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ABSTRACT   

Multimode polymer waveguides are being increasingly considered for use in short-reach board-level optical 

interconnects as they exhibit favourable optical properties and allow direct integration onto standard PCBs with 

conventional methods of the electronics industry. Siloxane-based multimode waveguides have been demonstrated with 

excellent optical transmission performance, while a wide range of passive waveguide components that offer routing 

flexibility and enable the implementation of complex on-board interconnection architectures has been reported. In recent 

work, we have demonstrated that these polymer waveguides can exhibit very high bandwidth-length products in excess 

of 30 GHz×m despite their highly-multimoded nature, while it has been shown that even larger values of > 60 GHz×m 

can be achieved by adjusting their refractive index profile. Furthermore, the combination of refractive index engineering 

and launch conditioning schemes can ensure high bandwidth (> 100 GHz×m) and high coupling efficiency (< 1 dB) with 

standard multimode fibre inputs with relatively large alignment tolerances (~17×15 µm
2
). In the work presented here, we 

investigate the effects of refractive index engineering on the performance of passive waveguide components (crossings, 

bends) and provide suitable design rules for their on-board use. It is shown that, depending on the interconnection layout 

and link requirements, appropriate choice of refractive index profile can provide enhanced component performance, 

ensuring low loss interconnection and adequate link bandwidth. The results highlight the strong potential of this versatile 

optical technology for the formation of high-performance board-level optical interconnects with high routing flexibility. 
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1. INTRODUCTION  

Optical interconnection technologies are being increasingly considered for use within high-performance electronic 

systems such as data servers, memory storage systems and supercomputers to address the foreseen bottleneck in system 

performance due to the inherent limitations of copper-based interconnects [1-3]. Optical interconnects offer larger 

bandwidth, reduced power consumption, immunity to electromagnetic interference and relaxed thermal management 

requirements. Optical links are already widely deployed for short-reach rack-to-rack communication in data centres, 

while multimode fibre links have been recently introduced in electrical drawers for intra-rack communication in 

supercomputer systems [4, 5]. The further integration of optical links onto low-cost printed circuit boards (PCBs) can 

offer even larger interconnection densities and enable much higher interconnection capacities in such systems. As a 

result, recent research has focused on the development of waveguide-based optical technologies that enable the 

formation of cost-effective optical backplanes and board-level optical interconnections. In particular, polymer multimode 

waveguides are considered to be as an attractive technology as the polymer materials allow direct integration onto PCBs, 

while their large waveguide dimensions (typically 30 to 70 µm) allow system assembly with common pick-and-place 

tools [6-8]. In recent years, a large number of system demonstrators featuring multimode polymer waveguides have been 

realized, showcasing the potential of this technology [9-11].  
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Our work at the University of Cambridge has comprised the study of the optical transmission properties of siloxane-

based multimode waveguides and passive waveguide components [12-14], the development of methods enabling their 

cost-effective integration onto PCBs [6] and the realization of various backplane demonstrators [11, 15]. Recent work 

has focused on the potential of using refractive index (RI) engineering in such waveguides, studying the loss and 

bandwidth performance of waveguides and waveguide components with different RI profiles. These studies reveal that 

these multimode polymer waveguides exhibit very high bandwidth-length products (BLP) > 30 GHz×m despite their 

highly-multimoded nature and indicate that even higher bandwidth > 100 GHz×m can be achieved with appropriate 

refractive index engineering and launch conditioning schemes. The studies on the transmission properties of passive 

waveguide components, such as waveguide bends and crossings that are the building blocks of any interconnection 

layout, show that RI engineering can enable optimized loss performance in complex waveguide layouts while ensuring 

adequate link bandwidth. In the sections that follow, our recent results on waveguide bandwidth are presented and the 

studies on the performance of the waveguide components are reported.  

2.  MULTIMODE POLYMER WAVEGUIDE TECHNOLOGY  

This particular waveguide technology is based on the use of siloxane polymer materials developed by Dow Corning. 

These materials have been appropriately engineered to meet the requirements of the specific application: they exhibit low 

loss at the datacommunications’ wavelength range, they can withstand the high-temperature environments required in 

PCB manufacturing (solder reflow, board lamination), they are easily processed and patterned and they exhibit long 

lifetimes and stability in the typical operating environment of electronic systems [11, 16, 17]. The materials can be 

deposited by various methods (doctor-blading, spin coating or drop casting) on any type of rigid substrate (FR4, silicon, 

glass) and allow waveguide patterning with conventional mask aligners, direct laser writing systems or embossing tools. 

Moreover, they enable the formation of flexible samples with similar performance metrics as on rigid substrates [17]. 

The refractive index (RI) difference ∆n between the core and cladding material is nominally ~0.02 at 850 nm but it can 

be tuned appropriately to adjust the RI profile in the waveguide core [18]. The waveguide RI profile can be modified by 

controlling the fabrication parameters, resulting in varied RI profiles from step-index (SI) to graded-index (GI). The 

typical dimensions and pitch of the fabricated waveguides are ~50 µm and 250 µm respectively, in order to match 

multimode fibres (MMFs) and ribbons and vertical-cavity surface-emitting laser (VCSEL) arrays. Such waveguide 

dimensions provide 1 dB alignment tolerances of ~ ±10 µm for MMF inputs and butt-coupled VCSEL sources enabling 

therefore system assembly with conventional pick-and-place tools (3σ placement accuracy of 10 µm or less [6]). 

Waveguides with different dimensions and pitches can also be readily formed.    

This waveguide technology primarily targets the 850 nm wavelength range where low-cost multimode VCSEL sources 

are available. These lasers are the preferred sources in these applications as they are sufficiently low-cost, exhibit very 

low threshold currents (~ 1 mA) and don’t require any temperature control resulting thus in low power consumption, 

emit relatively large optical power (> 1 mW), exhibit large bandwidth (> 20 GHz) and can be readily formed in large 

one- or two-dimensional arrays [19]. In recent years, there has been a continuous improvement in the high-speed 

performance of VCSEL devices, with most recent reports demonstrating 57 Gb/s [20],  64 Gb/s [21] and 71  Gb/s [22] 

operation. As a result, important questions arise on the potential of this waveguide technology to support such high data 

rates because of their highly-multimoded nature. To address this issue, we have recently demonstrated 25 Gb/s [23] and 

40 Gb/s [24] data transmission over 1.4 m and 1 m long spiral waveguides respectively, and we have presented 

bandwidth studies based on frequency response measurements on long spiral waveguides under different launch 

conditions [25]. The frequency response studies have shown that these waveguides exhibit bandwidth-length products 

(BLP) > 35 GHz×m, while the data transmission experiments have demonstrated that, for 40 Gb/s data transmission, 

power rather than bandwidth is the limiting factor in the maximum reach of these waveguide links. In order to further 

explore the potential of the waveguides, time domain measurements have been undertaken on long spiral waveguides to 

identify their bandwidth.     



 

 
 

 

 

 

3. DISPERSION STUDIES 

The dispersion studies are carried out on 1 m long spiral waveguides and are based on the comparison of the width of a 

short optical pulse before and after transmission over the multimode waveguide. For these studies, two waveguide 

samples with a different RI profile are employed in order to assess its effect on bandwidth performance. The samples are 

fabricated on an 8-inch Si substrate with conventional photolithography. Both samples have similar core size (~32×35 

µm
2
), but the process parameters are slightly adjusted so as to result in a slightly different RI profile for the two samples. 

Their RI profile are measured using the near field refractive index method and are shown in Figure 1(a). The first sample 

has a more uniform profile over the waveguide core, whilst the second clearly exhibits a triangular area of higher index 

towards the top side of the waveguide core. The two samples are denoted as “SI” and “GI” respectively in the rest of the 

paper, although their RI profiles do not match the typical SI and GI profiles encountered in glass fibres. The input and 

output facets of the waveguide samples are exposed with a dicing saw, while no polishing steps are undertaken to 

improve the quality of the facets produced. An image of the structure of the spiral waveguide illuminated with red light 

is shown in Figure 1(b), while Figure 1(c) shows near field images of the waveguide output facet of the two samples at 

850 nm.  

                              

Figure 1. (a) Measured RI profile at 678 nm for the two waveguide samples and images of (b) the GI spiral waveguide 

illuminated with red light and (c) the output facet of the two waveguides at 850 nm. 

The dispersion measurements are carried out with a 50/125 µm OM3 MMF input so as to emulate a launch condition 

likely to be encountered in a real-world system. Moreover, the experiments are repeated when a mode mixer (MM – 

Newport FM-1) is employed at the MMF input in order to further investigate the waveguide bandwidth under a relatively 

more overfilled excitation. The MM generates a more uniform mode power distribution inside the input MMF resulting 

therefore, in a larger percentage of power coupled to higher order modes at the waveguide input. As a result, larger 

intermodal dispersion is expected at the waveguide output and lower waveguide bandwidth for such an excitation. The 

experimental configurations used in the pulse broadening measurements are illustrated in Figure 2. A femtosecond 

Ti:Sapphire laser operating at 850 nm is used as the short pulse source [~200 fs full-width-at-half-maximum (FWHM)], 

and a FR103-MN autocorrelator as the detector. The emitted light is coupled to a 50/125 µm OM3 MMF patchcord using 

a pair of microscope objectives. For the “overfilled” launch, the MM is inserted at the waveguide input. The other end of 

the MMF patchcord is cleaved and positioned on a micro-controlled translation stage and is butt-coupled to the 

waveguide input. Figure 2(c) and (d) show images of the near field images of the MMF output with and without the use 

of the MM. A displacement sensor is employed to measure the input offset and enable the control of the launch position. 

At the waveguide output, a 16× (NA of 0.32) microscope objective is used to collect the transmitted light and deliver it 

to the autocorrelator. The insertion loss of both samples is found to be in the range 7 to 8 dB. 
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Figure 2. Experimental setup used in pulse broadening measurements: (a) back-to-back and (b) waveguide link, and near-field images 

of the MMF cleaved end [point F in (a) and (b)] (c) without and (d) with the use of the mode mixer. 

The autocorrelation traces of the received pulse are recorded for the different input positions. The shape of the received 

pulse is approximated using curve-fitting and standard functions (sech
2
, Gaussian, Lorentzian) allowing the estimation of 

the pulse width at the waveguide output. A similar setup and methodology is used for the back-to-back link (without the 

waveguide) in order to obtain the input pulse shape and pulse width. The frequency response of the waveguide, and 

therefore its 3 dB bandwidth (BW), is found by comparing the Fourier transform of the received pulses for the 

waveguide and back-to-back link. Figure 3 shows the estimated 3 dB waveguide bandwidth for the two spiral 

waveguides with and without the use of the MM.  

 

Figure 3. Calculated 3 dB waveguide bandwidth for the SI and GI 1 m long spiral waveguides under a 50 µm MMF launch (a) without 

and (b) with the use of a MM at the waveguide input. (c) Summary of BW results. 

The results indicate that both waveguide samples exhibit a BLP larger than 30 GHz×m even when a mode mixer is used 

at the waveguide input. As expected, the use of the mode mixer results in lower BLP values but in a smaller variation 

across input offsets owing to the more uniform mode power distribution at the waveguide input.  Large input offsets 

result in larger percentage of power coupled to higher order modes at the waveguide input, and therefore, in larger 

intermodal dispersion and lower waveguide bandwidth. The GI waveguide exhibits larger BLP than the SI sample with 

BLP values recorded larger than 50 GHz×m for all offsets and both launch conditions. When no MM is employed at the 

GI waveguide input, very high BW values in the range 50 to 85 GHz×m are obtained. Figure 3(c) summarises the offset 

range for each sample that ensures that a particular waveguide BLP value is achieved. It is found that alignment 

tolerances larger than ±10 µm are obtained for both samples, indicating that high-speed transmission over these 

waveguides is relatively insensitive to input offsets. The asymmetry observed with respect to the offset direction (+/-) is 

due to the spiral shape of the waveguide. Finally, it should be noted that the large BLP values > 60 GHz×m obtained for 

the GI sample indicate the potential to achieve 100 Gb/s transmission over a single waveguide channel.  
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4.  LAUNCH CONDITIONING 

The dispersion studies presented above indicate that very high BLPs in excess of 60 GHz×m can be obtained in GI 

waveguides, and therefore the potential to achieve 100 Gb/s transmission over a single channel. For such a high-speed 

link however, it is imperative to ensure that both adequate waveguide bandwidth and received optical power are 

available with relaxed tolerances. As a result, we explore the potential of using launch conditioning schemes at the 

waveguide input in order to achieve 100 Gb/s over a 1 m long polymer waveguide. Such launch conditioning schemes 

(e.g. offset launch) have thoroughly been studied and implemented in the context of MMFs enabling the extension of the 

reach of MMF links and the transmission of higher data rates [26]. 

For these studies, we employ shorter reference waveguides [schematic shown in Figure 4(a), length 19.2 cm] and a 

restricted launch which is implemented at the waveguide input with a 10× microscope objective. The input spot has a 5 

µm FWHM. The experimental setup is shown in Figure 4(b). For these measurements, a femtosecond erbium-doped 

fibre laser (TOPTICA FSS) emitting at 1574 nm is employed as the short pulse (~400 fs FWHM) laser source while a 

frequency-doubling crystal (MSHG1550-0.5-1) is used to halve the wavelength to 787 nm, so as to investigate the 

waveguide bandwidth at a wavelength close to the 850 nm range of interest. A matching autocorrelator is employed at 

the waveguide output. Both the power received at the waveguide output and the autocorrelation traces of the received 

pulses are recorded as the launch position is offset in both the vertical and horizontal directions. The insertion loss of the 

waveguide is found to be ~1.5 dB. The obtained waveguide BLP and the normalised received optical power are plotted 

in Figure 4(c) and (d) respectively as a function of the input position.  

  

Figure 4. Schematic of (a) the reference waveguide and (b) the experimental setup, and measured (c) BLP (in GHz×m) and 

(d) normalised received power (in dB) for the GI reference waveguide as a function of the launch position. The pink 

rectangle denotes the range of input offsets that ensures both a normalized coupling loss < 1 dB and a BLP >100 GHz×m.     

The results indicate that there is a relatively large range of input offsets that ensures that the BLP value is larger than 100 

GHz×m (~18×20 µm
2
). If the coupling loss is considered, a range of ~17×15 µm

2
 is identified that also ensures that any 

additional loss due to alignment offset is below 1 dB [region delimited with pink region in Figure 4(c) and (d)]. The 

results indicate that using a launch conditioning scheme that generates a relatively small input spot positioned within this 

17×15 µm
2
 area at the waveguide input can provide both large bandwidth (> 100 GHz×m) and low coupling loss (< 1 

dB), enabling therefore very high data transmission rates over such multimode waveguides. 
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5. MULTIMODE WAVEGUIDE COMPONENTS 

A wide range of multimode passive waveguide components based on this polymer waveguide technology, such as 

waveguide bends, crossings, splitters and combiners, have been reported and excellent transmission properties have been 

demonstrated [12, 14, 27]. These waveguide components form the building blocks of any on-board interconnection 

architecture and have already been deployed in various optical backplane demonstrators [11, 15]. For example, the 

terabit-capacity 10-card passive optical backplane reported in [11], exhibits ~1800 waveguide crossings and 100 90° 

bends. This particular waveguide layout was designed to support 10 Gb/s data transmission per waveguide channel. In 

order however, to transmit higher data rates (25 Gb/s or higher) over each waveguide link, the related power budget 

requirements need to be satisfied and adequate bandwidth need to be available in each waveguide link for the launch 

conditions likely to be used in a real-world system. As a result, in this work, we present loss and bandwidth studies on 

the basic waveguide components (90° bends and 90° crossings) and study to use of RI engineering in order to optimise 

the total loss of complex optical paths. These two components (bends and crossings) in particular, exhibit a contrasting 

behavior with respect to the RI difference Δn between the core and cladding materials: bending loss benefits from 

stronger optical confinement in the waveguide core (larger Δn values), while waveguide crossings with lower Δn exhibit 

lower loss per crossing due to the reduced field expansion at the waveguide intersection. A design trade-off therefore 

exists.  

For these studies, 3 waveguide samples with slightly different RI profiles are employed. All samples are fabricated on an 

8-inch Si substrate with standard photolithographic processes and comprise a number of different components: (i) 

waveguides with two 90° bends with a varying radius of curvature, (ii) waveguides with a varying number of 90° 

crossings and (iii) reference waveguides. The reference waveguides have a similar structure and length as the other two 

components and are used as control samples. Schematics of the waveguide components are shown in Figure 5(a)-(c), 

while Figure 5(c) and (d) show the measured RI profiles of the 3 waveguide samples (denoted as WG_A, WG_B, 

WG_C) and their key parameters (size, Δnmax). 
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Figure 5. Schematic of the waveguide components studied: (a) ) reference waveguides, (b) 90° bends, and (c) 90° crossings 

and (d) measured RI profile of the three waveguide samples at 678 m and (e) summary of their key parameters.  

The insertion loss of all components is measured under a restricted launch using a 9/125 µm SMF input and a more 

overfilled launch using a 50/125 µm MMF input. The use of the MMF input is expected to result in higher insertion loss 

values as a larger percentage of power is coupled at the waveguide input to higher order modes, which are more 

susceptible to radiation losses along the waveguide bends and at the crossing intersections. Moreover, the bandwidth of 

the reference waveguides is also measured for a 50 µm MMF input using the same setup as described in section 2 and 

shown in Figure 2(b). The obtained insertion loss values and BLP for the reference waveguides are shown in Figure 6. It 

input output

WG length: 16.25 cm

input output

13.7 cm

varying radius R: 

5, 6, 8, 11, 15, 20 mm

input output

13.7 cm

number of crossings: 

1, 5, 10, 20, 40, 80 

Horizontal offset (m)

V
e

rt
ic

a
l 
o

ff
s
e

t 
(

m
)

 

 

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

1.512

1.514

1.516

1.518

1.52

1.522

 
WG01 WG02 WG03 

max Δn 0.02 0.01 0.019 

Size (µm
2
) 35 × 40 55 × 56 32 × 53 

WG_A WG_B WG_ C 

(a) (b) 

(d) 

(e) 

(c) 



 

 
 

 

 

 

can be noticed that WG_B exhibits the highest insertion loss for a 50 µm MMF input, whereas similar values are 

obtained from all samples for a SMF input. This can be attributed to the low coupling loss and the excitation of lower 

order modes at the waveguide input due to the small input spot. In terms of bandwidth, WG_B exhibits a much larger 

BLP value than the two other samples (~120 GHz×m vs ~50 GHz×m) owing to its lower Δn.  

       

Figure 6. Insertion loss for the reference waveguides for the 3 waveguide samples for a SMF and 50 µm MMF input and 

calculated BLP value for a 50 µm MMF input. 

The bending and crossing loss of the waveguide components are obtained by subtracting the insertion loss of the 

respective reference waveguides from the insertion loss of the components recorded under the same launch condition. 

The obtained loss difference represents therefore the excess loss induced due to the waveguide bends and crossings. The 

results are shown in Figure 7(a) and 7(b), while Figure 7(c) summarises the loss per crossing observed for each 

waveguide sample and launch condition. The results demonstrate the WG_B exhibits the highest bending loss due to its 

large width (~55 µm) and lowest Δn (~0.01), while similar loss values are obtained for the other two samples. A low 

bending loss < 1 dB is achieved for both samples WG_A and WG_C for radii > 6 mm for both inputs. The use of the 50 

µm MMF results in slightly increased insertion loss values (by ~1 dB) due to the higher coupling and bending loss 

incurred. For the waveguide crossings on the contrary, samples WG_B exhibit the lowest loss per crossing (~0.007 

dB/crossing and 0.02 dB/crossing for a SMF and MMF input respectively) due to their lower Δn value.     

   

Figure 7.  Loss of the waveguide (a) crossings and (b) bends, and (c) summary of the loss per crossing for each sample.  

The demonstrated waveguide components exhibit excellent optical transmission properties while the performance trade-

off with respect to their RI profile is demonstrated. The insertion loss of a complex waveguide layout that features a 

number of passive waveguide components can therefore be optimized for a particular launch condition. The index 

difference Δn can be appropriately chosen to minimize the total insertion loss for a particular waveguide link, while 

ensuring that adequate bandwidth is available for high-speed operation. Given the tight power budget requirements in 

high-speed optical links, this optimization becomes particular important for the design of next-generation passive optical 

backplanes.    
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6. CONCLUSIONS 

In this article, we present recent studies on multimode polymer waveguides and waveguide components and demonstrate 

that this particular technology can offer low loss transmission and high bandwidth in board-level optical interconnects. 

The waveguides can exhibit bandwidth-length product values in excess of 60 GHz×m for a range of offsets larger than 

±10 µm, while it is shown that even larger BLP values >100 GHz×m can be obtained with relaxed alignment tolerances 

when appropriate launch conditioning schemes are employed. Finally, studies on waveguide components demonstrate 

excellent optical transmission properties from these components and indicate that RI engineering can enable optimization 

of the loss and bandwidth performance of complex waveguide paths. These results highlight the strong potential of this 

technology in forming cost-effective high-speed board-level optical interconnects and passive optical backplanes. 
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