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Abstract:  

Accurate and timely information is essential for efficient road maintenance planning. Current practice mainly 

depends on manual visual surveys that are laborious, time consuming, subjective and not frequent enough. We 

overcame this limitation in our previous work, by proposing a method that automatically detects road defects in 

video frames collected by a parking camera. The use of such a camera leads to capturing the surroundings of the 

road, such as sidewalks and sky due to its wide field of view. This unnecessarily reduces the method’s 

performance. This paper presents a process that identifies the correct Region of Interest (myROI). myROI 

corresponds to the region of the camera’s field of view that corresponds to the road lane, while considering 

defect inspection guidelines. We use the theory of inverse perspective mapping (IPM) to map the road frame 

coordinates to world coordinates. The camera specifications, and position, lane width and road defect detection 

guidelines constitute the parking camera calibration parameters for the calculation of myROI’s span and 

boundaries. We performed computational experiments in MATLAB to calculate myROI, and validated the 

results with field experiments, where we used a metric tape to measure the road defects. Preliminary results show 

that the proposed process is capable of calculating myROI. 
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1. INTRODUCTION  

According to the International Infrastructure Maintenance Manual (NAMS Group 2006), an asset management 

system must have knowledge of the following: 1) existing assets, 2) the assets’ condition, and 3) the level of 

service the assets can provide . This shows the importance of road condition assessment, which is a pre-requisite 

for designing, planning and determining maintenance programs. In the UK, a report written by the Department 

for Transport and the Highways Agency claims there is insufficient road condition data, and gaps exist in the 

collected information (National Audit Office 2014). 

Current road condition monitoring process consists of the following steps: 1) road data collection, 2) defect 

identification, 3) defect assessment, and 4) road condition index (RCI) calculation. Data collection is performed 

either manually or automatically. Inspectors walk along the road or drive around the network to look for 

irregularities during manual data collection. Vehicles equipped with several sensors, such as laser scanners and 

image cameras are utilized for automated data collection.   

In the case of manual inspections, all collected data is inserted into the road authority’s database once the 

inspection is done. Such data consist of images from the defects found accompanied by qualitative descriptions. 

If a defect is repaired on the spot, images from before and after the inspector’s intervention are required. A 

description of the action that he/she took is also expected. If it is not possible to repair the defect on the spot, the 

inspector characterizes the urgency of the required action. Thus, defect identification and assessment is 

performed along with the data collection when it is performed manually. However, it is obvious that it is a 

laborious and time-consuming task.  

The same holds for the automated data collection, the second and third steps of which are manual. Inspectors 

view all collected data on multiple screens and search for defects. Although defect assessment is performed 

using well-written guidelines, it is inevitable that the inspector’s subjectivity will influence the process according 

to his/her level of experience (Bianchini et al. 2010). The subjectivity of these results is another limitation of the 

current practice. Finally, the Road Condition Index (RCI) is calculated for road segments according to the 

number, type, and severity of defects encountered. RCI is the metric most often used for prioritizing maintenance 

actions. 

The main problem that this paper focuses on is the extraction of metrics from the collected data. As 

aforementioned, inspectors are using guidelines for identifying defects and categorizing them in levels of 

severity. Each defect is described with its different attributes using geometrical characteristics, such as length, 

width and depth. In the case of visual surveys, inspectors are using tapes to measure such attributes. In the case 

of automatically collected data, the software that accompanies the sensors calculates the metrics automatically, 

or inspectors are deriving them manually. Except for the automatically calculated metrics, the other ways of 
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performing it are laborious and time consuming.  

The goal of this research is to develop a low-cost automated road condition monitoring method to address the 

limitations of current practice. The idea is to use crowdsourcing to transition the task of monitoring from road 

inspectors to every day road users by transforming them into ubiquitous reporters. In our previous work 

(Radopoulou and Brilakis 2015), we proposed the use of parking cameras, a sensor that already exists in multiple 

passenger vehicles and is mandated to be attached to all such vehicles in the USA by 2018 (NHTSA 2014). This 

paper presents a method for isolating the road lane in the parking camera’s field of view while taking into 

consideration the metrics of defects that inspectors are using when they are looking for defects and during the 

assessment. 

2. STATE OF RESEARCH 

Several studies have focused on the problem of road or lane detection due to the increasing demand of advanced 

driver assistance systems. Systems that alert the driver to dangerous situations or assist with driving are 

continuously developed and added in passenger vehicles. Various hardware setups have been proposed for 

road/lane detection (Hillel et al. 2014).  

Light Detection And Ranging (LIDAR) systems were utilized to identify objects obstructing the visibility of lane 

markings and road boundaries (Hernández and Marcotegui 2009; Huang et al. 2009), estimate the roughness of 

the road (Huang et al. 2009; Kammel and Pitzer 2008) and detect road edges, curbs and berms etc. (Hernández 

and Marcotegui 2009; Nefian and Bradski 2006; Urmson et al. 2009). The high cost of LIDAR sensors limits the 

practical use of these methods. Although several companies provide LIDAR sensors commercially, the cost 

remains high.  

Stereo imaging, a concept that uses two cameras in order to reconstruct the captured three-dimensional (3D) 

scene, was proposed for solving the problem of road/lane detection. It was used for road pitch angle, 3D 

geometry and slope estimation (Danescu and Nedevschi 2009), and curb detection (Pradeep et al. 2008). 

Although stereo imaging is a much cheaper solution than LIDAR, it cannot reach the same level of accuracy and 

reliability. Additionally, it poses a greater challenge for data processing (Hillel et al. 2014) because its range 

accuracy depends on the distance between the cameras. The reliability of the results increases as the distance of 

the cameras increases, and the same holds true for the computational cost. 

Geographic Information Systems (GIS), Geographic Positional Systems (GPS) and Inertial Measurement Units 

(IMU) are also gaining popularity for assisting driver navigation. GPS devices have an accuracy of 5-10m (Wing 

et al. 2005) which can be reduced to 1m with the addition of an IMU (Urmson et al. 2009). The limitation of 

such systems lies in their reliability due to their dependency on multiple satellite connections. Although in many 

areas the information provided is accurate, GPS can lose signal in others. IMUs can compensate for such a loss, 

but to a limited extent. Internal vehicle dynamic sensors that measure speed, yaw rate, and acceleration (e.g. 

wheel speed and stirring angle sensors) were also used in conjunction with other sensors (Labayrade et al. 2006; 

McCall and Trivedi 2006). However, their accuracy is limited (Huang et al. 2009).  

Many methods in the literature propose the use of a single camera for road/lane detection. In most cases, the 

camera is positioned in the middle of the vehicle looking forward. Image-based methods usually start with an 

image pre-processing step and continue with feature extraction for detecting the object in question. 

Pre-processing techniques aim to handle illuminations (Huang et al. 2009) and remove shadows (Cheng et al. 

2006; Katramados et al. 2009). Feature extraction usually aims to detect lane markings, which have distinctive 

shape and colour in comparison to the rest of the road. Simple gradients (Nieto et al. 2008; Samadzadegan et al. 

2006) and steerable filters (McCall and Trivedi 2006) were used for this purpose. 

Another approach in pre-processing image-based methods is to calculate the Region of Interest in the image. 

Several definitions were used. It can be either the lower half of the image (Zhang et al. 2009) or the mapping of 

3D world coordinates to the 2D image (Bertozzi and Broggi 1998; Huang et al. 2009; Tapia-Espinoza and 

Torres-Torriti 2013; Zhang et al. 2009). In the case that the lower half of the image is defined as the region of 

interest, the problem of identifying where the road lane is within that part of the frame still remains in some 

cases. The reason it doesn’t hold for all cases is because it is dependent on the camera’s specifications and 

positions. If the camera has a small horizontal field of view and is positioned closer to the ground, then the lower 

half of the image might only contain the road lane, but if it is wide and is positioned further away from the road 

level, then it will include the surrounding of the lane as well. Hence, defining the region of interest as the lower 

half of the image is quite abstract.    

The theory of Inverse Perspective Mapping (IPM) makes use of the camera’s position and orientation to perform 

the mapping. Here follows an explanation of IPM, which is calculated using the pinhole model and the following 

assumptions: 



1) The world coordinate system is fixed to the vehicle, {𝑥𝑤, 𝑦𝑤 , 𝑧𝑤} 

2) The camera is positioned at the back of the vehicle, at the middle of its width, at a height ℎ with respect to 

the ground and is tilted by an angle 𝜃0 towards the plane of the road. 

Figure 1 depicts the IPM model. Equations 1 and 2 describe the relationship between a point p in the 2D image 

plane and its 3D position P in the world. The image plane has size 𝑚 𝑥 𝑛 pixels. The point p in the image plane 

is represented with the image coordinate pair (𝑢, 𝑣), where 𝑢 is the horizontal axis of the camera and 𝑣 us the 

vertical axis. Point p can also be represented with the pair (𝑟, 𝑐) if we consider the standard image row-column 

representation of the image plane.  
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Figure 1. Inverse Perspective Mapping model of a point P in the world to a point p in the image. 

𝑥(𝑟) = ℎ (
1 + [1 − 2 (

𝑟 − 1
𝑚 − 1)] tan(𝑎𝑣) tan(𝜃0)

tan(𝜃0) − [1 − 2 (
𝑟 − 1
𝑚 − 1)] tan(𝑎𝑣)

)             (1) 

 

𝑦(𝑟, 𝑐) = ℎ (
[1 − 2 (

𝑐 − 1
𝑛 − 1)] tan(𝑎𝑢)

sin(𝜃0) − [1 − 2 (
𝑟 − 1
𝑚 − 1)] tan(𝑎𝑣) cos(𝜃0)

)         (2) 

where r, c: image coordinates 

 m, n: image coordinates 

  h: height of the camera in respect to the ground 

  𝜃0: angle formed by the camera when tilted towards the road plane in respect to an axis 

parallel to 𝑥𝑤 that goes through the focal point 

  𝑎𝑢: camera’s vertical angle of view 

  𝑎𝑣: camera’s horizontal angle of view 

Existing methods have focused on automating the detection of the road lane. However, some are doing it quite 

abstractly, or are just detecting the road lane, which in our case isn’t useful. We are interested into incorporating 

the inspection guidelines and the defects’ metrics used for their assessment. Hence, the research question we set 

is: what is the region of interest in a road video frame that is of use to an inspector? And our objective in this 

paper is to propose such a method, which will isolate that part of the video frame that includes the road lane 



where defects can actually be detected.  

3. PROPOSED SOLUTION 

We assume that the parking camera is positioned on the rear of the vehicle looking backwards, at approximately 

its middle and usually either close to the sign plate or the trunk handle. This is based on the position of typical 

parking cameras which are placed either close to the sign plate of the vehicle or close to the trunk handle, 

depending on the design of the car. The cameras used are often rotated downwards and have wide angles of view, 

usually exceeding 90 degrees both horizontally and vertically.  

Due to this setup, captured video frames depict not only the road lane, but its surroundings as well. These 

include other vehicles, adjacent lanes, nature, sky, etc. Such features do not describe the condition of the road, 

and are considered extraneous information. Therefore, a method is needed to isolate the road lane from the rest 

of the video frame to allow further processing. However, even if the road lane is isolated from the rest of the 

image, not all of it will be useful to an inspector. This is because based on the image analysis of the camera used, 

the detail that is provided isn’t across all pixel rows. Hence, this needs to be taken into consideration. We call the 

portion of each video frame that contains useful information myROI (my Region of Interest), and we calculate it 

using the following: 

1) Equations of IPM 

2) Camera’s position (relative to the ground and centre of vehicle) and specifications (image analysis, lens’ 

angles of view-horizontally and vertically) 

3) Road lane width 

4) Inspection defect detection guidelines 

Initially, using the camera’s position (height with respect to the ground) and specifications, we match the pixels 

of a video frame with the real world space by using the equations of IPM. At this point, the image analysis of the 

camera used is critical, because it defines the amount of detail that the image can capture. Knowing the world 

coordinates that each pixel represents, then follows the calculation of the distance that each consecutive row in 

the image is representing. This information allows to define the upper bound of myROI, along with the smaller 

width of transverse crack that needs to be detected. Finally, the side boundaries of myROI are calculated based 

on the width of the road lane that is being travelled.  
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3. IMPLEMENTATION & RESULTS 

The code was implemented in MATLAB. The initial calculations were performed using the characteristics of the 

camera that was selected according to parking camera standards, which is 0.4MP resolution - 808 x 508 pixels 

(PG BFLY 05S2M). A lens that provides wide angles of view (Sunex DSL212) was attached to the camera to 

acquire the desired perspective - 133o horizontal angle of view and 102o vertical angle of view. Figure 3 shows 

the hardware used. The same standards were used for positioning the camera on the rear of the vehicle, 0.65m 

above ground, and approximately 5cm left from the middle of the vehicle (see figure 3). For deciding on the 

defects’ sizes, table 1 was created based on several inspection defect detection guidelines (FHWA 2003; 

MnDOT 2003; MTC 1991; SDDOT 2009; UKPMS 2005). Table 1 summarizes the overall minimum and 

maximum of defects’ attributes. Figure 4 and table 2 depict the results achieved using the aforementioned setup. 

Table 2 includes details for myROI considering higher resolution cameras as well. 

Figure 2. Process of calculating myROI 



  

Figure 3. Left - Hardware used for the calculation of myROI; Right - The position of the camera at the rear of a 

vehicle 

Table 1. Minimums and maxima of defects’ attributed that inspectors’ are looking for 

Defect Attribute Severity Overall minimum Overall maximum 

Longitudinal 

crack 

Width  

Low 

2mm 

6mm 

Medium  6 - 19mm 

High 20mm 

Length  

Low <0.9m 

1m Medium >0.9m 

High   

Transverse 

cracks 

Width 

Low 3mm 6.35mm 

Medium up to 6.35mm up to 20mm 

High >6.35mm >20mm 

Length 

Low >0.6m <1.82m 

Medium     

High     

Alligator 

Cracking 

  Low 
<6mm width & no further than 150mm 

apart 

  Medium 
> 6mm & <= 19mm && no further than 

150mm apart 

  High > 19mm 

Potholes 

Depth  

Low <25mm 

Medium 25-50mm 

High >50mm 

Area 

Low 

15 x 15 cm > 175cm2 Medium 

High 

Width 

Low  palm size >150mm 

Medium dinner plate   

High larger   

Local 

Settlement 

(depression) 

Level 

difference 

Low 3 to 6 mm 3.175 - 50mm 

Medium 7 to 13 mm up to 101mm 

High > 13 mm >101mm 

Patching number 

Low 1-3 per 30.5m 

Medium 4-6 per 30.5m 

High >6 per 30.5m 

 



4. DISCUSSION & CONCLUSIONS 

Current practice for road condition monitoring is predominantly manual. It suffers from the limitations of being 

time consuming and laborious. In addition, it is inevitable that the subjectivity of the inspector influences the 

assessment results. Hence, state of research has turned its focus on automating the process and in particular, the 

detection of road defects. 

The project we have been working on lately focuses on proposing a method for automatically detecting road 

defects using parking cameras. Due to our intention of utilizing such a sensor, which is accompanied with wide 

angle of views lenses and it captures extraneous surrounding details in addition to the road lane, in this paper we 

propose a method for isolating that part of the video frame that is useful for an inspector. We used the theory of 

Inverse Projection Mapping along with camera calibration information to accomplish this task. This included the 

camera’s position in respect to the road plane and the vehicle, its analysis, and its angles of views. The defect 

attributes (sizes) that inspectors are looking for during a road assessment were also used.  

The calculation of myROI was performed in MATLAB. The specifications of a typical parking camera, 

including its recommended position, were used. It was concluded that the size of the defect defines the upper 

bound of myROI; i.e. the finer the defect, the smaller the area of interest. This justifies the lower upper boundary 

of the red polygon in figure 4, within which the minimum width of a transverse crack that can be detected is 

3.175mm; this corresponds to the smaller width that is encountered in the inspector’s guidelines. In the real 

world, this translates to 30.8cm away from the back of the vehicle (see figure 4). If a wider transverse crack is to 

be searched for, then the area of myROI increases and its upper bound is extended. So a transverse crack of 

6.35mm width can be found within the green polygon of figure 4. The green bounded myROI corresponds to 

62.82cm away from the vehicle.  

The camera’s analysis is another factor that affects the boundaries of myROI. This is evident from the 

calculations of myROI using higher camera resolution. As video analysis increases, so does the area of myROI. 

However, that results in an increase of the cost for the hardware. The camera’s orientation is also affecting 

myROI, along with the angle of views of the camera’s lens. It is critical that the camera is positioned at such a 

height and tilted downwards in that angle, so that it doesn’t include the back of the car. The higher the camera is 

positioned, the bigger the rotation downwards should be, so that myROI covers the area exactly opposite to the 

car. That is where the analysis of the image is finer as well. 

An important aspect for the calculation of myROI using the methodology presented in this paper is to know the 

width of the road lane that the car is driving on. Hence, in our future work, we are interested in incorporating an 

automated method for calculating the width of the road lane. Moreover, in figure 5 it is obvious that there is 

some distortion, which is due to the wide-angle views of the parking camera. However, this does not affect the 

defect detection results so it is not corrected in the input. For future work, correction of this type of distortion 

will be part of the data pre-processing. In general, the advantage of the method proposed in this paper is that it is 

incorporating the needs of road inspectors for whom it is critical to detect defects of specific sizes. It is very 

helpful and saves from their time to provide them with the area that they should be looking into. The results 

show that the method is promising 

 

 

  

Figure 4. Left- Depiction of myROI on top of a video frame captured by a parking camera (trans holds for 

transverse); a transverse crack with 3.175mm width can be found within the red shape, a transverse crack with 

6mm width can be found within the green shape and one with 1cm can be found within the magenta shape, 

Right- Depiction of extension of myROI at the back of a vehicle 

 

myROI – trans width 3.175mm 

myROI – trans width 6mm

myROI –trans width 10mm 



 
 

 
Figure 5. Upper left- Longitudinal crack (enclosed in yellow ellipse) of approximately 3mm shown in the middle 

of myROI, Upper right) Patch (enclosed in yellow box) with dimensions: upper side - 120cm, lower side-135cm, 

right side 135cm & left side 142cm, shown in myROI, Lower) Patch (enclosed in yellow ellipse) of 95cm width 

on the left and a pothole (enclosed in yellow ellipse) with 10cm diameter on the right shown in myROI 

 

Table 2. myROI results for different camera resolutions 

Camera 

resolution 

myROI 

upper 

bound 

(row) 

myROI 

upper 

bound 

(pixels) 

min 

Long 

crack 

width 

(mm) 

min 

Long 

crack 

width 

(pixels) 

max 

Long 

crack 

length 

max 

Long 

crack 

length 

(pixels) 

min 

Trans 

crack 

width 

min Trans 

crack width 

(pixels) 

max 

Trans 

crack 

length 

(m) 

808 x 508 

(0.4MP) 

355 153 

2.5 2 

30.8cm 

808 

3.175mm 

2 2.19 

282 226 62.82cm 6mm 

277 231 65.91cm 6.35mm 

239 269 96.1cm 1cm 

195 313 1.57cm 2cm 

1024 x 768 

(0.7MP) 

461 307 

1.9 2 

50cm 

1024 

3.175mm 

2 2.19 
365 373 93.55cm 6.35mm 

318 450 1.31m 1cm 

264 504 2.07m 2cm 

1280 x 960 

(1MP) 

533 427 

1.5 2 

62.6cm 

1280 

3.175mm 

2 2.21 
426 534 1.1m 6.35mm 

373 587 1.53m 1cm 

312 648 2.39m 2cm 
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