
The Journal of Neuroscience

http://jneurosci.msubmit.net

JN-RM-2135-15R1

Default mode dynamics for global functional integration

Deniz Vatansever, University of Cambridge
David Menon, Cambridge University

Anne Manktelow, University of Cambridge
Barbara Sahakian, University of Cambridge

Emmanuel Stamatakis, University of Cambridge

Commercial Interest:

This is a confidential document and must not be discussed with others, forwarded in any
form, or posted on websites without the express written consent of The Journal for

Neuroscience.

http://jneurosci.msubmit.net


 

 

Title: Default mode dynamics for global functional integration 

Abbreviated Title: Default mode dynamics for global integration 

Authors: D Vatansever1, DK Menon1, AE Manktelow1, BJ Sahakian2, EA Stamatakis1 

Author affiliations: 1Division of Anaesthesia and Department of Clinical Neurosciences, School of Clinical 

Medicine, UK & Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK, CB2 0QQ, 

2Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK, CB2 0 QQ 

Corresponding author details: Deniz Vatansever, MSc, BSc, Department of Clinical Neurosciences, Division of 

Anaesthesia, University of Cambridge, Box 93, Addenbrooke's Hospital, Hills Road, Cambridge, UK, CB2 0QQ, E-

mail: ddsv2@cam.ac.uk, Tel: +44 (0) 1223 217892 

 

Number of Pages: 27 

Number of Figures: 5 

Number of Words for Abstract: 211 

Number of Words for Introduction: 646 

Number of Words for Discussion: 1,444 

 

Conflict of Interest: The authors declare no competing financial interests. 

 

Acknowledgements: This research was supported by the Evelyn Trust (RUAG/018). In addition, DV received 

funding from the Yousef Jameel Academic Program; DKM is supported by the NIHR Cambridge Biomedical 

Centre (RCZB/004), and an NIHR Senior Investigator Award (RCZB/014), and EAS is funded by the Stephen 

Erskine Fellowship Queens’ College Cambridge. We would also like to thank Dr. Sanja Abbott for programming 

the stimulus delivery, Dr. Guy Williams and Victoria Lupson and the rest of the staff in the Wolfson Brain 

Imaging Centre (WBIC) at Addenbrooke’s Hospital for their assistance in scanning. Last but not least, we thank 

all the participants for their contribution to this study. 

 



 

 
 

2

Abstract: The default mode network (DMN) has been traditionally assumed to hinder behavioral performance 

in externally focused, goal-directed paradigms and to provide no active contribution to human cognition. 

However, recent evidence suggests greater DMN activity in an array of tasks, especially those that involve self-

referential and memory-based processing. Although data that robustly demonstrates a comprehensive 

functional role for DMN remains relatively scarce, the global workspace framework, which implicates the DMN 

in global information integration for conscious processing can potentially provide an explanation to the broad 

range of higher order paradigms that report DMN involvement. We used graph theoretical measures to assess 

the contribution of the DMN to global functional connectivity dynamics in 22 health volunteers during an fMRI-

based N-Back working memory paradigm with parametric increases in difficulty. Our predominant finding is 

that brain modularity decreases with greater task demands, thus adapting a more global workspace 

configuration, in direct relation to increases in reaction times to correct responses. Flexible default mode 

regions dynamically switch community memberships and display significant changes in their nodal 

participation coefficient and strength, which may reflect the observed whole-brain changes in functional 

connectivity architecture. These findings have important implications for our understanding of healthy brain 

function, as they suggest a central role for the DMN in higher cognitive processing. 

 

Significance Statement:  The default mode network (DMN) has been shown to increase its activity during the 

absence of external stimulation, hence was historically assumed to disengage during goal-directed tasks. In 

contrast, recent evidence implicates the DMN in self-referential and memory-based processing. We provide 

robust evidence for this network’s active contribution to working memory by revealing dynamic 

reconfiguration in its interactions with other networks and offer an explanation within the global workspace 

theoretical framework. These promising findings may help to redefine our understanding of the exact DMN 

role in human cognition. 

 

Keywords: Large-scale brain networks, default mode network, functional connectivity, graph theory, flexibility, 

alluvial diagram 
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Introduction 1 

Recent progress in MRI data acquisition and analysis has furthered our understanding of the human 2 

brain organization into distinct, yet interacting large-scale brain networks (LSNs) (Damoiseaux et al., 3 

2006; De Luca et al., 2006). However, one robust LSN comprising the posterior cingulate, medial 4 

prefrontal cortices and angular gyri continues to puzzle the scientific community in regard to its 5 

cognitive significance (Buckner et al., 2008). Termed default mode network (DMN) (Raichle et al., 6 

2001), this set of regions has been reported to decrease its activity during attention-demanding 7 

paradigms (Shulman et al., 1997; Mazoyer et al., 2001), thus has been historically assumed to 8 

interfere with task performance (Spreng, 2012).  9 

Challenging this notion of the DMN’s cognitive irrelevance, emerging studies report greater DMN 10 

activity/connectivity in a range of tasks that require self-referential processing such as 11 

autobiographical memory retrieval and future planning, as well as in social cognitive paradigms of 12 

empathizing, moral judgment and narrative comprehension (Buckner et al., 2008; Spreng and Grady, 13 

2010; Andrews-Hanna, 2011). Additionally, there is evidence suggesting a) changes in the DMN’s 14 

spatial extent during task execution (Spreng et al., 2013; Vatansever et al., 2015), b) positive 15 

correlations between DMN connectivity and behavioral measures (Hampson et al., 2006), and c) 16 

DMN interactions with other LSNs during rest (Fox et al., 2005) and task conditions (Spreng et al., 17 

2010). Overall, these findings point to a fundamental cognitive function for the DMN that is yet to be 18 

precisely delineated.  19 

Given such involvement in a wide range of tasks, extensive communication with other networks and 20 

its central placement in the brain from both anatomical and functional connectivity perspectives 21 

(Hagmann et al., 2008; Buckner et al., 2009; van den Heuvel and Sporns, 2013), the DMN may play a 22 

role in the global integration of information (van den Heuvel and Sporns, 2011; Braga et al., 2013) 23 

necessary for conscious processing during both unconstrained rest and controlled task conditions. 24 

This concept overlaps with the theoretical account of a global workspace originally proposed by 25 
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Baars (Baars, 2002) and may mechanistically involve the default mode and dorsal attention networks 26 

competing for limited resources facilitated by the fronto-parietal network through long-range, 27 

flexible connections (Dehaene and Changeux, 2011; Smallwood et al., 2012). As a hub of this global 28 

workspace, the DMN may generate the necessary associative information to be retained and 29 

manipulated by the fronto-parietal network.  30 

From a network organization perspective, the brain is considered to be economically configured into 31 

a cost-effective, highly modular small-world architecture that flexibly adapts a more expensive, yet 32 

informatically efficient and integrated global workspace in response to environmental demands 33 

(Bullmore and Sporns, 2012). Given our hypothesis on the potential contribution of DMN to the 34 

global integration of information, in this study, we investigated the alterations in whole-brain 35 

interactions in relation to performance during an N-Back working memory task with parametric 36 

increase in difficulty, specifically focusing on the DMN’s involvement in whole-brain reconfiguration.  37 

For the purpose of quantifying LSN interactions, we focused on modularity, a graph theoretical 38 

metric used to calculate the level of integration and segregation across brain regions in a given 39 

system (Newman, 2006; Meunier et al., 2009b), as well as global variable connectivity (Cole et al., 40 

2013), nodal participation coefficient and strength (Rubinov and Sporns, 2011) which describe the 41 

regional contribution of network nodes to global changes in functional connectivity.  42 

Given the association between effortful task performance and modular brain organization (van den 43 

Heuvel et al., 2009), we hypothesized that modularity would decrease with increasing cognitive 44 

effort. Additionally, based on existing literature on the engagement of DMN regions in a diverse set 45 

of goal-directed paradigms and their multisynaptic characteristics with extensive structural and 46 

functional connections to the rest of the brain, we predicted that the decrease in modularity and the 47 

expansion of global workspace topology would be reflected by the changes in DMN’s interactions 48 

with other LSNs, supporting a potential role for DMN as a global integrator of information. 49 
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Materials and Methods 50 

Participants 51 

Approved by the local ethics committee, informed consent was obtained from 22 right-handed 52 

healthy participants (age range = 19-57, mean age = 35.0, standard deviation = 11.2, female to male 53 

ratio = 9/13) all of whom took part in the N-Back working memory experiment as well as four other 54 

cognitive paradigms that are not reported in this study. The average score for the measure of 55 

premorbid IQ via the National Adult Reading Test (NART) was 117.1 (SD = 5.76), whereas Mini 56 

Mental State Exam (MMSE) averaged 29.33 (SD = 0.85), detecting no signs of memory problems. In 57 

addition, no history of drug or alcohol abuse, psychiatric, neurological disorders or head injury was 58 

recorded in any of the participants. 59 

Image Acquisition 60 

The experiment was conducted in a Siemens Trio 3T scanner at the Wolfson Brain Imaging Centre, 61 

Addenbrooke’s Hospital, Cambridge. The imaging session began with a localizer, followed by a high 62 

resolution T1-weighted, magnetization-prepared 180 degrees radio-frequency pulses and rapid 63 

gradient-echo (MPRAGE) structural scan (TR = 2300 ms; TE = 2.98 ms; TA = 9.14 min; flip angle = 9°; 64 

field of view (FOV) read = 256 mm; voxel size = 1.0 x 1.0 x 1.0 mm, slices per slab= 176). Whole-brain 65 

echo planar imaging (EPI) was used for the N-Back paradigm (TR = 2000 ms; TE = 30 ms; flip angle = 66 

78°; FOV read = 192 mm; voxel size = 3.0 x 3.0 x 3.0 mm; volumes = 345; slices per volume= 32). 67 

Paradigm Specifications 68 

In the N-Back working memory paradigm, three fixation blocks were pseudo-randomly interleaved 69 

with five cycles of four N-Back blocks ranging in difficulty between 0 and 3-Back. Single letters in 70 

white font were presented serially on a black background for 500 ms, each followed by 2500 ms 71 

fixation on a cross. While in the 0-Back trials participants were requested to press a button with their 72 

left index finger on the appearance of the letter Z in a string of random letters, more difficult levels 73 

of N-Back required the same button press in response to a match between the current and 1 74 
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previous letter (1-Back), 2 previous letters (2-Back) or 3 previous letters (3-Back). The participants 75 

also responded to non-targets by pressing a button under their right-hand middle finger. Each trial, 76 

including the fixation and task blocks, lasted 36 seconds and 10 seconds long instructions were 77 

presented before each block. 78 

Spatial and Temporal Preprocessing 79 

The preprocessing and image analysis were performed using Statistical Parametric Mapping (SPM) 80 

Version 8.0 (http://www.fil.ion.ucl.ac.uk/spm/) and MATLAB Version 12a platforms 81 

(http://www.mathworks.co.uk/products/matlab/). The first six volumes were removed to eliminate 82 

saturation effects and achieve steady state magnetization. The remaining data were slice-time 83 

adjusted, motion corrected, normalized to the Montreal Neurological Institute (MNI) space by 84 

utilizing the segmented high-resolution grey matter structural image and a grey matter template. 85 

The final preprocessing step involved smoothing the images with an 8 mm FWHM Gaussian kernel. 86 

The resulting data was used for statistical modelling. 87 

A strict temporal preprocessing pipeline of nuisance regression included motion and CompCor 88 

components attributable to the signal from white matter and cerebrospinal fluid (Behzadi et al., 89 

2007) as well as a linear detrending term, eliminating the need for global signal normalization 90 

(Murphy et al., 2009; Chai et al., 2012). The subject-specific six realignment parameters, the main 91 

effect of task-condition and their first order derivatives were also included in the analysis as 92 

potential confounds (Fair et al., 2007). Moreover, a temporal filter of 0.009 and 0.08 Hz was applied 93 

to focus on low-frequency fluctuations (Fox et al., 2005). 94 

Functional Connectivity and Graph Theoretical Analyses 95 

The main objectives of our study were to examine the whole-brain connectivity changes in response 96 

to increasing task difficulty and to assess the alterations in the interaction of DMN regions with 97 

other LSNs. Thus, we initially employed a whole-brain approach, in which average correlation 98 

matrices based on 264 ROIs (Power et al., 2011), corresponding to 10 well-established LSNs, formed 99 
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the basis of our functional connectivity and subsequent modularity analyses. The results, visualized 100 

via circular and novel alluvial representations (Rosvall et al., 2009), aimed to explicate the modular 101 

organization of the brain across task difficulty, but also intended to clarify the change in 102 

communities formed by the LSNs and possible behavioral correlations. While the flexibility of the 103 

264 nodes was assessed using the global variable connectivity measure, the DMN regions’ nodal 104 

participation coefficient and strength were further scrutinized for a full characterization of DMN’s 105 

contribution to the global connectivity dynamics. 106 

Regions of Interest Definition. We adopted a set of 264 brain regions based on both resting 107 

(Cohen et al., 2008) and task (Power et al., 2011) functional connectivity meta-analyses that have 108 

been shown to produce reliable network topologies (Dosenbach et al., 2007; Power et al., 2011; Cole 109 

et al., 2013; Spreng et al., 2013). As opposed to voxel-wise or anatomical definitions, the selected set 110 

of ROIs minimize signal overlap from multiple functional regions (Wig et al., 2011). The network 111 

partitions outlined by Cole et al. 2013 were utilized to assign each one of the 264 ROIs to one of the 112 

14 LSNs documented in the original publication (Power et al., 2011). Namely, 10 well-established 113 

networks covering dorsal and ventral attention, salience, cingulo-opercular, fronto-parietal, default 114 

mode, visual, auditory, somatomotor (hand and mouth), subcortical; as well as three networks that 115 

fall into memory retrieval, cerebellum, and a network of uncertain function were used as the 14 116 

network partitions. As in the original publication, the uncertain nodes were not related to any of the 117 

known LSNs (Power et al., 2011). 118 

Correlation Matrices. We used the Conn functional connectivity toolbox (Whitfield-Gabrieli and 119 

Nieto-Castanon, 2012) in order to construct task-specific (fixation, 0, 1, 2, 3-Back) functional 120 

connectivity matrices. For this purpose, the BOLD time series were first divided into block-specific 121 

scans as indicated by the onsets and durations of each task block. The delay in hemodynamic 122 

response was accounted for by convolving the block regressors for each task condition with a 123 

rectified hemodynamic response function. For each task condition, the scans that were associated 124 
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with nonzero effects in the resulting time series were concatenated and weighted by the value of 125 

the corresponding time series. This procedure not only adds the expected hemodynamic delay to 126 

different task blocks, but also de-weights the initial and final scans within each task block when 127 

computing functional correlation measures in order to avoid spurious jumps in BOLD signal at the 128 

points of concatenation and to minimize the potential cross-talk between adjacent task blocks 129 

(Whitfield-Gabrieli and Nieto-Castanon, 2012).  130 

Following this concatenation procedure, undirected and weighted matrices (264x264) of Fisher z-131 

transformed bivariate correlation coefficients (Pearson r) were constructed for each experimental 132 

condition (fixation, 0, 1, 2 and 3 Back) and each subject using the average signal from the 6 mm 133 

spheres placed on the MNI coordinates for all 264 ROIs described above. The matrices reflected both 134 

positive and negative correlations. The arbitrary thresholding and binarization processes in graph 135 

theoretical analysis often lead to loss of information, especially in the case of negative correlations 136 

(Rubinov and Sporns, 2011); which is why we focused on the fully connected, weighted correlation 137 

matrices. 138 

Modularity Analysis and Behavioral Correlation. Following the ROI selection and matrix 139 

construction steps, the correlation matrices with 264 ROIs as nodes and the weighted correlation 140 

coefficients as edges, were first converted from Matlab to Pajek (Program for Large Network 141 

Analysis) format (Nooy et al., 2011). For the whole-brain, group level modularity analysis, the 142 

resulting matrices were averaged across subjects. The aim was to quantify the partitioning of a 143 

functional network into communities of dense intra-module and sparse inter-module connections 144 

(Rubinov and Sporns, 2010). For each condition, including fixation and the four levels of difficulty, 145 

the average correlation matrices were significance clustered into modules using an Infomax 146 

community detection algorithm over 1000 bootstrap resampling and 10 partitioning iterations at the 147 

0.05 level of significance (Rosvall and Bergstrom, 2010). 148 
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In order to make a statistical inference on the change in modularity with increasing task difficulty, 149 

the 0-Back control (low demand) and 3-Back task conditions (high demand) were chosen for 150 

comparison. The Louvain modularity Q score based on the Brain Connectivity Toolbox (Rubinov and 151 

Sporns, 2010) was calculated on weighted correlation matrices (Blondel et al., 2008; Rubinov and 152 

Sporns, 2011) for each subject at 0 and 3-Back conditions, over 10 iterations. The highest Q with the 153 

greatest partitioning score was selected as the representative modularity score (Stanley et al., 2014). 154 

Using the GraphVar toolbox (Kruschwitz et al., 2015) a group-varying paired t-test was performed 155 

over 10 iterations in order to test the change in modularity at the 0.05 level of significance.  156 

Linear regression analysis between 0-Back Q scores and the change in Q scores between 0-Back and 157 

3-Back highlighted the individual differences (corrected for age) in the relationship between baseline 158 

modularity and the potential change with increasing task difficulty. Given previous studies on the 159 

effect of age on structural connectivity (Stamatakis et al., 2011), functional connectivity, modularity 160 

(Meunier et al., 2009a) and cognitive task performance (Li and Sikstrom, 2002; Meunier et al., 2014), 161 

age was introduced as a potential confound for the linear regressions in order to account for the 162 

wide age range in our sample. 163 

For a behavioral analysis, the reaction times to correct responses were first averaged across all trials 164 

and all blocks for each subject, separately for each level of task difficulty (0, 1, 2, and 3-Back). The 165 

data was assessed for normality using the Shapiro-Wilk test and Q-Q plots. One outlier was removed 166 

as identified by the outlier-labeling rule (Hoaglin et al., 1986). Using a linear regression analysis, we 167 

correlated the change in modularity with the change in reaction time to correct responses between 168 

0-Back and 3-Back conditions to assess the behavioral significance of modularity (corrected for age). 169 

Although the reaction times to correct responses were chosen to represent task performance, in line 170 

with current literature (Kitzbichler et al., 2011), we have also calculated the d’ metric based on the 171 

signal detection theory for performance accuracy (Green and Swets, 1974) and carried out paired t-172 

tests in order to assess the expected decrease in d’ and increase in reaction time to correct 173 
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responses between 0-Back and 3-Back, and to confirm greater task difficulty with increasing N-Back 174 

levels.  175 

Nodal Flexibility, Participation Coefficient and Strength. Having investigated the changes in 176 

modularity and the possible behavioral correlations across 22 subjects, our next objective was to 177 

clearly visualize the changes in community memberships responsible for the reconfiguration of the 178 

global brain modular architecture. The calculated communities were represented here using an 179 

alluvial diagram (Rosvall et al., 2009), which clearly outlines the interaction between LSNs at 180 

different difficulty levels, thus highlighting the flexible nodes that change community memberships. 181 

The 264 ROI partitioning into 10 well-established networks was color coded in order to aid the 182 

visualization of changes in community membership across the five distinct experimental conditions.  183 

In addition, a novel graph theoretical metric called global variable connectivity (GVC) was used to 184 

assess each node’s flexibility score across the five experimental conditions (Cole et al., 2013). GVC, 185 

calculated as the standard deviation of a given node’s connectivity strength, indicates the node’s 186 

tendency to shift functional connections with other nodes across multiple contexts. In order to 187 

further characterize the alterations in the DMN regions’ contribution to the reconfiguration of global 188 

functional connectivity, we calculated the participation coefficient (P) and nodal strength (S) for 189 

positive and negative weights and compared them with paired t-tests between 0-Back (low demand) 190 

and 3-Back (high demand) conditions, controlling for multiple comparisons using Bonferroni 191 

correction. While the participation coefficient assesses the diversity of inter-modular links 192 

established by a given node, the nodal strength metric calculates the sum of weights and number of 193 

positive/negative connections.  194 
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Results 195 

Global brain modularity decreases with increasing cognitive load 196 

The connectivity matrices of bivariate correlation coefficients (Pearson) clearly illustrated the 10 197 

well-established LSNs with strong intra-network connectivity profiles (Fig. 1). However, correlation 198 

matrices alone do to quantify the dynamic changes in inter-network interactions with increasing task 199 

difficulty. When assessing such architectural reconfiguration of brain dynamics, modularity has been 200 

a metric of choice to characterize network connections that transiently change their configurations 201 

in response to task demands (Bassett et al., 2006). Using this metric, we found that the modularity of 202 

the global brain connectivity decreases with increasing cognitive load, in line with results from an 203 

MEG study (Kitzbichler et al., 2011). While at fixation, 0-Back and 1-Back conditions the whole-brain 204 

connectivity profile revealed 4 stand-alone communities, this number decreased down to 3 major 205 

communities at the 2-Back and 2 communities at the 3-Back condition (Fig 1). Paired t-tests between 206 

the 0-Back (low demand) and 3-Back (high demand) conditions, over 10 randomized groups, 207 

suggested a significant decrease in modularity with increasing task load (P = 0.013). This outcome 208 

alludes to greater long-range interaction between LSNs and changes in brain topography towards a 209 

global workspace configuration (Baars, 2002) at the 3-Back condition. In other words, the brain 210 

adopts a more efficient, yet more costly organization in response to increasing cognitive demands 211 

(Kitzbichler et al., 2011).  212 

Change in modularity correlates with reaction time to correct responses 213 

Given the observed decrease in group-level modularity, our next objective was to investigate the 214 

individual differences in modularity changes and their potential correlation with behavioral scores 215 

obtained during task execution. For this purpose we first correlated the Louvain modularity Q score 216 

at 0-Back condition with the change in Q score between 3-Back and 0-Back conditions, correcting for 217 

age. The results indicated a negative relationship suggesting that the participants with higher 218 

modularity at the 0-Back control condition showed a smaller change in their modularity when 219 
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presented with the high-demand 3-Back condition, and vice versa (r = - 0.631, R2 = 0.425, P = 0.003) 220 

(Fig. 2A). 221 

Next we attempted to establish a relationship between modularity and behavior. At first, paired t-222 

tests revealed a decrease in d’ prime (P = 9.40E-8) and an increase in reaction times to correct 223 

responses (P = 5.10E-5) when comparing 0-Back (mean: d’ = 3.45, RT = 619.26 ms) to 3-Back 224 

conditions (mean: d’ = 2.19, RT = 958.12 ms), confirming greater task difficulty at higher levels of N-225 

Back. Subsequently, the change in modularity Q scores were correlated with the change in the 226 

reaction time to correct responses between 3-Back and 0-Back conditions for each subject, 227 

corrected for age. The results suggested that the subjects who displayed a higher change in 228 

modularity also showed a higher change in their reaction time (r = 0.469, R2 = 0.223, P = 0.037) (Fig. 229 

2B), indicating a behavioral significance of the observed alterations in brain architecture. In other 230 

words, slower response in the high demand 3-Back vs. low-demand 0-Back condition was associated 231 

with greater brain modularity. Such results imply that worse performance may be linked to limited 232 

long-range integration amongst distant brain regions, thus a smaller global workspace configuration. 233 

Similar correlations with behavior and modularity were previously reported using the d’ metric 234 

between 1 and 2-Back conditions (Stanley et al., 2014). 235 

Global brain dynamics reveal flexible default mode regions 236 

Subsequent to the observed decrease in modularity with increasing cognitive load and the 237 

corresponding correlation with performance in the scanner, our aim was to scrutinize the exact 238 

changes in the global brain connectivity profile and the interaction of DMN with other LSNs. Our 239 

hypothesis was that the DMN, in a global integrator role contributing to the global workspace, would 240 

show distributed interactions with a number of LSNs, reflected by the changes in community 241 

memberships with increasing task demands. The alluvial representation (Rosvall et al., 2009) 242 

provides a unique and informative tool for that purpose. The resulting diagram of whole brain 243 
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interactions indicated dynamic realignments in a number of default mode regions, revealing flexible 244 

nodes that switch memberships from one community to another depending on cognitive demands. 245 

Using the average, group-level modularity analysis for community detection discussed above, in the 246 

fixation condition, Community 1 mainly comprised the salience, fronto-parietal and dorsal attention 247 

networks, Community 2 the visual network, Community 3 the subcortical, somatomotor, auditory 248 

and cingulo-opercular networks, and Community 4 the ventral attention and default mode networks, 249 

respectively (Fig. 3). All 58 default mode regions were part of Community 4 except for a middle 250 

temporal gyrus node, which was more functionally similar to Community 1. In addition to the DMN 251 

regions, Community 4 also included all the “memory retrieval” nodes, 46% (13:28) of the uncertain 252 

nodes, and 1 salience node, namely the dorsal anterior cingulate cortex. Around 62% (8:13) of the 253 

subcortical nodes, which included the bilateral thalamic, but no striatal regions, also showed 254 

functional similarity with Community 4. 255 

However, this partitioning displayed transience with increasing task difficulty. In the 0-Back 256 

condition, the 4 modules remained stable relative to the fixation condition with a number of salience 257 

network ROIs showing greater functional similarity with the DMN. The 1-Back condition displayed 258 

the greatest volatility in community membership, in which a portion of DMN regions from 259 

Community 4 switched to Community 1 and 2, encompassing the salience, fronto-parietal, dorsal 260 

attention and visual networks. In the 2-Back condition, the cingulo-opercular network ROIs were 261 

divided between two communities dominated by the fronto-parietal and default mode networks, 262 

while some subcortical regions formed a separate community. At the 3-Back condition with the 263 

highest cognitive load, 17% (10:58) of initial DMN regions changed their membership to Community 264 

1, whereas the remaining 48 DMN regions have retained their community membership and formed 265 

an extensive Community 2 that included a number of somatosensory, cingulo-opercular, auditory, 266 

visual and subcortical regions.  267 
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This qualitative investigation was also supported by the GVC score, which assesses the flexibility of 268 

network nodes across task conditions and was previously used in a study with 64 task states 269 

designating the fronto-parietal and default mode as highly volatile networks (Cole et al., 2013). 270 

Across the five experimental conditions, the DMN regions showed high flexibility (above the median 271 

score of 0.257) in addition to the fronto-parietal, dorsal attention and visual network nodes (Fig. 4), 272 

which are commonly implicated in working memory tasks with visual stimuli (Owen et al., 2005). 273 

Diversity of default mode connections decrease with increasing positive strength 274 

Having established that the modularity of the brain decreases with greater task load and that the 275 

DMN regions exhibit flexibility/volatility in community memberships, the subsequent aim of our 276 

study was to characterize the changes in DMN functional connectivity with greater task difficulty and 277 

to assess its contribution to global functional integration with further graph theoretical measures. 278 

For that purpose, we first calculated the nodal participation coefficient and strength measures, 279 

which indicate the diversity of inter-modular links and the number of positive/negative connections 280 

of each node, respectively. From 0 to 3-Back conditions, the DMN ROIs showed a significant 281 

decrease in their participation coefficient for both positive (P = 0.0006) and negative (P = 3.53E-10) 282 

weights (Fig. 5A). However, the nodal strength increased for positive (P = 0.045) and decreased for 283 

negative (P = 1.95E-10) weights displaying a differential change in the sum of bidirectional functional 284 

connectivity to the rest of the brain (Fig. 5B).  285 

Nodes with a high participation coefficient are believed to facilitate global integration between 286 

modules of a system (Guimera and Amaral, 2005), and in this case the significant decrease in the 287 

participation coefficient reflects the decrease of global brain modularity for both positive and 288 

negative weights. On the other hand, the increase in positive weights alludes to a greater number of 289 

positive connections made with DMN regions, with a decrease in negative connections. Although the 290 

cognitive significance of anti-correlations is still speculative, recent evidence suggests biological 291 

relevance (Fox et al., 2009) and potential behavioral significance (Kelly et al., 2008; Sala-Llonch et al., 292 



 

13 
 

2012); however, further empirical evidence is needed.293 
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Discussion 294 

Previous studies that aimed to describe the DMN’s contribution to cognitive processing have 295 

reported greater DMN involvement in a range of tasks assessing autobiographical memory retrieval, 296 

theory of mind, social cognition, episodic recall and imagined scenes (Buckner et al., 2008; Andrews-297 

Hanna et al., 2014). Important to consider in parallel are DMN activity/connectivity alterations 298 

observed in many neuropsychiatric conditions (Garrity et al., 2007; Whitfield-Gabrieli et al., 2009), 299 

traumatic brain injury (Sharp et al., 2011), normal ageing (Damoiseaux et al., 2008), and under 300 

anesthesia (Stamatakis et al., 2010). Such evidence points towards a fundamental DMN function and 301 

necessitates a theoretical framework that can provide a comprehensive explanation for DMN 302 

involvement in many different forms of cognition and related disorders.  303 

The aim of this study was to assess global brain connectivity changes with increasing cognitive 304 

demands in a working memory task and to determine a potential DMN involvement as a global 305 

integrator of information. Specifically, we used the graph theoretical measures of modularity, global 306 

variable connectivity, nodal participation coefficient and strength to assess the changing community 307 

architecture of the brain across increasing task difficulty in an N-Back paradigm. The results showed 308 

that brain modularity decreased at higher levels of task load and this change was related to reaction 309 

time, indicating that the functional community formation is transient and that it changes in response 310 

to cognitive demands. Default mode ROIs displayed high flexibility and volatility in changing 311 

community memberships, with decreasing participation coefficient and increasing positive 312 

connectivity strength, thereby actively contributing to greater functional integration. 313 

Such results highlight a fine balance between network segregation and integration in meeting task 314 

demands. Our findings are not only in line with reports demonstrating functional parcellation of the 315 

brain into densely intra-connected LSNs (Power et al., 2011), but also with studies that reveal 316 

dynamic inter-network interactions (de Pasquale et al., 2012; Spreng et al., 2013). In fact, a variety of 317 

neuroimaging techniques have proposed the economical organization of the brain into a small-world 318 
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architecture that minimizes the cost of wiring and metabolism by forming and maintaining 319 

communities with a high number of local, and few distant connections (Achard et al., 2006; Bullmore 320 

and Sporns, 2009, 2012). In this context, the DMN regions have been shown to represent rich-clubs, 321 

i.e. areas of high global connectivity (van den Heuvel and Sporns, 2011; de Pasquale et al., 2013) that 322 

may serve as hubs for the integration of information. Similarly, the observed decrease in modularity 323 

with higher task load may be driven by changing DMN connectivity to the rest of the brain, 324 

demonstrated by the alluvial diagram as well as the significant changes in the diversity of inter-325 

modular links and the strength of connections made by DMN regions. 326 

The highly stable modular architecture of the brain (Achard et al., 2006) has been previously 327 

reported to show transient network reconfiguration in response to changing environmental 328 

demands during simple tasks (Bassett et al., 2006). Moreover, modularity of the brain at rest was 329 

shown to predict subsequent performance in an N-Back task (Stevens et al., 2012) and nodal 330 

flexibility was predictive of complex motor learning (Bassett et al., 2011), thus linking functional 331 

brain organization, learning and memory.   332 

Taken together with our results, these findings also provide support for a relationship between 333 

changes in modularity and performance. Hence, the ability to transiently switch between a 334 

crystallized modular architecture to that of a highly integrated global workspace (Baars, 2002) with 335 

long-range connections, may be related to human cognitive performance and conscious processing 336 

such as in a working memory task (Kitzbichler et al., 2011). The DMN with its observed flexible nodes 337 

across increasing cognitive loads may be facilitating such dynamic changes in global brain 338 

topography. As a caveat we need to mention that our study utilized a block-design with low 339 

temporal resolution. To provide more conclusive evidence for the mechanism by which DMN nodes 340 

interact with other LSNs, future research will need to employ paradigms that occupy finer time 341 

scales. We also considered the possibility that the age range of the volunteers in this study may have 342 

weakened the overall impact of our findings. To this end, we included age as a confounding variable 343 
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in our analyses where appropriate, and found that age had no effect on the associations we 344 

established between changes in modularity and reaction time to correct responses.  345 

From a cognitive perspective, as was initially described by Baddeley and Hitch, working memory 346 

constitutes a multi-component system that retains and manipulates information for use in executive 347 

functions ranging from decision-making to planning (Repovs and Baddeley, 2006). Thus, it represents 348 

an integral part of our everyday lives allowing us to solve worldly problems. Over the years, this 349 

hypothesis has been tested with various paradigms to assess the brain’s response to “online” 350 

retention, updating and manipulation of information with varying degrees of difficulty. Fronto-351 

parietal areas have been widely shown to activate in response to N-Back tasks (Owen et al., 2005); 352 

however, growing evidence also highlights the DMN’s contribution to working memory.     353 

Spreng and colleagues for example, showed enhanced task performance when the task required 354 

access to long-term autobiographical memory stores supported by the DMN (Spreng et al., 2014). 355 

Using a novel famous faces version of the N-Back task, they reported greater DMN activity while 356 

participants matched famous as opposed to anonymous faces and concluded that the DMN’s 357 

contribution may be restricted to accessing internal mental representations to facilitate congruent 358 

task goals. Expanding this hypothesis, in a perceptual version of the N-Back, Konishi and colleagues 359 

showed greater activity in DMN, as well as in salience and fronto-parietal networks, during 1-Back in 360 

comparison with 0-Back conditions (Konishi et al., 2015). These results reinforced the assertion that 361 

regardless of autobiographical memory content, access to memory stores as opposed to the 362 

processing of current perceptual input, was sufficient enough to drive DMN involvement 363 

(Smallwood, 2013). In light of these findings, the observed increase in volatility of the DMN regions 364 

and their interactions with other LSNs (e.g. salience and fronto-parietal) during 1-Back as opposed to 365 

the 0-Back condition in our study (Fig. 3) might represent the DMN’s transient retrieval of memory 366 

and integration of information for an expanded global workspace. Overall, this evidence suggests 367 
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that, especially during paradigms that involve memory-based processing, the DMN may actively 368 

contribute to human cognition – a role that has not yet been fully defined.  369 

In the context of segregation and integration in the brain, Baars and colleagues developed the global 370 

workspace model related to conscious processing, in which the integration of information provides 371 

the necessary associations for reasoning, decision-making and planning (Baars, 2002). The 372 

interactions between the default mode, dorsal attention and fronto-parietal networks are 373 

hypothesized to engage with such dynamic and integrative processing in which the DMN is thought 374 

to provide internal information for global amplification facilitated by the fronto-parietal network 375 

(Dehaene and Changeux, 2011; Smallwood et al., 2012). Along similar lines, the posterior cingulate 376 

has been discussed as an area that facilitates integration across multiple networks (Leech et al., 377 

2012; Braga et al., 2013). Thus, with its extensive structural and functional connections, the DMN 378 

may constitute an important global workspace hub, providing associative information (Bar, 2007) for 379 

scrutiny and manipulation by the co-operating fronto-parietal network. Such a framework would not 380 

only offer an explanation for the involvement of the DMN in a range of self-referential and memory-381 

based tasks (Andrews-Hanna et al., 2014), but would also allude to its central importance in wider 382 

brain processing (Vatansever et al., 2015) that extends to social cognition and creativity (Wiggins and 383 

Bhattacharya, 2014). 384 

A comparable concept was introduced by Baddeley (Baddeley, 2000), who argued for the existence 385 

of an episodic buffer, which integrates information from the visuo-spatial sketchpad, the 386 

phonological loop and long-term memory stores for use by the central executive. Although there is 387 

no consensus on the neural correlates of the episodic buffer, the DMN’s high structural and 388 

functional connectivity, its involvement in a wide variety of cognitive paradigms, and the potential 389 

contribution to the global integration of information, make it a likely candidate for this role. 390 

Nevertheless, further research that directly investigates these hypotheses will be required in order 391 
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to establish whether the DMN constitutes the neural underpinning of the theoretical global 392 

integrator and/or episodic buffer. 393 

In conclusion, the results of our study demonstrate increasing interactions between various LSNs, 394 

including DMN, with increasing cognitive effort during a working memory task. In contrast to the 395 

historically held view on the irrelevance of DMN to goal-directed, attention-demanding paradigms, 396 

we propose that the DMN actively contributes to task performance, possibly through global 397 

integration of information, which might also explain its recently reported involvement in a diverse 398 

range of tasks. However, the precise cognitive mechanism that facilitates these processes remains a 399 

central question for future research.  400 
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Figure Legends 581 

Figure 1. Global brain modularity decreases with increasing task demands. The correlation matrices 582 

denote bivariate (Pearson) correlation coefficients for the five distinct experimental conditions of 583 

fixation, 0, 1, 2, and 3-Back, averaged across all subjects. The boxes with strong intra-network 584 

correlations correspond to 10 well-established LSNs from the existing literature (Cole et al., 2013). 585 

For further modularity analysis, the Fisher transformed Z values were significance clustered (p<0.05) 586 

over 1000 bootstrap resampling and 10 partitioning iterations. The resulting modules are displayed 587 

using the circular visualization on the right hand corner of the correlation matrices. The circle size 588 

and the line thickness of the links between the modules are representative of the average weights of 589 

the nodal connections. 590 

Figure 2 Individual differences in the change in modularity and their corresponding behavioral 591 

correlation. A) Participants with higher modularity Q score at 0-Back control condition demonstrated 592 

a smaller change in their modularity between 3 and 0-Back conditions (r = -0.631, R2 = 0.425, P = 593 

0.003). B) The change (3-Back minus 0-Back) in subject level modularity Q scores positively 594 

correlated with the change in the reaction time to correct responses between the two selected high 595 

and low demand N-Back conditions (r = 0.469, R2 = 0.223, P = 0.037). Both linear regressions were 596 

corrected for age. Using the outlier identification technique, data from one volunteer was removed, 597 

as it was higher than the upper limit of the reaction time distribution. However, the same analyses 598 

with the outlier did not change the significance of the results (A: r = -0.617, R2 = 0.405, P = 0.003, B: r 599 

= 0.558, R2 = 0.313, P = 0.009).  600 

Figure 3. Dynamic changes in global brain connectivity across increasing task difficulty, represented 601 

by an alluvial diagram (Rosvall et al., 2009). At each task condition, the communities corresponding 602 

to the modules in Figure 1 are separated by white gaps. The 264 ROIs are colored-coded based on 603 

their LSN memberships. The flows indicate the ROIs, which switch community membership based on 604 

their functional similarity with other ROIs in a given difficulty level. The darker shades in each 605 
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network color denote the nodes that are part of a given module in at least 95% of the 1000 606 

bootstrap partitioning. 607 

Figure 4. Mean global variable connectivity score for the 10 LSNs across the five experimental 608 

conditions. GVC measures a given node’s tendency to switch community memberships across 609 

different contexts (Cole et al., 2013). The color-coded bars illustrate the 10 well-established LSNs’ 610 

mean GVC, and the error bars show standard error. The results indicate high flexibility in the DMN 611 

nodes (above the median score of 0.257) as well as in the fronto-parietal, dorsal attention, and 612 

visual network nodes. The network abbreviations are as follows: fronto-parietal (FPN), cingulo-613 

opercular (CON), salience (SAN), dorsal attention (DAN), ventral attention (VAN), and default mode 614 

(DMN). 615 

Figure 5. Nodal participation coefficient and strength measures for the positive and negative 616 

connections of DMN ROIs at 0-Back and 3-Back conditions. A) While the nodal participation 617 

coefficient (P) denotes the diversity of inter-modular links, B) the nodal strength (S) represents the 618 

sum of positive and negative links made by each node. The bars represent the histogram of 619 

frequency for given P and S values. The calculations were performed over 10 iterations and the 620 

paired t-tests at the 0.05 level of significance were controlled for multiple comparisons using 621 

Bonferroni correction. 622 
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