from the thermoelectric database of Gaultois
et al.8 on the periodic table based on the composition-
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weighted average of the positions of elements in the ma-
terial ( Fig. 1). The tight cluster of previously investi-
gated chemistries is, as expected, dominated by chalco-
genides and p-block elements such as Sn and Sb. In
contrast, we also show the positions of Gd12Co5Bi and
Er12Co5Bi, materials derived from our recommendation
engine, which we characterize as a new class of thermo-
electrics in this work. These materials are almost pure
intermetallics, in sharp contrast to thermoelectric com-
pounds investigated to date (Fig. 2). The objective of our
recommendation engine is to directly enable experimen-
tal researchers to rapidly identify new materials, such as
RE12Co5Bi, that are very distinct from known compound
classes, and worthy of further study.

A materials recommendation engine

Our recommendation engine is a machine learning-
based approach9,10 for efficiently driving synthetic ef-
forts toward promising new chemistries. We have trained
a machine learning model to make a confidence level
prediction of whether the (1) Seebeck coefficient, (2)
electrical resistivity, (3) thermal conductivity, and (4)
band gap of input materials are within acceptable ranges
for thermoelectric applications. We define these ranges
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FIG. 1. Most known thermoelectric materials lie in a tight cluster in composition space (black and blue dots; blue dots have
chemical formulae explicitly labelled). The recommendation engine presented here allows the identification of new thermoelectric
materials families that are well outside the existing composition space of common systems in the Gaultois et al. database.8 In
particular, we report the characterization of RE12Co5Bi (RE= Gd, Er; orange squares), which are chemically and structurally
distinct from known thermoelectrics.

FIG. 2. The strongly intermetallic RE12Co5Bi compounds we
report here lie far outside the norm for metal loading among
collected thermoelectric compositions in the Gaultois et al.
database.8 The recommendation of these materials was neither
the result of simple interpolation between known compounds
nor obvious from a strict chemical intuition standpoint.

as follows: (1) |S|>100µV K−1; (2) ρ< 10−2 Ω cm;
(3)κ<10 W m−1 K−1; and (4)Eg >0 eV, all at room
temperature.

For each range of thermoelectric property, the en-
gine gives a confidence score between 0% and 100%
that a given material’s measured value for that prop-
erty at room temperature will fall within the targeted
range. We would classify any material for which the an-
swer to all these questions is likely “yes” as a potentially
promising thermoelectric that may warrant further study.
The purpose of our recommendation engine is thus nei-

ther to make quantitative predictions of these thermo-
electric properties, nor to definitively identify record-
setting compounds–these remain open challenges for fu-
ture work. Rather, the engine is intended to greatly aug-
ment the chemical intuition of experimental researchers
working on materials discovery. In particular, we have
found that our model’s ability to screen vast numbers
of possible compositions and short-list interesting can-
didates can inspire materials syntheses that would not
have been obvious a priori.

Machine learning models such as those developed
here differ considerably from atomistic simulation ap-
proaches such as density functional theory (DFT). DFT
is already a well-established tool for accelerating mate-
rials discovery,11,12 and high-throughput methods have
already been applied successfully in the search for new
thermoelectric materials.13–17 Nevertheless, accurately
predicting thermoelectric properties from first princi-
ples remains challenging.4 Recent works, for exam-
ple, use the BoltzTraP code18 to estimate the Boltz-
mann transport properties of candidate materials based
on DFT-predicted band structures.19 The nascent field
of materials informatics–algorithmically extracting new
knowledge by mining large-scale materials databases–
has emerged alongside these traditional physics-based
simulations as a key means of predicting materials
behavior.20,21

The present machine learning-based recommendation
engine looks for empirical, chemically meaningful pat-
terns in experimentally reported data on known thermo-
electric compounds to make statistical predictions for
the performance of new materials. Further, while ef-
forts such as the Materials Project are making the re-
sults of DFT calculations more accessible to the experi-
mental materials community than ever before,5 most ex-
perimentalists still are not able to run DFT calculations
continually to inform their laboratory work in real-time.
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To make predictive computation more widely accessible,
we make the results of the present work available as a
web application (http://thermoelectrics.citrination.com)
that any materials researcher can utilize to request real-
time predictions and search for new thermoelectric can-
didates.

II. METHODS

Modelling and informatics

Here we describe the approach used to construct the
recommendation engine. Our engine is an example of
materials informatics,22,23 or the application of empirical
machine learning methods to the prediction of materials
behaviour. Any machine learning approach for materials
relies on three key ingredients: training data, descrip-
tors, and choice of algorithm. Training data are the ex-
ample sets from which the machine learning approach
should extract meaningful chemical trends. Descriptors
are the low-level characteristics of materials (e.g., crys-
tal structure, chemical formula, etc.) that might corre-
late with materials properties of interest. Specifically, de-
scriptors are either numerical (e.g., average atomic num-
ber Z) or categorical (e.g., crystal structure = perovskite)
variables that enable us to “vectorize” materials in such
a way that they become amenable to machine learn-
ing techniques. Finally, learning algorithms interrogate
descriptor-vectorized training data for relevant patterns.

In this work, the training set comprises a large
body of both experimental thermoelectric charac-
terization data,8 experimental materials property
data from the NIMS MatNavi database, and first
principles-derived electronic structure data.5,24 These
data are publicly available via the Citrination platform
(http://www.citrination.com), the Materials Project API
(http://www.materialsproject.org/open), and NIMS
(http://mits.nims.go.jp/index en.html). These data
consist of the Seebeck coefficients, thermal conductivi-
ties, electrical conductivities, and band gaps measured
for thousands of materials as a function of temperature
and a variety of other metadata conditions. Our model
uses these input data to learn interesting chemical
trends that could be exploited to design new materials.
As large, high-quality training data sets are scarce in
materials science relative to the biological sciences,
where bioinformatics has become a standard tool, we
urge the materials community to consider contributing
to data infrastructures (Citrination, Materials Project,
NIST’s DSpace repository, EU’s NoMaD, and others) that
together will significantly expand open access to data
for materials researchers.

Descriptors are the second key ingredient in materi-
als informatics. The scientific literature around design-
ing descriptors for materials has grown substantially in
just the past several years.25,26 Indeed, recent work has
shown that the predictive power of machine learning

models for materials is strongly dependent upon the se-
lected descriptor set.27 Our engine relies upon a tuned
blend of descriptors designed in-house and drawn from
a variety of sources.4,9 By way of example, as materi-
als scientists, we recognize that the periodic table con-
tains a tremendous amount of information about how
the elements behave and interact. We thus pre-bias our
machine learning models with such knowledge (e.g., the
d block of the periodic table is metallic; Li and Na are
chemically very similar but not identical; and the lan-
thanides behave similarly in ionic compounds). This step
allows us to create predictive models with data sets that
have thousands (rather than tens or hundreds of thou-
sands) of examples.

The ability of materials informatics techniques to ex-
tract signal from materials data is strongly dependant on
effective descriptor design and access to large quantities
of training data. With respect to the latter point, ma-
chine learning algorithms are only able to identify pat-
terns that are (at least sparsely) sampled by the training
data. An important manifestation of this requirement
in the context of the present work is modeling doping.
Doping represents a minute change in materials compo-
sition (on an atomic percentage basis), but may result
in orders of magnitude changes in properties. As most
of the training data used in this work correspond to un-
doped bulk compounds, we expect the recommendation
engine to perform best in identifying new such bulk sys-
tems which could be potentially be further optimized via
doping. Given more training data, we could readily ex-
tend the current work to dilutely doped thermoelectric
systems.

Finally, our recommendation engine is built using the
so-called random forest algorithm.28 This algorithm con-
structs a large number of decision trees, all trained on
slightly different subsets of the training data. Random
forest is an ensembling technique, which takes advan-
tage of the fact that a collection of “weak” learners such
as decision trees can, in concert, model extraordinarily
complex nonlinear behaviour. An example rule that a
single decision tree might learn is that if a material con-
tains two elements with very different electronegativities
(e.g., Na and Cl), that material is likely to have a large
band gap. Of course, the thermoelectric phenomena we
seek to model here are substantially more subtle, and
thus a large random forest of decision trees is useful in
untangling the underlying physics. We refer the reader
elsewhere4,9,29 for more detailed discussions and tutori-
als on how to apply random forests to materials data.

Model validation

We visualize the accuracy of our recommendation en-
gine’s predictions in Fig. 3, which represents the results
of leave-one-out cross-validation (LOOCV) on our train-
ing data (in the case of the band gap data, we performed
LOOCV on a subset of the extremely large training set).

http://thermoelectrics.citrination.com
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FIG. 3. Leave-one-out cross validation error histograms for the
four key properties estimated by our recommendation engine:
(a) Seebeck coefficient; (b) electrical resistivity; (c) thermal
conductivity; and (d) band gap. For each material in our train-
ing set and each property, the recommendation engine gives
a confidence score between 0 and 1 that the property value
falls within the ideal windows we have defined for thermoelec-
tric applications. Errors approaching +1 represent false nega-
tives (our engine was extremely confident the material would
be poor for that property, but the property is actually good);
and an error of −1 is a false positive (our engine was extremely
confident the material would be good for that property, but the
property is actually poor). The peak around 0 for each prop-
erty shows that the engine generally gives confidence values
very close to unity for materials possessing properties in the
desired ranges, or close to zero for materials whose property
values fall outside the target range.

In the LOOCV procedure, if we have n total measure-
ments of a particular property such as thermal conduc-
tivity, we train our machine learning model on n − 1 of
these values and predict the nth (left out) value. We per-
form one training step and prediction for each property
value, and present the error distribution for all n values
in Fig. 3. The error distribution then provides us with
a sense of how we may expect the model to perform on
new materials of which we have no prior knowledge.

Fig. 3 indicates that our engine generally makes very
reliable assessments of thermoelectric materials proper-
ties. The modes of the error distributions are in each case
close to 0. For each property, the engine’s errors skew to-
ward false negatives (resistivity, band gap, thermal con-
ductivity) or false positives (Seebeck), which reflects the
fact that the underlying training data do not contain
equal fractions of positive and negative examples. See-
beck coefficients prove most difficult to assess (i.e., the
error distribution for that property has the largest stan-
dard deviation), likely because there are strikingly dif-
ferent mechanisms that underpin the values, for exam-
ple, strongly correlated oxides as opposed to degenerate
semiconductors. Owing to the difficulty in assessing the
Seebeck coefficient, initial predictive models using only
the electrical resistivity, thermal conductivity, and See-

beck coefficient produced too many candidates that were
good metals with poor Seebeck coefficients. To remedy
this shortcoming and provide more robust recommen-
dations, the band gap was added as a secondary met-
ric, where we determine the probability whether a given
composition will have a non-zero bandgap.

Experimental details

RE12Co5Bi (RE= Gd, Er) samples were made by arc-
melting freshly filed Er or Gd pieces (99.9%, Hefa), Co
powder (99.8%, Cerac), and Bi powder (99.999%, Alfa
Aesar). Stoichiometric mixtures (0.5 g total mass) with
5% to 7% excess Bi were pressed into pellets and melted
twice in arc-melting furnace under argon atmosphere
(Edmund Bühler Compact Arc Melter MAM-1). The total
mass loss after melting was <1%. The samples were
sealed in silica tubes and annealed at 1070 K for one
week, then quenched in cold water. To produce enough
material for physical property measurement, ∼70 sam-
ples of each compound were prepared, and pure sam-
ples were combined by melting into a single ingot of
∼5 g, which was sanded to yield the appropriate ge-
ometry (either a rectangular bar, or a cylinder). Den-
sity was measured using Archimedes’ method; the final
pellets had densities 100% of the single crystal values
(ρGd12Co5Bi = 8.6 g/cm3, ρEr12Co5Bi = 9.9 g/cm3).

Powder X-ray diffraction patterns were collected us-
ing an INEL CPS 120 diffractometer with Cu Kα1 ra-
diation at room temperature, and Rietveld refinement
was used to confirm the structure and phase purity
(see Supporting Information).30 Backscatter electron
microscopy and elemental analysis via energy disper-
sive X-ray spectroscopy (EDX) were performed with a
JEOL JSM-6010LA InTouchScope scanning electron mi-
croscope. Backscatter micrographs reveal the samples
are largely compositionally homogeneous (see Support-
ing Information).30 Quantitative elemental analysis on
several polished pieces found an atomic composition
of Gd69(2)Co26(2)Bi5(2) which is in a good agree-
ment with expected RE12Co5Bi composition. Er12Co5Bi
samples were not appropriate for quantitative analysis
because of overlapping Co Kα (6.924 keV) and Er Lα
(6.947 keV) lines.

High-temperature thermoelectric properties (electrical
resistivity and Seebeck coefficient) were measured with
an ULVAC Technologies ZEM-3. Sample bars had ap-
proximate dimensions of 9 mm×4 mm×4 mm. Measure-
ments were performed with a helium under-pressure,
and data was collected from 300 K to 800 K through three
heating and cooling cycles over 18 hours to ensure sam-
ple stability and reproducibility.
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III. DISCUSSION

In this work, we are interested not only in develop-
ing a model that gives accurate predictions of materials
properties, but also in making it immediately accessible
and useful for experimental researchers. To that end,
we have published our recommendation engine as a web
app at http://thermoelectrics.citrination.com, where re-
searchers may explore a pre-computed list of around
25 000 known compounds (representing a sizable subset
of the Inorganic Crystal Structure Database, or ICSD),
and also use our model to evaluate their own materials
candidates in real-time. In this way, we hope that the
app serves as a rapid triage tool for ideas for potential
new thermoelectric materials.

This adds to a growing toolbox of computational tools
designed to be a user-friendly aid to experimental work-
ers, such as TEDesignLab, and the Materials Project.5,31

Our pre-computed list may be arranged according to the
probabilities associated with any one of the four proper-
ties we are modelling, and is sorted by default according
a composite score that takes all four properties into ac-
count. Furthermore, the user may specify cutoff thresh-
olds for any of the properties, and thereby greatly reduce
the size of the list.

As we believe our extensive precomputed list contains
some interesting and heretofore uncharacterized candi-
date thermoelectric materials, we now comment on a
select set of high-ranking compounds. Several of these
compounds are given in Table I.

TaVO5 and TaPO5 occur in an analogous crystal struc-
ture to the phosphate tungsten bronzes.32,33 These ma-
terials can be expected to have good thermoelectric per-
formance given the heavy atoms, the potential for low
electrical resistivity provided by the repeating ReO3-type
structural network that is highly connected in three di-
mensions, and the intrinsic crystallographic shear pro-
vided by the crystal structure. Although the phosphate
tungsten bronzes themselves are not highly rated, their
metallic electrical transport properties are encouraging
for structural analogues.34 Moreover, TaVO5 has a neg-
ative coefficient of thermal expansion and a structural
transition at 600◦C.35 This structural transition may lead
to softening of phonon modes and anharmonic scatter-
ing, which may lead to low thermal conductivity.

Other interesting suggestions to come from the recom-
mendation engine are Tl9SbTe6, Ba2Pb, and FeAs2. Al-
though none of these compounds were included in the
thermoelectric database, they all scored highly within
the recommendation engine. This prediction provides
experimental validation since good thermoelectric per-
formance has recently been demonstrated for these ma-
terials through property measurements or high-level DFT
calculations.36–38

The suggestion of TaAlO4, SrCrO3, TaSbO4 and other
oxides expected to be insulators can be understood be-
cause the recommendation engine uses as training data
references where stoichiometric formulas were primar-

ily reported rather than doping details.39,40 Nevertheless,
with doping through substitution or reduction, these
compound may exhibit moderate electrical performance.
Further, these materials all feature extended structures
that are highly connected in three dimensions, an impor-
tant feature for low electrical resistivity. Moreover, the
large mass contrast on the cation sublattice in TaAlO4

(edge shared TaO6 and AlO6 octahedra) could lead to
low thermal conductivity, and previous reports have
shown that SrCrO3 is metallic when synthesized under
pressure.41

Many of the high-ranking candidate materials are in-
teresting because of their highly connected extended
structures, even though the recommendation engine
does not use features of crystal structure to make its
suggestions. The chief disadvantage to training predic-
tion algorithms using crystal structure is that structure
then becomes a required input for making predictions,
and yet structure is by definition not available for un-
characterized materials. However, the absence of crystal
structure does cause our engine difficulty where changes
in crystal structure with similar elemental compositions
cause large changes in physical properties. For example,
both DyPO4 and LaPO4 are predicted to have low ther-
mal conductivity. However, LaPO4 is monazite, a corner
edge-shared structure, whereas DyPO4 is xenotime,42 an
edge-shared structure leading to inherently higher ther-
mal conductivity.43

New materials and their properties

Our final and most important task in this work is to
demonstrate that our recommendation engine can in-
deed guide researchers toward interesting experimental
discoveries. Among the set of high-scoring candidate ma-
terials, we selected Er12Co5Bi and Gd12Co5Bi to char-
acterize as thermoelectric materials due to their facile
synthesis through arc melting, and due to the fact they
are chemically quite distinct from known thermoelectrics
(Fig. 1). While the RE12Co5Bi (RE= rare earth) family
of compounds has only been sparsely studied in the liter-
ature, their crystal structure and initial low-temperature
electrical and magnetic properties have been reported by
Mar and coworkers.44 The crystal structure ofRE12Co5Bi
is shown in Figure 4.

Interestingly, the crystal structure of our candidate
thermoelectric exhibits notable similarity to the struc-
tures of known thermoelectrics, in spite of the fact
that crystal structure was not an input feature for
our recommendation engine. Ho12Co5Bi is the epony-
mous structure prototype (orthorhombic, space group
Immm) adopted by a series of rare-earth intermetallics
RE12Co5Bi (RE= Y, Gd, . . . , Tm). In this structure, the
Ho12Bi icosahedra play an analogous role to the LaP12

icosahedra in the filled skutterudite prototype LaFe4P12;
rare-earth atoms “rattling” within their 12-fold coordi-
nated cages is the idiosyncratic feature of filled skutteru-

http://thermoelectrics.citrination.com
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TABLE I. Several promising new thermoelectric compounds selected from our pre-computed list. The P values refer to the engine’s
confidence level that a given material will exhibit a room-temperature value for a particular property (e.g., S or ρ) within the target
ranges specified above. The full compound list is available for exploration at http://thermoelectrics.citrination.com.

Material PS Pρ Pκ Pgap Composite Comments

TaPO5 and TaVO5 0.894 0.793 0.958 0.987 3.537 High polyhedral connectivity and structural superlattices
Tl9SbTe6 0.845 0.871 0.999 0.876 3.46 Recently reported to be a good thermoelectric (zT≈1 at 600 K)
TaAlO4 0.893 0.703 1 0.977 3.477 High mass contrast, high polyhedral connectivity

(edge- and corner-sharing TaO6 octahedra)
SrCrO3 0.772 0.767 0.996 0.95 3.308 High polyhedral connectivity (3-D corner-sharing CrO6 octahedra),

metallic when made under high pressure
TaSbO4 0.892 0.919 1 0.997 3.559 High polyhedral connectivity: layered, edge-sharing MO6 octahedra
TiCoSb 0.981 0.714 0.958 0.833 3.467 TiCoSb is not a new compound, but has been studied as a high-zT

material. However it was not included in training data.

FIG. 4. (a) Crystal structure of RE12Co5Bi (prototype
Ho12Co5Bi), of which Er12Co5Bi and Gd12Co5Bi are exemplars.
(b) Crystal structure of the filled skutterudites, which have the
generic chemical formula AM4X12. These two structure types
share an icosahedral motif consisting of RE12Bi and AX12

units, respectively.

dites that imparts low thermal conductivity so prized in
thermoelectric materials. In fact, if the transition metal
atoms, which occupy different sites in these structures,
are disregarded, the Ho12Bi framework is an antitype to
the LaP12 framework, with the roles of the rare-earth and

FIG. 5. Thermoelectric characterization of RE12Co5Bi
(RE= Gd, Er). (a) Electrical resistivity, (b) Seebeck coeffi-
cient, (c) thermal conductivity, and (d) thermoelectric figure
of merit zT as a function of temperature. We also include the
recommendation engine’s confidence levels for the first three
properties; the lowest-probability property, the Seebeck coeffi-
cient, is indeed found to be below the 100µV K−1 threshold.

group 15 elements reversed. We hypothesize its crys-
tallographic similarity to skutterudite could be partly re-
sponsible for the thermoelectric behaviour of RE12Co5Bi
(RE= Gd, Er).

We give a full thermoelectric characterization of
Er12Co5Bi and Gd12Co5Bi in Fig. 5. Based on these re-
sults, we report the discovery of a new thermoelectric
class, which remains a completely unoptimized, pure
bulk material and thus lends itself to further study. No-

http://thermoelectrics.citrination.com
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tably, the material falls far outside the usual search space
for thermoelectrics (Fig. 1 and Fig. 2), and was nei-
ther the result of simple interpolation between known
compounds nor obvious from a strict chemical intuition
standpoint. The electrical resistivity is commensurate
with other high-performing materials such as chalco-
genides, although the Seebeck coefficient is too low for
the material to be competitive with the best-known ther-
moelectrics. Furthermore, the thermal conductivity is
relatively high, but the filled cage structure lends itself to
substitution that has successfully reduced thermal con-
ductivity in the skutterudite systems.3,45 In RE12Co5Bi
(RE= Gd, Er), the thermal conductivity from 300 K to
800 K ranges from 4 W m−1 K−1 to 8 W m−1 K−1, com-
parable to the half-Heuslers.46,47 Note that these results
are consistent with the engine’s predictions (Fig. 5); the
models give a high probability of achieving the thresh-
olds for electrical conductivity (a) and thermal conduc-
tivity (c) (see confidence bar insets), while also suggest-
ing a low probability of observing a large Seebeck coef-
ficient (b). The electrical performance figure of merit
κzT is around 0.03 W m−1 K−1 at 400 K, which is ac-
tually higher than that of nearly 30% of the thermo-
electrics in the Gaultois et al. thermoelectrics database;8

of course, the database is a highly self-selected set of ma-
terials, consisting of literature-reported thermoelectrics,
and would skew toward much higher κzT values than
would a random subset of all crystalline materials. We
note, of course, that the zT of several other thermoelec-
tric materials can be significantly improved through car-
rier concentration tuning and microstructural engineer-
ing. For example, undoped polycrystalline Si has a 60-
fold increase in performance after optimization, going
from zT < 0.01 to 0.6 at 300 K.48

Another observation from Fig. 5 illustrates the sci-
entific boon of studying entirely new classes of materi-
als. Unexpectedly, RE12Co5Bi (RE= Gd, Er) exhibits
increasing thermal conductivity with temperature. (We
note the recommendation engine successfully chose a
material with a low thermal conductivity at room tem-
perature, which would normally decrease with increas-
ing temperature.) The increasing electrical resistivity
with temperature indicates metallic electrical transport,
so the electrical contribution to the total thermal con-
ductivity should therefore decrease with increasing tem-
perature. Additionally, the phonon contribution to ther-
mal conductivity should also decrease with increasing
temperature due to more phonon–phonon (Umklapp)
scattering.49 Thermal conductivity is calculated from the
following relation: κ=αρCp, where α is thermal dif-
fusivity, Cp is heat capacity, and ρ is density. Normally,
thermal diffusivity has a negative temperature depen-
dence whereas heat capacity and density both have pos-
itive temperature dependence. However, for this com-
pound we observe a positive temperature dependence
for the thermal diffusivity even after multiple measure-
ments, the origin of which is not presently understood.
Materials with increasing thermal conductivity with tem-

perature are rare, though not unprecedented,50,51 and
further studies on this class of compounds to shed light
on this anomaly could thus lead to new strategies for
thermoelectric materials optimization.

IV. CONCLUSIONS

This initial experimental validation of our recommen-
dation engine is encouraging. The present work repre-
sents the first time that machine learning has been used
to suggest an experimentally viable new compound from
true chemical white space, where no prior characteriza-
tion had hinted at promising chemistries. The implica-
tion is that our approach–wherein a data-driven compu-
tational tool directly augments experimental capabilities
and intuition–is a semi-rational way to discover new ma-
terials families that may have desirable properties. We
suggest that such an paradigm could eventually replace
trial-and-error and fortuity in the search for new materi-
als across a wide variety of application areas.
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