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ABSTRACT

Aims. We investigate Bondi-Hoyle-Lyttleton accretion onto a black hole for ultra-relativistic flows, and how flow features
are affected by density perturbations, upstream fluid velocity, and black hole spin.
Methods. We use high-resolution shock-capturing (HRSC) schemes solved on curvilinear overlapping grids as demon-
strated in a previous publication.
Results. We demonstrate the quantitative dependence of the shock-angle and mass accretion rate on black hole spin,
upstream fluid velocity, and density perturbations. We also demonstrate the qualitative dependence of the accretion
region and flow features on the same parameters.
Conclusions. We find that the mass accretion rate does not depend strongly on these parameters, and most of the
difference in flow is seen in the shock angle and general flow patterns close to the black-hole, as previously predicted
by lower-dimensional simulations. Moreover, we demonstrate independence of initial conditions in that a steady flow
around a non-spinning black-hole which suddenly starts to spin will converge to the same flow pattern as if the black-hole
had been spinning initially.
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1. Introduction

Bondi-Hoyle-Lyttleton (hereafter BHL) accretion is the
accretion of a uniform fluid onto a compact object. It is
used as a model for studying the accretion of interstellar
gas onto astrophysical objects. The relativistic extension of
this is the accretion of fluid onto a black hole.

Work has previously been done in the relativistic case
by Font et al. (1999) for an ideal gas accreting onto a black
hole. However, due to computational constraints, their work
concentrated on two-dimensional cases: those of axisym-
metric accretion onto a Schwarzschild black hole, and of the
thin-disc approximation of accretion onto a Kerr black hole.
As expected from the Newtonian case, they found that su-
personic flow produced a shock-cone, which was often, but
not necessarily, attached to the horizon of the black hole.
Subsonic flow, on the other hand, produced a smooth flow.
They further found that the accretion pattern in the case of
a Kerr black hole has fairly similar to that of a non-spinning
black hole at large distances from the horizon. However,
near the horizon, the shock cone (if present) wrapped itself
around the black hole in the direction of spin. This effect
decreased at large distances from the horizon.

Work on BHL accretion in the Newtonian case was also
performed by Ruffert. In a series of papers (Ruffert (1994,
1995, 1997, 1999)), he explored the dependence of the flow
properties on the accretion radius, the adiabatic index of
the ideal gas, and perturbations of the density and velocity
upstream of the accretor.

More recently, Farris et al. (2010) have performed an
in-depth parametric study of a binary black hole system

accreting gas from a surrounding gas cloud, using a high-
resolution shock-capturing (HRSC) scheme for the fluid
evolution, and 4th order Runge-Kutta time-stepping for the
metric evolution, on a Cartesian mesh with AMR. Also,
Penner (2011) has performed a parametric study of general
relativistic magneto-hydrodynamic (GRMHD) BHL, again
using HRSC methods on a Cartesian mesh. Dönmez et al.
(2011) have also investigated instabilities within Bondi-
Hoyle flows, but in the thin-disc approximation.

In this work, we have combined the investigations of
Font, Ibáñez, and Papodopoulos, and Ruffert, as cited
above, into a more general parametric study. We took our
inspiration for appropriate parameters from all the papers
cited above. We have performed a parametric study incor-
porating the combined effects of black hole spin, the angle
of the wind to the spin-axis, and perturbations of the fluid
density. We investigated the effects of these on the flow
structure, the mass accretion rate, and the angle which the
shock-cone (if any) made to the incident wind direction.

In §2, we summarise the numerical methods we used
to generate these results. In §3 we describe the grids and
initial conditions used for the study and we give details of
the models we study, the parameters we have chosen to vary,
and our reasons for choosing particular models. In order to
make quantitative deductions from our simulations, we need
to perform some post-processing, of which we give details
in §4.

As a precursor to the main study, we give in §5 some
results giving a general overview of the fluid morphologies
that can be expected from BHL accretion, covering a small
selection of fluid velocities and adiabatic indices. Then, in
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§6, we present our results from our full parametric study,
focusing on one model from those presented in the preceding
section. Results of the study are given in §7, in graphical
form, with a qualitative description of the flow features.
Then, in §8, we give some quantitative results from our
study. In §9 we include two simulations demonstrating the
effect of instantaneously changing the upstream conditions
on the final solution. Finally, we show in §10 conclusions we
have drawn from our work, and suggestions of future work
in this area.

Throughout this paper, we use units where the speed
of light, c = 1, and the Newtonian constant, G = 1. Greek
indices run over space and time: µ, ν, . . . = 0, 1, 2, 3, and
Roman indices run over space only: i, j, . . . = 1, 2, 3.

2. Numerical methods

A detailed exposition of the system of equations we solve
and our numerical approach is given in our previous papers,
Blakely et al. (2015a,b). We summarise the approach in the
following paragraphs.

We note that the equations of general relativistic hy-
drodynamics (GRHD) form a conservation law with source
terms. We can therefore use a finite-volume approach to
solving the hyperbolic part of the system. Since we ex-
pect shocks to be produced in the accretion in the super-
sonic case, we should use high-resolution shock-capturing
schemes. However, approximate or exact Riemann solvers
may be prohibitively expensive for this, both in terms of
time taken to implement and test and in terms of compu-
tational expense. We have therefore discussed this in more
detail and validated in Blakely et al. (2015a) the GFORCE
scheme of Toro and Titarev (2006), which can be applied
to any system of equations in flux-conservation form with
little effort and relatively low computational expense, but
with higher accuracy than previous similar schemes. We use
GFORCE with piecewise linear slope-limited reconstruc-
tion of the solution (SLIC), so that we obtain a second-order
scheme overall, in regions of smooth flow, and first-order at
shocks in the flow.

In order to advance the source-terms which are in-
troduced by the non-flat metric, we use the second-order
Runge-Kutta algorithm, which is combined with the finite-
volume update using Strang splitting, which maintains
second-order accuracy of the overall scheme.

In order to solve the system of equations on a set of
curvilinear grids, we calculate the fluxes in the coordinate
system of the grid, and transform them to Cartesian coor-
dinates. The reason that we keep all solution variables in
Cartesian coordinates is that this avoids any need to trans-
form the solution variables between grid frames in order to
interpolate between grids.

We note that we have included the free-stream preserva-
tion correction referred to in Blakely et al. (2015a), which
ensures that a constant fluid state can be maintained up
to round-off error on even the most distorted of curvilinear
grids.

In the conservation-law form of the equations for
GRHD, the metric enters the system through the fluxes.
Our preceding approaches therefore require no adaptation
to evolve a fluid on a non-flat metric. However, we have
found it necessary to make some alterations to the flux cal-
culations in order to maintain accuracy. These were detailed
in Blakely et al. (2015b), and ensured that the metric and

Fig. 1: Overlapping grid structure forming a hollow sphere
without any polar singularities.

variables were evaluated at the correct locations. This was
of particular importance when using the slope-limited re-
construction, which reconstructs solution variables at cell-
faces, whereas metric values are only known at cell-centres.
We therefore had to transform the fluid variables to ensure
that they were expressed with the correct metric. We note
that the approach of Rossmanith et al. (2004) is the rigor-
ous way to deal with this, but that it would seem to be
prohibitively computationally expensive.

Our approach for the complex problem of dealing with
interpolation between overlapping grids is to use the Over-
ture package of Henshaw et al. (2015). Overture is a li-
brary of routines that deal with general curvilinear over-
lapping grids, and provide sufficient geometric information
for developers to implement their own numerical methods
on those grids. It also handles interpolation between the
various grids, and reading/writing of an HDF file for saving
information. It is parallelised and has its own visualisation
package, which we have used to generate the plots herein.

3. Simulation set-up

In order to generate a spherical grid with no singulari-
ties, we took two spherical grids and restricted their latitu-
dinal coordinates to lie in [0.18π, 0.82π]. One of the grids
was then rotated through π/2 and the two grids were then
overlapped so that each grid filled in the region where the
other’s pole had been removed. An image of the grid is
shown in Figure 1. In Table 1 we show the resolutions of
the grids that we used.

It was suggested by Papadopoulos and Font (1998) that
the metric written in Eddington-Finkelstein coordinates
(for spin a = 0) or Kerr-Schild coordinates (a > 0) was
most suited to simulations of the type we present here.
These allow the coordinate system to extend smoothly in-
side the horizon, as opposed to other systems such as Boyer-
Lindquist, which have a singularity at the horizon.

Therefore, for all of the simulations presented in this
paper, we use the Kerr-Schild metric, expressed in Carte-
sian coordinates. However, since Font and Ibáñez (1998a)
used Boyer-Lindquist coordinates, we have, in the post-
processing stages, transformed into this coordinate system.
This is also preferable when generating streamline plots as
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Resolution low medium high
θ cells 37 53 63
φ cells 113 161 193
r cells 69 98 118

cells per grid 288 489 836 234 1 392 768
total cells 576 978 1 672 468 2 785 536

Table 1: Grid cell statistics for the resolutions used. These
give the numbers of cells around the sphere in the az-
imuthal, polar, and radial directions. We also give the total
number of cells in each grid and in total. Points removed
by the overlapping grid routines are still included in these
counts. See Blakely et al. (2015b) for a more complete ver-
sion of this table.

Model c∞ Γ M∞ v∞
UB0 0.570 4/3 0.6 0.342
UC0 0.810 5/3 0.6 0.486
UA1 0.310 1.1 1.5 0.465
UB1 0.570 4/3 1.5 0.855

Table 2: Test model parameters, as taken from
Font and Ibáñez (1998b). These give the adiabatic in-
dex Γ, and the sound-speed c∞, Mach number M∞, and
velocity v∞ at spatial infinity. We emphasise that the
values for the sound speed are exact.

the velocity then approaches c = 1 at the horizon, as it
would appear to for a distant observer. The forms of the
metrics and the transformation between them are given ex-
plicitly in Blakely et al. (2015b). The inner excision bound-
ary is always placed between the outer horizon at r+ and
the inner horizon at r−, although its precise location varies
depending on the spin parameter. The outer boundary al-
ways lies at 50M .

At the inner excision boundary, we use zeroth-order ex-
trapolation of the conserved variables to fill the two ghost-
cells, scaling them by the appropriate ratio due to the
metric determinants. Physically, these boundary conditions
cannot have any effect as they are inside the event horizon
and, numerically, we have not found that any significant
effects propagate into the main flow. At the upwind outer
boundary at 50M , we use Dirichlet boundary conditions,
defined by the initial data as discussed below. At the outer
boundary where the fluid is outgoing, we simply extrapo-
late to zeroth order in conserved variables as for the inner
boundary, except that we now do not adjust for the metric,
since the space-time is essentially flat at 50M . Full details
are given in Blakely et al. (2015b).

In order to cover the range of flow patterns covered by
Bondi-Hoyle-Lyttleton accretion, we make use of some con-
figurations suggested by Font and Ibáñez (1998b). We give
the parameters for these in Table 2. Note that, for con-
sistency, we use the same naming convention as Font and
Ibáñez throughout for the models. As initial data for our
fluid we use constant density, constant pressure, and con-
stant velocity (in Kerr-Schild coordinates) over the whole
domain. The density and pressure are defined so as to give
a constant sound speed of c∞ if required (it is not, for ex-
ample, required for a stiff fluid where the sound speed is
always c = 1). The velocity is normalised as follows: given
a wind direction vector, ni, and a velocity at spatial infinity,

v∞, the wind velocity at a point is defined as

vi =
v∞ni

√

γklnknl
. (1)

We also allow for the fluid to have a spatially non-
uniform density upstream of the black hole, following
Ruffert (1999), who defines the density to be

ρ∞ = ρ0

(

1− 1

2
tanh

[

2ǫρ
y

RA

])

, (2)

where ρ∞ is the fluid density at spatial infinity, ǫρ is a
density perturbation parameter, and the accretion radius
is defined to be

RA =
2M

v20
, (3)

although Font and Ibáñez use a different definition:

RA =
M

v2
∞

+ c2
∞

. (4)

where c∞ is the sound-speed at spatial infinity.
One would ordinarily use a linear modulation for the

density perturbations but, for sufficiently large ǫρ, this leads
to negative density at large distances from the black hole.
Ruffert therefore uses the tanh variation as it is approxi-
mately linear near the origin but tends to ±1 as r → ∞, and
so avoids this problem while maintaining approximately the
same problem set-up. In our set-up, the pressure is defined
such that the sound speed is given by a constant value c∞
upstream.

Following (2), therefore, we generalise to the case of a
non-flat metric, and our initial density is given by

ρ(x) = ρ∞

(

1− 1

2
tanh

[

2ǫρ
x · p
RA

])

, (5)

where p is orthogonal to the wind direction n, and specifies
the direction in which the perturbation occurs. The vectors
n and p are unit vectors defined at spatial infinity, so that
the notions of orthogonality and normalisation are defined
in terms of the flat-space Euclidean metric δij = ηij .

4. Analysis of results

After running the simulations, we must process them
in order to extract useful conclusions from them and to
compare different models in a quantitative way.

In order to calculate the mass accretion rate Ṁ from
our numerical output, we note that (Petrich et al. (1989)):

Ṁ = −
∫

S

α
√
γρW

(

vi − βi

α

)

dSi (6)

where α is the lapse function, βi the shift vector, W the
Lorentz factor, and

√
γ the determinant of the spatial met-

ric. In order to evaluate this numerically, we interpolate the
integrand at evenly spaced points in the θ and φ coordinates
on a sphere with some radius r and sum them weighted by
the infinitesimal area dSi = γijn

jdA at those points. We
use 150 points in the θ (latitudinal) direction and 300 points
in the φ (longitudinal) direction. We showed this to be suffi-
cient in Blakely et al. (2015b). We carry out the calculation
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in Kerr-Schild coordinates, as opposed to Font and Ibáñez
(1998b), who calculated in Boyer-Lindquist coordinates.
However, since the result is a scalar, it should be the same
in both coordinate systems.

For a more direct comparison with Font and Ibáñez
(1998b), we have scaled the mass accretion rate in the same
way, by a factor

4πλsM
2ρ∞

(v2
∞

+ c2
∞
)3/2

, (7)

where λs =

(

1

2

)(Γ+1)/2(Γ−1) (
5− 3Γ

4

)

−(5−3Γ)/2(Γ−1)

(8)

and Γ is is adiabatic index of the fluid.
In order to provide a suitable comparison with previous

work, we transform the velocities we obtain into those in
Boyer-Lindquist coordinates. This is only possible outside
the horizon of the black hole, and so results derived from
these cannot extend inside the black hole. We can calculate
the total velocity v =

√

γijvivj and, in some cases, locate
the stagnation point of the flow, which lies downstream of
the black hole.

We can also extract some more information about the
flow structure by calculating streamlines, generated by
starting a set of tracers on a circle at a distance of 40M
upstream of the black hole, and with radius 8M , and evolv-
ing them forwards in time. This is done on the final steady
state of the velocity at t = 300M , using velocity vectors in
the Boyer-Lindquist coordinate basis as described in §4.

The streamline algorithm has also been used to deter-
mine the size and shape of the accretion region, being the
region inside of which fluid will fall into the black hole, by
starting a set of streamlines covering a circle at a distance of
40M upstream of the black hole and checking which trac-
ers fall into the hole. From this we can determine a low-
resolution approximation to the accretion region.

In §5 we shall see that under some circumstances a
shock-cone forms (for example, Figure 8). Far from the
black hole, the sides of the cone become straight, and we
use this part of the flow to calculate the opening angle of
the cone.

In order to find the shock location, we plot the veloc-
ity

√

γijvivj in Boyer-Lindquist coordinates around circles
centred on the origin, at various radii. We can then take the
centre of the jump in velocity as the shock location, since
conserved schemes preserve the shock location. The circles
are in the plane containing the wind direction and the y-
axis (or the perturbation direction, if different). We show
one of these plots in Figure 2, where we see that, although
the shock is spread over about 11◦, the centre of the shock is
fairly easy to find. In particular, we note that the centre of
the shock in the angular direction corresponds to the centre
of the shock in the velocity component, as we would expect
from the conservation property of finite-volume methods.
The data points are interpolated; however, we interpolate
to the same number of points as there are grid cells, so there
is a close correspondence between the data points and the
actual values computed.

However, since the shock-cone is not centred at the ori-
gin, we calculate the actual angle of the shock with the wind
direction as

θ = tan−1

(

r1 sin θ1 − r2 sin θ2
r1 cos θ1 − r2 cos θ2

)

, (9)

0

0.65

0.7

0.75

0.8

0.85

0.9

d

d

Equatorial angle
/2 3 /2 2

V
e
lo

c
it

y

Fig. 2: Velocity against equatorial angle measured at radius
r = 30M for model UB1. This shows how we calculate the
shock angle. The upper and lower horizontal lines on the
left of the plot mark the upper and lower bounds of the
shock, the central horizontal line is midway between these,
and the shock location is taken to be where this crosses the
numerical solution, at θ ≈ π/4 in this case.

where (r1, θ1) and (r2, θ2) are two points on the shock. The
radii used here should be sufficiently large that the shock
has become straight. In practice, we use r1 = 20M and
r2 = 30M . We calculate the angle of the shock-cone both
above and below the axis.

5. Fluid morphology

We examine the effect of varying the adiabatic index, Γ,
and the flow velocity, using some models suggested by Font
and Ibáñez, as given in Table 2. Qualitatively, our results
are the same as those of Font and Ibáñez, although there
are some differences in the numerical values that we find.

In order to have our code converge to steady state in
a reasonable time, we have chosen all our models to be
ultra-relativistic, meaning that the sound speed in the fluid
upstream of the black hole is close to its theoretical maxi-
mum of

√
Γ− 1. The effect of the black hole can therefore

propagate throughout the computational domain in a fairly
short period of time, of the order of a few hundred M . We
use the medium resolution grid whose parameters are given
in Table 1.

As well as testing these base models, we also test vari-
ations on these models with a spinning black hole and a
density perturbation. We use a spin of a = 0.9, with the
spin-axis along the z-axis, and a density perturbation of
ǫρ = 0.2, perturbing along the y-axis (i.e. p = ey in (5)).
The upstream fluid flow direction is along the x-axis in all
cases.

We note that the flow regime we are considering
should result in steady flows, following the work of
Foglizzo and Ruffert (1999), as none of the flow fields ap-
proach the conditions identified therein as potentially lead-
ing to unstable flows.

5.1. Features common to all models

Far upstream of the black hole, the fluid motion is
mostly undisturbed by the presence of the hole. Since fluid
with a small enough impact parameter will always fall into
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the black-hole, there will be a stagnation point on the down-
stream side of the hole. Extending the idea of the stagnation
point, we can also identify a region at a large distance up-
stream of the hole, inside which fluid will eventually fall
onto the hole, and outside which it will not do so. In the
case of symmetrical Bondi-Hoyle-Lyttleton accretion, this
region always has a circular cross-section, and is therefore
referred to as the accretion cylinder. We shall see that our
choices of parameters cause it to deviate from the cylindri-
cal, and so we refer to it instead as the accretion region.

When considering fluid velocities, we always use Boyer-
Lindquist coordinates, which have a coordinate singularity
at the horizon. In these coordinates, therefore, the fluid ve-
locity approaches the speed of light at the horizon, although
this is not the case in Kerr-Schild coordinates.

We now split our discussion into two cases, those of
subsonic and supersonic flow.

5.2. Subsonic models

The subsonic models that we have tested are UC0 and
UB0 (see Table 2), with a Mach number of M = 0.6. These
models differ primarily in their adiabatic indices, although
the fluid velocity has to be changed to allow for the maxi-
mum velocity permitted by cs <

√
Γ− 1. We run the sim-

ulations to time t = 400M , and the results are shown in
Figures 3 and 4.

For both models the density contours near the hole are
nearly circular, but offset slightly in the downstream direc-
tion relative to the centre of the hole so that the density at
the horizon is higher on the downstream side. Model UC0,
with the higher adiabatic index, gives a lower fluid den-
sity close to the horizon than does model UB0, since the
fluid is less compressible for higher adiabatic index. The
velocity at a given distance upstream of the singularity is
higher for model UC0, and the velocity at a given distance
downstream of the hole is higher for model UB0, the stagna-
tion point for which lies further downstream than for model
UC0.

In Figures 5 and 6 we show the effect on these models
of including spin a = 0.9 and density perturbation ǫρ =
0.2. The flow is still in the equatorial plane of the black
hole, however. In both cases the flow is wrapped around
the horizon significantly, in the direction of the spin.

The velocity contours show the development of two re-
gions of lower velocity flow. From the form of the ellipse-
shaped contours around the black hole and extending into
the south-west of the plots, we see that the main flow mor-
phology has been twisted around the horizon by about 45◦,
although there are now no stagnation points, due to the
added effect of the fluid rotating around the hole before
falling in. Examining iso-surfaces of the velocity shows that
neither are there are any stagnation points away from the
z = 0 plane.

The cross-sections of the accretion regions upstream
of the black hole are shown in Figure 7. As expected by
symmetry, the accretion regions for the unperturbed, non-
spinning cases are circular. The combined effect of the spin
and density perturbation is to deflect fluid from the upper
half of the domain away from the black hole so that it does
not accrete onto the black hole. We also see that the accre-
tion regions for the higher adiabatic index in model UC0
are somewhat smaller than those for model UB0.

(a) Equally spaced contours of log ρ.

(b) Velocity contours evaluated in Boyer-Lindquist
coordinates. The stagnation point is marked.

Fig. 3: Contour plots of density and velocity for a uniform
subsonic flow past a non-spinning black hole with flow pa-
rameters given by model UB0. The plots are evaluated at
time t = 400M .

We note that the tilted form of the flow and the de-
velopment of a line of lower density are features that also
appear in the simulations of Ruffert (1999) involving a den-
sity perturbed fluid onto a compact object. This suggests
that the major changes to the flow features are the result of
the density perturbation, rather than the spin of the black
hole, as such an effect was not included in Ruffert’s simula-
tions, not being relevant in the Newtonian regime. In both
cases we see from Table 3 that the joint effect of the spin-
ning black hole and the density perturbation is to lower the
rate at which mass is accreted onto the black hole. This is
as suggested by the reduction in the size of the accretion
regions in Figure 7. The reasons for this will be discussed
in the full parametric study in §6.
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(a) Equally spaced contours of log ρ.

(b) Velocity contours evaluated in Boyer-Lindquist
coordinates. The stagnation point is marked.

Fig. 4: Contour plots of density and velocity for a uniform
subsonic flow past a non-spinning black hole with flow pa-
rameters given by model UC0. The plots are evaluated at
time t = 400M , and the axes are in units of M .

Note that the mass accretion rates for the two models
cannot be compared directly, as they have already been
scaled by the factor given in equation (8).

5.3. Supersonic models

The supersonic models we have tested are UA1 and
UB1, at Mach number M = 1.5. Results for model UB1 are
shown in the main text, while those for UA1 are shown in
Appendix A (online only, for reasons of space). The results
for velocity are shown in Figures 8 and A.1 (online only).
The main feature of these plots is the shock-cone that has
formed downstream of the black hole, in a manner simi-
lar to that of a solid body immersed in an Eulerian flow in
flat space-time. Analogously to that case, the opening angle

(a) Equally spaced contours of log ρ.

(b) Velocity contours evaluated in Boyer-Lindquist
coordinates.

Fig. 5: Contour plots of density and velocity for a subsonic
flow with density perturbed by ǫρ = 0.2 past a black hole
with spin a = 0.9 and flow parameters given by model UB0.
The plots are evaluated at time t = 400M , and the axes are
in units of M .

of the shock-cone at a large distance from the hole should
be sin−1(1/M), with higher Mach numbers corresponding
to a narrower shock-cone (see Appendix B in Petrich et al.
(1989) and references therein for more details).

In both models UA1 and UB1, the density of the fluid
increases sharply across the shock-cone, and also increases
as the horizon is approached, both from the downstream
direction and from the upstream direction. We now have
a considerably larger ratio between the density on the up-
stream and downstream sides of the horizon than for the
subsonic models, with a high density inside the shock-cone
as fluid is focused through it onto the horizon. The UA1
model, with the lower adiabatic index, exhibits a higher
density inside the shock-cone and, in particular, at the hori-
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(a) Equally spaced contours of log ρ.

(b) Velocity contours evaluated in Boyer-Lindquist
coordinates.

Fig. 6: Contour plots of density and velocity for a subsonic
flow with density perturbed by ǫρ = 0.2 past a black hole
with spin a = 0.9 and flow parameters given by model UC0.
The plots are evaluated at time t = 400M , and the axes are
in units of M .

zon, than the UB1 model. As in the subsonic case, this is
due to the fact that the fluid with the higher adiabatic index
is less compressible.

The flow for model UB1 has its stagnation point closer
to the black hole than that for model UA1, but upstream,
outside the shock-cone, the flow velocity is lower for model
UB1. Since both models have the same Mach number,
M = 1.5, both shock-cones have approximately the same
opening-angles.

In Figures 9 and A.2 (online only) we show the effect on
these models of including a spin of a = 0.9 and a density
perturbation of ǫρ = 0.2. The flow is still in the equatorial
plane of the black hole, however. We see that the shock-
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(a) Model UB0
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Fig. 7: Accretion regions for all four subsonic models. The
solid line shows the accretion region for a = 0, ǫρ = 0,
and the dashed line shows the accretion region for a = 0.9,
ǫρ = 0.2.

cone is pulled round the hole in the positive (anti-clockwise)
direction.

The velocity contour plots in Figures 9 and A.2 show
similar twisting and distortion to the subsonic case. The
velocity drops significantly across the shock-cone, and there
are then two regions of low velocity. It is not clear from the
numerical solution whether either of these contain stagna-
tion points.

It is more instructive, however, to examine the stream-
lines shown in Figure 10 for model UB1. The flow is com-
pressed in from the sides, and the tracers that escape the do-
main downstream of the black hole form a tear-drop shape.
For model UA1, where the streamlines are shown in Fig-
ure 11 (online only) we note that the tracers were started
on a larger radius circle, but we still see a qualitatively
fairly similar flow. However, at the top of the tear-drop,
we see that two vortices have developed in the flow. These
correspond to the two low density regions mentioned above.
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Fig. 8: Contour plot of velocity contours evaluated in Boyer-
Lindquist coordinates for a uniform supersonic flow past
a non-spinning black hole with flow parameters given by
model UB1, evaluated at time t = 300M . The stagnation
point is marked.

Fig. 9: Contour plot of velocity for a supersonic flow with
density perturbed by ǫρ = 0.2 past a black hole with spin
a = 0.9 and flow parameters given by model UB1, evaluated
at time t = 300M , and the axes are in units of M .

The cross-sections of the accretion regions upstream of
the black hole are shown in Figures 12 and A.3 (online
only). Again the accretion regions corresponding to the un-
perturbed, non-spinning cases are circular. The combined
effect of the spin and perturbation is to move the accretion
region towards the top of the domain, and to cause it to
decrease in size. The accretion regions for the higher adia-
batic index (model UB1) are somewhat smaller than those
for model UA1.

Again, the gross flow features are borne out by an ex-
amination of simulations in Ruffert (1999) for a density
perturbed flow. We also note that the angle by which the

Fig. 10: Plot of streamlines for a perturbed flow with ǫρ =
0.2, model UB1, parallel to the equatorial plane, onto a
Kerr black hole with spin a = 0.9.

Fig. 11: Plot of streamlines for a perturbed flow with ǫρ =
0.2, model UA1, parallel to the equatorial plane, onto a
Kerr black hole with spin a = 0.9.

shock-cone is tilted is approximately the same in both mod-
els. From Table 3 we see the accretion rates for the super-
sonic models. As in the subsonic case, the effect of spinning
the black hole and introducing a density perturbation is to
lower the mass accretion rate, as suggested by the decrease
in area of the accretion regions.

5.4. Comparison with previous results

We show the limiting values for the mass accretion rates
in Table 3, with results from Font and Ibáñez (1998b) for
comparison. Although our results are similar in magnitude
to those previously found, our rates are persistently higher.
The reasons for this are not clear but, as suggested in
Blakely et al. (2015b), it may result from different far-field
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Fig. 12: Accretion regions for two supersonic models based
on UB1. The solid line shows the accretion region for a = 0,
ǫρ = 0, and the dashed line shows the accretion region for
a = 0.9, ǫρ = 0.2.

Model a ǫρ Ṁ ṀFI Ṁ/ṀFI

UB0 0 0 5.39 4.6 1.17
UB0 0.9 0.2 4.81 - -
UC0 0 0 23.33 21.0 1.11
UC0 0.9 0.2 20.31 - -
UA1 0 0 5.53 3.7 1.49
UA1 0.9 0.2 4.80 - -
UB1 0 0 34.32 27.0 1.27
UB1 0.9 0.2 30.99 - -

Table 3: Comparison of mass accretion rates found using
our code (Ṁ) with those of Font and Ibáñez (1998b) (ṀFI).
Both sets of results were evaluated at r = 5M and scaled
in the same way.

Model xstag/M xFI
stag/M

UB0 6.70 5.94
UC0 4.44 4.27
UA1 11.95 10.37
UB1 5.19 4.80

Table 4: Comparison of stagnation point locations found us-
ing our code (xstag) with those of Font and Ibáñez (1998b)
(xFI

stag), which have been scaled to be in units of M rather
than of RA.

boundary conditions between the simulations, due to the
use of different metrics.

In Table 4 we show the location of the stagnation points
for the four non-spinning unperturbed models we have
presented above. An examination of the velocity plots in
Font and Ibáñez (1998b) suggests that the stagnation point
locations are written in units of the accretion radius ra.
The location of the stagnation points found using our code
is similar to, but consistently further out, than those found
by Font and Ibáñez.

In this section we have shown some of the flow mor-
phologies that can arise from accretion onto a black hole.
We have, to a large extent, confirmed the results of Font

and Ibáñez, although there is disagreement in the mass ac-
cretion rates and locations of the stagnation points.

We have also demonstrated the combined effects of al-
lowing a spinning black hole and a fluid whose density is
perturbed upstream. These show significant alterations in
the flow properties, some of which were demonstrated by
Ruffert in the Newtonian regime. In particular, including
spin and a density perturbation cause the flow to twist
around the spin-axis of the black hole. The flow also devel-
ops complex features; all the models show the development
of a line of lower density in the z = 0 plane, and one model
develops vortices.

The overall effect of spin and density perturbation for
all the models is to lower the mass accretion rate, and to
change the area and location of the accretion region. How-
ever, in order to understand these effects more fully, we shall
perform a parametric study, examining the separate and
combined effects of spin, density perturbation, and wind
direction.

6. Parametric study

As previously mentioned, we are basing our work on a
combination of the studies carried out by Font et al. (1999)
and Ruffert (1999). Font et al. varied the adiabatic index of
the fluid, the spin of the black hole, and the asymptotic up-
stream fluid velocity. Ruffert used the idea of a non-uniform
fluid density upstream to start an investigation of stability
issues.

We have used all these possible variations and, since we
are performing our simulations in three space dimensions,
also allowed for varying the wind direction relative to the
spin axis, whereas Font et al. only considered the case where
the upstream fluid velocity was perpendicular to the spin
axis.

Within the framework of Bondi-Hoyle-Lyttleton flow,
we therefore have the following parameters that can be var-
ied entirely independently of each other:

M Black hole mass
a Black hole spin (0 ≤ a < 1)
M Asymptotic Mach number of the flow
v∞ Asymptotic velocity of the flow

(The sound speed is c∞ = v∞/M)
Γ Adiabatic index of ideal fluid
ni Incident wind direction
pi Perturbation direction
ǫρ Strength of density perturbation (ǫρ ≪ 1)

Varying these in all possible combinations would lead to
a vast and unwieldy set of results, and so we seek to find
representative sample of the parameter space to investigate.

Since it is just a scaling parameter, we can fix the black
hole to have mass M = 1. The spin axis is fixed to be the z-
axis, and we vary the incident wind direction n in the y = 0
plane, at angles of θw = 0, π/6, π/3, π/2 to the x-axis. This
corresponds to n · ey = 0 and n · ez = cos θw.

The perturbation will have most effect if it occurs per-
pendicular to the wind direction. Due to the asymmetry
induced by any spin that might be present, this still leaves
us with one degree of freedom, and we fix the perturbation
direction to be parallel to the y-axis (i.e. p = ey in (5)).
The various vectors can be seen in Figure 13.
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Fig. 13: Geometric set-up of wind accretion parametric
study. The black hole spin is always in a positive direction
around the z-axis, the wind direction is in the x-z plane at
an angle θw to the x-axis, and any fluid perturbations are
in the y-direction (positive y goes into the page).

Since low spins do not seem to affect the flow by a large
amount, according to the results of Font and Ibáñez, we use
three spin parameters: a = 0, 0.5, and 0.9.

Ruffert et al. have used ǫρ = 0, 0.03, 0.2. Since we have
specified the spin always to be positive, we have to allow
for this handedness and allow ǫρ < 0 where appropriate.

We apply perturbations to one of the models suggested
by Font and Ibáñez: UB1. This is an ultra-relativistic flow of
a medium stiffness fluid at a moderate Mach number. Note
that the sound speed cs = 0.57 is close to the maximum
permitted value of

√
Γ− 1 ≈ 0.57735. This model has the

advantage that it converges fairly quickly to steady state.
All of the simulations were run until T = 300M , which was
sufficient to reach this steady-state in all cases.

To summarise: we allow for the following perturbations
to the base solution:

a = 0, 0.5, 0.9 ,

θw = 0, π/6, π/3, π/2 ,

and ǫρ = −0.2, −0.03, 0, 0.03, 0.2 .

(10)

These are applied in all possible combinations, although
some combinations are not necessary as they duplicate oth-
ers. For example, θw is irrelevant when a = 0, by symmetry,
and as shown in the next section.

We now give details as to how the plots in the following
sections were generated.

The streamlines show up some slight issues with the low
resolution used, such as the fact that, for the base model
with no spin and uniform flow, we found the cross-section
of the streamlines at the end to be not quite circular. The
higher resolution simulations described in §5 do not have
this problem, but otherwise display the same flow features.
We are therefore justified in drawing conclusions from the
lower-resolution plots.

All the plots in the following sections are standardised
for easy comparison. We plot velocity with equally spaced

contours at
√
v2 = 0.1 , . . . , 0.9 where the velocity is evalu-

ated in Boyer-Lindquist coordinates. The outer horizon of
the black hole is shown with a dashed line at r = r+ (and
is non-circular when the spin-axis is not perpendicular to
the plot plane), and the plot ranges are ±15M . The plane
in which we plot the contours contains the y-axis and the
incoming wind direction. That is, for θw = 0, the black
hole spin axis is normal to the plot, and for θw = π/2, the
spin axis lies in the plot plane, from left to right. The wind
direction is always from the left of the plot.

7. Parametric study Results

In this section we present plots from our parametric
study, demonstrating how the flow morphology depends on
the independent and combined variation of the various pa-
rameters. This only represents a sample of the main results
found. We have made the full results available on the Uni-
versity of Cambridge’s DSpace site (Blakely (2010)).

As performing a parametric study is very CPU-
intensive, we calculated these results on the low resolution
grid whose parameters are given in Table 1. However, from
our validation results, we believe that the effects of the low
resolution on our results are not significant.

In Figure 14, we see the effect of varying the spin of
the black hole for a uniform flow. The flow is parallel to
the equatorial plane of the hole, and we expect our results
to be close to those of Font et al. (1999), although their
results were for the thin-disc approximation, not the fully
three-dimensional results we have here.

As we increase the spin of the black hole, the points
where the shock cone meets the horizon move around in
the direction of spin. Although the flow is altered near the
horizon, the effect further out is far less, and is nearly in-
distinguishable from that of the non-spinning case. This is
particularly evident from the results when measuring the
shock angles, as we shall see in §8.

Examining the streamlines for the a = 0.9 case (Fig-
ure 15) shows that fluid on the co-rotating side of the hole
can escape to infinity when it starts from a smaller radius
as compared to fluid on the counter-rotating side, and the
minimum impact parameter for which fluid can escape is
smaller for higher spin. This is evident in the accretion re-
gion which for spin a = 0.9 is entirely in the upper half of
the domain.

Perturbing the density of the flow onto a non-spinning
black hole gives results as in Figure 16. The density up-
stream of the black hole increases down the page.

The shock-cone is visibly skewed round in the anti-
clockwise direction in both cases, although more so for
ǫρ = 0.2, and this effect persists far away from the hole,
unlike the effect of the spin. There is also a line of higher
velocity in the upper part of the shock-cone, so that there
are almost two separate cones, although this is only really
visible for ǫρ = 0.2. These features are similar to those for
highly perturbed Newtonian flow seen in Ruffert (1999).
The streamlines in Figure 17 also show the fluid forming a
pair of vortices as it moves downstream.

If we add spin to the most perturbed case, we obtain
the results shown in Figure 18. Now we expect to see a
combination of the effects explored earlier.

For ǫρ = 0.2, the perturbation takes the point where the
shock-cone attaches to the horizon round to the upstream
region of the flow. A large distance downstream of the black
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(a) a = 0.5,
√

v2

(b) a = 0.9,
√

v2

Fig. 14: Effect of increasing black hole spin on uniform wind
accretion parallel to the equatorial plane of a Kerr black
hole. The black hole spin is in the positive direction. We
plot the velocity in Boyer-Lindquist coordinates.

hole, this effect is still present as we would expect from the
non-spinning case above, and at the horizon, the shock-cone
has wrapped further around in the anti-clockwise direction
due to the added effect of the spin.

For ǫρ = −0.2, the effect of the perturbation a long
way downstream of the black hole is the reverse of that
for the non-spinning positive perturbation. At the horizon,
we expect the spin to take the point where the shock-cone
attaches round in the anti-clockwise direction, and the neg-
ative perturbation to take it in the clockwise direction. We
see that the effect of the spin is dominant, in that the point
of attachment has overall moved in an anti-clockwise direc-
tion.

For both cases, the divided shock-cone is still visible.
For the ǫρ = 0.2 case, the effect has increased, so that the
contour lines extend further towards the horizon, demon-

Fig. 15: Plot of streamlines for a uniform flow parallel to the
equatorial plane onto a Kerr black hole with spin a = 0.9.

strating a deepening of the division. For ǫρ = −0.2, the
effect has reduced, showing a shallower division in the cone.

For the perturbation ǫρ = −0.2, the flow streamlines
in Figure 19 appear similar to that for the non-spinning
case, although the two vortices have now been moved apart
from each other to some extent. For ǫρ = 0.2, shown in
Figure 20, we now see a qualitatively different flow, in that
no vortices are visible, but the ends of the streamlines form
a tear-drop shape downstream of the black hole. From an
examination of the streamlines for spin a = 0.5 and per-
turbation ǫρ = 0.03 in Figure 21, it appears that the effect
of the positive spin is to elongate the two vortices in the
vertical direction, at the same time moving them closer to-
gether, so that the tear-drop is composed of the inner sides
of the original vortices.

We now orient the flow so that it comes in along the
spin-axis of the black hole. The result of increasing the spin
in this case is shown in Figure 22. In this case we hardly see
any change to the qualitative features of the flow. There is
no apparent change in the streamlines (shown in Figure 23)
from the non-spinning case.

The relative lack of change is due to the fact that the
direction of spin is perpendicular to the streamlines. There
is some evidence that the flow has been pulled round by the
black hole but, again, the effect is only very slight, due to
the high velocity of the flow.

The effect of perturbing the upstream density of flow by
ǫρ = 0.2 along the spin axis of a black hole with spin a = 0.9
is shown in Figure 24. The shock-cone is still tilted away
from the symmetric position, but the perturbation makes
little difference to the overall flow. The contours in the x =
0 plane do not demonstrate any splitting of the shock cone
as we saw in, for example, Figure 16. The splitting is still
just evident in the y = 0 plane.

The streamlines (Figure 25) show that there is still a
pair of vortices emerging along the shock-cone, but that
they have been distorted by the spin, starting to merge
into each other.
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(a) ǫρ = 0.03,
√

v2

(b) ǫρ = 0.2,
√

v2

Fig. 16: Effect of density perturbation on accretion in the
equatorial plane of a non-spinning Kerr black hole, with
density increasing down the page. We plot the velocity in
Boyer-Lindquist coordinates.

8. Analysis

We now proceed to show the processed results, with the
effect of the density perturbation and black hole spin on
the overall flow characteristics.

The accretion region plots are shown in Figures 26-28.
The effect of each change is only very slight, so we show
the overall effect via the plots for θw = 0 and θw = π/2 or
ǫρ = −0.2 and ǫρ = 0.2.

The effect of increasing θw is only very slight, but the
trend is that the accretion region decreases in area, and
shifts in the negative y-direction. As ǫρ increases, the accre-
tion region moves appreciably in the negative y direction.

Due to limitations of space, we have included the graph-
ical results for the following in Appendix B, which is avail-
able only in the online version of this paper.

Fig. 17: Plot of streamlines for flow with density perturba-
tion ǫρ = 0.2 onto a non-spinning Kerr black hole.

In Figures B.1 and B.2 we show the effect of varying the
density perturbation parameter on the mass accretion rate
for spins of a = 0, 0.5, 0.9. The overall effect on the mass
accretion rate is fairly small, at less than 10%.

When the wind direction is along the spin axis (θw =
π/2), the direction of the perturbation does not affect the
mass accretion rate, as we would expect from symmetry
considerations. The greatest effect on the mass accretion
rate occurs when the wind is parallel to the equatorial plane
of the black hole.

From Figure B.2, we see that for flow parallel to the
equatorial plane, the mass accretion rate is reduced more
strongly by increased perturbation than for flow along the
spin axis, since the area of the accretion region has a wider
variation for θw = 0 than for θw = π/2. The effect of the
change with perturbation is once again the result of two
combined effects: change in location and size of the accre-
tion region and change in available material in that region
due to density perturbation.

In Figures B.3 and B.4 (online only) we show the effect
of spin and density perturbation on the asymptotic angle
of the shock cone. As a specific example, we note that the
shock-cone opening angle for zero spin and no perturbation
is found to be 38◦, which is less than the analytical value
from sin−1(1/M) = 41.8◦, but greater than θ = 35◦ as
found by Font and Ibáñez (1998b) (Table 2).

We have seen earlier that both the spin and the pertur-
bation affect the innermost regions of the flow very strongly,
but that the only major effect on the shock cone a long way
from the black hole is the density perturbation. This is con-
firmed by Figure B.3.

Further, we now see from Figure B.4 that varying the
angle between the equatorial plane and the wind direction
has no effect on the angle between the shock-cone edges and
the wind direction, within numerical and shock location er-
rors. The spin of the black hole does not appear to have any
effect on the shock-cone angle either. However, the effect of
the perturbation is very noticeable, varying the direction
of the shock-cone by nearly 30◦ overall. The total opening
angle of the shock-cone is unaffected by the perturbation.

Article number, page 12 of 19



P.M. Blakely and N. Nikiforakis: Relativistic Bondi-Hoyle-Lyttleton Accretion: A Parametric Study

(a) ǫρ = −0.2,
√

v2

(b) ǫρ = 0.2,
√

v2

Fig. 18: Effect of density perturbation on accretion in the
equatorial plane of a Kerr black hole with spin a = 0.9.
The black hole spin is in the positive direction. We plot the
velocity in Boyer-Lindquist coordinates.

9. Independence of Initial Conditions

Although we have consistently found steady final states
of the flows that we have simulated, all of these have derived
from the same initial conditions. In order to confirm the
universality of our results, we should test whether chang-
ing the set-up of the model part way through a simulation
affects its final state.

9.1. Perturbed flow reverting to a uniform flow

The first scenario we test is that of a perturbed flow that
has settled down to steady-state having its upwind inflow
conditions reverted to uniform flow. We use as initial condi-
tions for our test the steady-state solution given by a black
hole with spin parameter a = 0.9 and density perturbation

Fig. 19: Plot of streamlines for a perturbed flow with ǫρ =
−0.2 onto a Kerr black hole with spin a = 0.9.

Fig. 20: Plot of streamlines for a perturbed flow with ǫρ =
0.2 onto a Kerr black hole with spin a = 0.9.

ǫρ = 0.2, with θw = 0, but change the inflow boundary
condition to be that for an unperturbed flow, ǫρ = 0. We
then evolve the set-up until it again reaches steady state.

It turns out that the final state of the simulation is
identical to the state that resulted from specifying ǫρ = 0
initially. The way the flow pattern changes in time is also
unremarkable, in that the shock-cone smoothly changes to
its final position, and the two parts of the divided shock-
cone merge smoothly to form a single one.

In Figure 29 we show the rate of mass accretion result-
ing from this simulation. Up to time t = 300M the den-
sity is perturbed by ǫρ = 0.2, and after that it reverts to
ǫρ = 0. The solid line shows the final mass accretion rate
from the simulation where the density was not initially per-
turbed. The kink in the rate at t ≈ 350M corresponds to
the time when the effect of the changed upstream condi-
tions reaches the black hole (recall that the outer boundary
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Fig. 21: Plot of streamlines for a perturbed flow with ǫρ =
0.03 onto a Kerr black hole with spin a = 0.5.

is at r = 50M). Following that, the accretion rate then
climbs monotonically to its final value.

9.2. Spinning-up a black hole

In our second test, we note that in the close encounter
of two black holes, it is possible that they will interact so as
to result in a black hole with a spin somewhat larger than
before the interaction. As a simple model of this we examine
what happens to the steady-state accretion flow when the
spin of the black hole is instantaneously increased.

The specific set-up we use is that of the case where a
greatly perturbed fluid with ǫρ = 0.2 is accreting onto a
non-spinning black hole, and the flow is in steady state. We
then change the black hole to have spin a = 0.9 and allow
the simulation to reach a steady state again. At the change-
over point, the fluid variables were converted to their prim-
itive form in the original metric, and then converted to
conserved form in the new metric with spin.

As with the previous example, the final state of the sim-
ulation is identical to that resulting from the simulation
that maintained a = 0.9 throughout, as seen in Figure 18.
We show the results for the mass accretion rate in Fig-
ure 30. We see a discontinuity in the mass accretion rate
at the time when the black hole is “kicked” (t = 300M).
The accretion rate falls slightly below its final value, then
rises above it and oscillates slightly before quickly reaching
a steady state.

10. Conclusions

In this paper, we have studied the effects of intro-
ducing spin and a density perturbation into relativistic
Bondi-Hoyle-Lyttleton accretion simulations. We have in-
vestigated the effect of these on both subsonic and super-
sonic flows, before applying an extensive parametric study
to one supersonic base model.

We have seen that the qualitative effects of adding spin
and having a perturbed density upstream of the black hole

(a) a = 0.5,
√

v2

(b) a = 0.9,
√

v2

Fig. 22: Effect of increasing black hole spin on uniform wind
accretion along the spin axis of a spinning Kerr black hole.
The axis of spin is the horizontal axis, and the spin direction
goes into the page in the upper half of the plot. We plot
the velocity in Boyer-Lindquist coordinates.

are independent of the velocity, Mach number, and adia-
batic index of the fluid. In all cases presented in §5 we saw
that the flow was wrapped around the black hole in the spin
direction and that the fluid developed regions of lower den-
sity, as well as being deflected by the black hole. The extent
to which these effects were seen was, however, dependent on
the flow properties. In particular, only the subsonic models
demonstrated any large change in the flow upstream of the
black hole, as we would expect.

Investigating the supersonic model UB1 more exten-
sively, we discovered how the separate effects of spin and
density perturbation affected the flow structure. In particu-
lar, there is little dependence of the accretion rate on black-
hole spin, upstream fluid speed and direction, and density
perturbations for the ultra-relativistic regime. The most ob-
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Fig. 23: Plot of streamlines for a uniform flow along the
spin-axis of a Kerr black hole with spin a = 0.9.

vious flow differences are found very close to the black-hole
in the shock-angle and flow patterns. This is as predicted
by lower-dimensional simulations. Further, it appears that
ultra-relativistic flows are independent of their initial con-
ditions, in that a steady flow around a non-spinning black-
hole which suddenly starts to spin will converge to the same
flow pattern as if the black-hole had been spinning initially.

Specifically, we found that:

– For a uniform flow, the effect of the spin on the flow
structure is mostly restricted to the region close to the
black hole, where the points at which the shock-cone
meets the horizon are pulled round in the spin direction.
The mass accretion rate reduces slightly as the spin rate
increases, but not to any great extent.

– Moving the flow direction from being in the equatorial
plane to being along the spin axis removes any deflection
of the flow by the black hole, and also slightly reduces
the mass accretion rate.

– Perturbing the density changes the flow most dramat-
ically. The flow is appreciably deflected from its origi-
nal direction, and this effect persists to large distances
downstream of the black hole. Vortices develop in the
flow, on either side of the plane containing the wind
and perturbation directions. The mass accretion rate
changes by up to 10%, although the sign of the change
and its magnitude depends strongly on the spin of the
black hole, and the angle of the incoming wind to the
spin axis.

– The angle of the shock-cone to the wind-direction, at
large distances downstream of the black hole, is inde-
pendent of the spin of the black hole and the angle of the
wind direction to the spin-axis. However, it is strongly
dependent on the extent to which the density is per-
turbed, varying by about 30◦ over the range of ǫρ that
we use.

(a) x = 0 plane,
√

v2

(b) y = 0 plane,
√

v2

Fig. 24: Effect of density perturbation ǫρ = 0.2 on wind
accretion along the spin axis of a Kerr black hole with spin
a = 0.9. The axis of spin is the horizontal axis, and the spin
direction goes into the page in the upper half of the plots.
We plot velocity in Boyer-Lindquist coordinates.

– The final flow structures are apparently independent of
any past history of the flow. This was demonstrated
by changing firstly the perturbation and secondly the
spin of a flow after it had settled into its steady state,
and seeing that the flow rapidly became identical to the
flow that would have developed had the parameters not
begun with separate values.

We have performed a parametric study of Bondi-Hoyle-
Lyttleton accretion, based on one model previously pre-
sented by Font and Ibáñez. In order to give a more com-
plete picture of the flows that can result, we hope to extend
our parameter study to be based on other models, in par-
ticular studying both supersonic and subsonic models. We
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Fig. 25: Plot of streamlines for a perturbed flow with ǫρ =
0.2 along the spin-axis of a Kerr black hole with spin a =
0.9.

(a) θw = 0 and ǫρ =
−0.2

(b) θw = π/2 and
ǫρ = +0.2

Fig. 26: These plots show the overall effect of changing the
density perturbation on the accretion volume for a non-
spinning black hole, for two extreme values of ǫρ = ±0.2.
The axis tick-marks are at −15M, −10M, . . . , 10M, 15M .

(a) θw = 0 and ǫρ =
−0.2

(b) θw = π/2 and
ǫρ = +0.2

Fig. 27: These plots show the overall effect on the accretion
region for a black hole with spin a = 0.5. Even between the
extremes of the values for θw and ǫρ there is little change in
the accretion region and volume. The axis tick marks are
at −15M, −10M, . . . , 10M, 15M .

(a) θw = 0 and ǫρ =
−0.2

(b) θw = π/2 and
ǫρ = +0.2

Fig. 28: These plots show the overall effect on the accretion
region for a black hole with spin a = 0.9. Even between the
extremes of the values for θw and ǫρ there is little change in
the accretion region and volume. The axis tick marks are
at −15M, −10M, . . . , 10M, 15M .
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Fig. 29: Mass accretion rate plot for an initially perturbed
model with ǫρ = 0.2, but reverting to ǫρ = 0 upstream
at time t = 300M . The black hole has spin a = 0.9 and
the wind is in the equatorial plane. The solid line shows
the final mass accretion rate from the equivalent flow with
ǫρ = 0 throughout.
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Fig. 30: Mass accretion rate plot for a perturbed density
flow onto a non-spinning black hole which recieves a kick
at time t = 300M , increasing its spin to a = 0.9. The solid
line shows the final mass accretion rate from the equivalent
flow with a = 0.9 throughout.
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also hope to investigate regimes in which the accretion is
unstable and is likely to result in flip-flop instabilities.

We have made some progress towards implementing the
evolution of the metric in our code, but we have not yet
applied it to complex three-dimensional problems such as
binary black-hole coalescence. However, we see no essential
difficulty in adapting the latest developments in the solution
of such problems to be used in our code.

In particular, we note that Overture is capable of inter-
polating an existing numerical solution to a new set of grids.
This leads to the possibility of changing the grid structure,
including the location of the excision region(s) as the flow
evolves.
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Appendix A: Results from model UA1

In this section we show results from model UA1. These
can be compared to those results for UB1 as found in the
main text.

Fig. A.1: Contour plot of velocity contours evaluated in
Boyer-Lindquist coordinates for a uniform supersonic flow
past a non-spinning black hole with flow parameters given
by model UA1, evaluated at time t = 300M . The stagnation
point is marked.

Appendix B: Mass accretion and shock-angle

dependence

In this section we show details of how the mass accretion
rates and shock-angles depend on the size of the density
perturbation.
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Fig. A.2: Contour plot of velocity for a supersonic flow with
density perturbed by ǫρ = 0.2 past a black hole with spin
a = 0.9 and flow parameters given by model UA1, evaluated
at time t = 400M , with the axes in units of M .
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Fig. A.3: Accretion regions for two supersonic models based
on UA1. The solid line shows the accretion region for a = 0,
ǫρ = 0, and the dashed line shows the accretion region for
a = 0.9, ǫρ = 0.2.
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Fig. B.1: Plot of mass accretion rate against density per-
turbation for different spins. The wind direction is parallel
to the equatorial plane of the black hole in all cases.
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Ṁ

 

 

θ
w

=0

θ
w

=π/6

θ
w

=π/3

θ
w

=π/2

(a) Spin a = 0.5

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
31

31.5

32

32.5

33

33.5

34

34.5

35

ǫρ

Ṁ
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Fig. B.2: Plot of mass accretion rates against density per-
turbation. The labels refer to the angle between the equa-
torial plane and the wind direction.
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Fig. B.3: Plot of shock angles against density perturbation,
varying the spin of the black hole. The wind direction is in
the equatorial plane of the black hole in all cases.
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Fig. B.4: Plot of shock-cone angles against density pertur-
bation. The angles are all taken in the plane containing the
wind direction and the y-axis. The data points above and
below the axis correspond to the shock-angles above and
below the wind-direction axis. The labels correspond to the
angle between the equatorial plane of the black hole and
the wind direction.
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