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Abstract 23 

Human-like swine H3 influenza A viruses (IAV) were detected by the USDA 24 

surveillance system. We characterized two novel swine human-like H3N2 and H3N1 25 

viruses with HA genes similar to human seasonal H3 strains and the internal genes 26 

closely related to 2009 H1N1 pandemic viruses. The H3N2 NA was of the contemporary 27 

human N2 lineage, while the H3N1 NA was of the classical swine N1 lineage. Both 28 

viruses were antigenically distant from swine H3 viruses that circulate in the U.S. and 29 

from swine vaccine strains, and also showed antigenic drift from human seasonal H3N2. 30 

Their pathogenicity and transmission in pigs were compared to a human H3N2 with 31 

common HA ancestry. Both swine human-like H3 viruses efficiently infected pigs and 32 

transmitted to indirect contacts, whereas the human H3N2 was much less efficient. To 33 

evaluate the role of genes from the swine isolates on their pathogenesis, reverse genetics-34 

generated reassortants between the swine human-like H3N1 and the seasonal human 35 

H3N2 were tested in pigs. Gene segment contribution to virulence was complex with the 36 

swine HA and internal genes showing effect in vivo. The experimental infections indicate 37 

that these novel H3 viruses are virulent and can sustain onward transmission in pigs, and 38 

the naturally occurring mutations in the HA were associated with antigenic divergence 39 

from H3 IAV from human and swine. Consequently, these viruses could have a 40 

significant impact on the swine industry if they cause more widespread outbreaks, and the 41 

potential risk of these emerging swine IAV to humans should be considered. 42 

  43 
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Importance 44 

Pigs are important hosts in the evolution of influenza A viruses (IAV). Human-to-swine 45 

transmissions of IAV have resulted in the circulation of reassortant viruses containing 46 

human-origin genes in pigs, greatly contributing to the diversity of IAV in swine 47 

worldwide. New human-like H3N2 and H3N1 viruses that contain a mix of human and 48 

swine gene segments were recently detected by the USDA surveillance system. The 49 

human-like viruses efficiently infected pigs and resulted in onward airborne transmission, 50 

likely due to multiple changes identified between human and swine H3 viruses. The 51 

human-like swine viruses are distinct from contemporary U.S. H3 swine viruses and from 52 

the strains used in swine vaccines, which could have a significant impact on the swine 53 

industry due to lack of population immunity. Additionally, public health experts should 54 

consider appropriate risk assessment for these emerging swine H3N1 for the human 55 

population. 56 

  57 
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Introduction 58 

Swine have a key role in the ecology of influenza A viruses (IAV), and thus represent a 59 

risk for future introductions of swine viruses into the human population. Similar to 60 

subtypes that circulate in humans, endemic swine IAV are of the H1N1, H3N2, and 61 

H1N2 subtypes (1), whereas other subtypes are only sporadically detected in swine as a 62 

result of interspecies transmission, such as avian-like H3N1 (2) and H2N3 (3), or equine-63 

like H3N8 (4). The porcine respiratory tract contains both human IAV-preferred sialic 64 

acid α2,6-galactose (SAα2,6-Gal) and avian IAV-preferred sialic acid SAα2,3-Gal linked 65 

receptors (5), providing an underlying biologic basis for swine as intermediary hosts in 66 

the evolution of influenza viruses. Unlike the relatively uncommon event of a swine 67 

lineage virus becoming established in the human population, human seasonal virus 68 

transmission events to swine have repeatedly led to new genetic lineages of novel viruses 69 

that became endemic in various pig populations around the globe (6). Human-origin 70 

surface genes have been maintained at a much higher frequency than the internal genes of 71 

the seeding virus once it enters a pig population (6), which suggests that barriers exists 72 

for the sustained circulation and efficient adaptation of wholly human viruses in swine. 73 

A notable human-to-swine event occurred in the late 1990’s when a triple reassortant 74 

internal gene (TRIG) constellation became established among North American swine (7, 75 

8), containing swine (M, NP, and NS), avian (PB2 and PA), and human (PB1) influenza 76 

virus genes. This constellation of internal genes reassorted with different combinations of 77 

surface genes, and as a consequence, the dynamics of influenza infection in North 78 

American pigs changed drastically. Additionally, more than 49 independent human-to-79 

swine spillover events of the 2009 pandemic H1N1 (H1N1pdm09) have occurred 80 
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globally since it was introduced into the human population (9). These incursions led to 81 

multiple reassortment events between the H1N1pdm09 and endemic swine IAVs (1, 10), 82 

creating unique swine IAV configurations and increasing the observed genetic diversity. 83 

The H1N1pdm09 highlights the pandemic risk of novel viruses generated through the 84 

exchange between human and swine lineages (11). Furthermore, antigenic drift in viral 85 

surface glycoproteins contributes to the evolution of swine IAV (12), resulting in the co-86 

circulation of many antigenically distinct viruses in pigs (1, 13).  87 

Novel H3N2 and H3N1 viruses with contemporary human seasonal H3 genes were 88 

identified through the United States Department of Agriculture (USDA) IAV swine 89 

surveillance system. Even though H3N1 viruses have been detected in U.S. swine 90 

previously, they are rare (2, 14). The novel H3N1 viruses reported in this manuscript 91 

have a unique combination of surface genes from contemporary human seasonal H3N2 92 

HA and classical swine H1N1 (cH1N1) NA with internal genes derived from 93 

H1N1pdm09, and hence are distinct from current swine H3 viruses circulating in the U.S. 94 

as well as human seasonal H3 circulating globally. To assess the impact of these novel 95 

H3 viruses, in vitro genetic and antigenic characterization along with in vivo phenotypic 96 

characterization was conducted. We demonstrated that these novel human-like IAV are 97 

virulent in swine and pose a significant threat to the swine population due to an expected 98 

lack of population immunity. To further understand the role of gene segments on the 99 

striking pathogenesis and transmissibility of these viruses compared to a human seasonal 100 

H3N2, we constructed reassortants between the swine human-like H3N1 and the human 101 

H3N2 by reverse genetics and compared the pathogenesis in vivo. Our results suggest that 102 
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the HA and internal gene constellation were essential for efficient infection and 103 

transmission of the novel human-like H3N1 viruses. 104 

Materials and Methods 105 

Ethics statement. All animals were housed in biosafety level 2 (BSL2)-containment and 106 

cared for in compliance with the Animal Care and Use Committee of the National 107 

Animal Disease Center.  108 

Viruses and cell lines. The swine isolates A/Swine/Missouri/A01476459/2012 (H3N2; 109 

Sw/MO/12) and A/Swine/Missouri/A01410819/2014 (H3N1; Sw/MO/14) were obtained 110 

from the IAV swine surveillance system repository held at the USDA National 111 

Veterinary Service Laboratories in conjunction with the USDA-National Animal Health 112 

Laboratory Network (NAHLN). The H3N2 virus was isolated from a breeding herd 113 

during the winter of 2012 and the H3N1 was isolated during the winter of 2013 from an 114 

epidemiologically linked location. The human H3N2 isolate A/Victoria/361/2011 115 

(A/VIC/11, kindly provided by Dr. Richard Webby, St. Jude Children’s Research 116 

Hospital) was genetically similar to the HA of both swine isolates and the NA of 117 

Sw/MO/12 and was included as a control. Viruses were propagated in Madin-Darby 118 

canine kidney (MDCK) cells. 119 

Reverse engineered viruses. The two wild type viruses with phenotypes at the opposite 120 

ends of the spectrum were chosen to generate reassortants to test the contribution of 121 

genes or combination of genes.  Eight viruses were generated by reverse genetics (rg) 122 

using an 8-plasmid system as previously described (15) in the bidirectional plasmid 123 

vector pDP2002, and their genetic constellations are described in Table 1. Gene 124 
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combinations were verified by full-length sequencing and viruses were propagated in 125 

MDCK cells. 126 

Genetic analysis. Three genes (HA, NA, and M) of the swine isolates were initially 127 

sequenced and submitted to GenBank by the submitting NAHLN (National Animal 128 

Health Laboratory Network) veterinary diagnostic lab. Following the identification of the 129 

human-origin HA gene, 9 swine isolates were subjected to whole genome next-generation 130 

sequencing using the Ion 316 v2 chip and Ion PGM 200 v2 Sequencing Kit (Life 131 

Technologies, Carlsbad, CA) as previously described (16). The HA genes from viruses 132 

recovered from primary and indirect contact pigs in the in vivo studies were sequenced 133 

directly from clinical material by conventional sequencing using BigDye® Terminator 134 

v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA) as per manufacturer’s 135 

instructions using previously described primers (17).  136 

Additional representative sequences of North American swine and human viruses were 137 

downloaded from GenBank and GISAID. Specifically, using BLASTn (18) we identified 138 

15 human isolates from the 2010-11 influenza season with high HA gene sequence 139 

identity, and also included randomly selected human isolates from each influenza season 140 

from 2008 to 2013. More recent swine human-like H3N1 and H3N2 that were 141 

subsequently identified by the USDA surveillance system were also included in the 142 

analysis (Table S1 and S2). Sequences were aligned for each of the eight genomic 143 

segments using default settings in MUSCLE v.3.8.31 (19), with subsequent manual 144 

correction. For each alignment, we inferred the best-known maximum likelihood (ML) 145 

tree using RAxML v7.4.2 (20) using the rapid bootstrap algorithm and a general time-146 

reversible (GTR) model of nucleotide substitution with Γ-distributed rate variation 147 
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among sites. Statistical support for individual branches was estimated by bootstrap 148 

analysis, with the number of bootstrap replicates determined automatically using an 149 

extended majority-rule consensus tree criterion (21). The deduced HA1 domain amino 150 

acid sequences were aligned and used to identify amino acid differences between the 151 

human and the swine viruses. 152 

Animal experiment 1. Fifty 3-week-old crossbred healthy pigs were obtained from a 153 

herd free of IAV and porcine reproductive and respiratory syndrome virus (PRRSV). 154 

Prior to the start of the study pigs were treated with ceftiofur crystalline free acid and 155 

tulathromycin (Zoetis Animal Health, Florham Park, NJ) to reduce bacterial contaminants 156 

and were shown to be seronegative to IAV antibodies. Pigs were divided into four 157 

groups: non-challenged (NC; n=5), challenged with A/VIC/11 H3N2 (n=10), with 158 

Sw/MO/12 H3N2 (n=10) and with Sw/MO/14 H3N1 (n=10).  159 

Challenged pigs were simultaneously inoculated intranasally (1 ml) and intratracheally (2 160 

ml) with 105 50% tissue culture infective dose (TCID50) per ml of each assigned virus. 161 

Inoculation was performed under anesthesia, using an intramuscular injection of a 162 

cocktail of ketamine (8 mg/kg of body weight), xylazine (4 mg/kg), and Telazol (6 163 

mg/kg) (Fort Dodge Animal Health, Fort Dodge, IA). Five contact pigs were placed in 164 

separated raised decks in the same room as each inoculated group at 2 days post infection 165 

(dpi) to evaluate indirect contact transmission. Nasal swabs (FLOQSwabs™, Copan 166 

Diagnostics, Murrieta, CA) were collected at 0, 1, 3, and 5 dpi for primary pigs and from 167 

0 to 5, 7, and 9 days post contact (dpc) for indirect contacts as previously described (22).  168 

Two pigs died from causes unrelated to IAV infection, leaving 8 pigs in the A/VIC/11 169 

group. Primary pigs were humanely euthanized with a lethal dose of pentobarbital (Fatal 170 
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Plus, Vortech Pharmaceuticals, Dearborn, MI) and necropsied at 5 dpi, when 171 

bronchoalveolar lavage fluid (BALF) and tissue samples from the distal trachea and right 172 

cardiac or affected lung lobe were collected. Indirect contact pigs were humanely 173 

euthanized at 15 dpc for collection of serum to evaluate sero-conversion. 174 

Animal experiment 2. To test the role of the surface genes and internal gene backbones 175 

observed in vivo with the wild-type Sw/MO/14 H3N1, the reassortant viruses generated 176 

above were used in a second pathogenesis study. Eighty-five 3-week-old crossbred 177 

healthy pigs obtained from the same source as the previous experiment were used. 178 

Groups of 10 pigs were infected with each of the reverse genetics-generated viruses using 179 

the same methodology as described above, and five indirect contact pigs were introduced 180 

at 2 dpi as described above. Nasal swab samples were collected for primary and indirect 181 

contact pigs and necropsies were performed following the same procedures in 182 

Experiment 1.  183 

Virus titers in nasal swabs and lungs. Filtered nasal swab (NS) samples were plated for 184 

virus isolation onto confluent MDCK, as previously described (22). Ten-fold serial 185 

dilutions in serum-free Opti-MEM (Gibco®, Life Technologies, Carlsbad, CA) 186 

supplemented with 1 μg/ml tosylsulfonyl phenylalanyl chloromethyl ketone (TPCK)-187 

trypsin and antibiotics were prepared for each BALF and virus isolation-positive NS. 188 

Each dilution was plated in triplicate onto phosphate-buffered saline (PBS)-washed 189 

confluent MDCK cells in 96-well plates. At 48 h, plates were fixed with 4% phosphate-190 

buffered formalin and stained using immunocytochemistry as previously described (23). 191 

TCID50/ml virus titers were calculated for each sample according to the method of Reed 192 

and Muench (24). 193 
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Pathological examination of lungs. At necropsy, lungs were removed and evaluated for 194 

the percentage of the lung affected with purple-red consolidation typical of IAV 195 

infection. The percentage of the surface affected by pneumonia for the entire lung was 196 

calculated based on weighted proportions of each lobe to the total lung volume (25). 197 

Tissue samples from trachea and lung were fixed in 10% buffered formalin and were 198 

routinely processed and stained with hematoxylin and eosin. Microscopic lesions were 199 

evaluated by a veterinary pathologist blinded to treatment groups and scored according to 200 

previously described parameters (26). IAV-specific antigen was detected in trachea and 201 

lung tissues using immunohistochemistry (IHC) and scored as previously described (26). 202 

Individual scores were summed the average group composite scores were used for 203 

statistical analysis. 204 

Serology and antigenic cartography. Two 7-week-old seronegative naïve pigs were 205 

used for Sw/MO/14 H3N1 antisera production. Pigs were immunized intramuscularly 206 

with 2 doses 2 weeks apart of Sw/MO/14 antigen inactivated by ultraviolet (UV) 207 

irradiation. The antigen was used at 128 HA units per 50 μl in PBS with a commercial 208 

oil-in-water adjuvant (Emulsigen D, MVP Laboratories, Inc., Ralston, NE) at a 1:5 ratio. 209 

Pigs were humanely euthanized as described above for blood collection. Prior to HI, sera 210 

were treated with receptor-destroying enzyme (Sigma-Aldrich, St. Louis, MO), heat 211 

inactivated at 56°C for 30 min, and adsorbed with 50% turkey red blood cells (RBC) to 212 

remove nonspecific hemagglutinin inhibitors and natural serum agglutinins. HI assays 213 

from the experimentally challenged and contact pigs were performed with either 214 

A/VIC/11, Sw/MO/12 or Sw/MO/14 as antigens and 0.5% turkey RBCs using standard 215 
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techniques (27). Reciprocal titers were divided by 10, log2 transformed and reported as 216 

the geometric mean. 217 

Two-way HI assays were performed as described above, using a panel of reference swine 218 

and human H3N2 viruses as HI antigens, including Sw/MO/12, Sw/MO/14 and 219 

A/VIC/11, against a reference swine antisera panel (Table S3) (28). The reference panel 220 

represents H3 viruses historically or currently circulating in pigs in the U.S., along with 221 

recent and historic representatives of human vaccine strains. The HI assay data and 222 

antigenic cartography were used to quantify the antigenic inter-relationships between 223 

Sw/MO/12, Sw/MO/14 and other H3 isolates, as previously described (12, 29). 224 

Statistical analysis. The percent of macroscopic lesions, microscopic lesion scores, and 225 

log10 transformed BALF and NS virus titers were analyzed using analysis of variance, 226 

with a P value ≤0.05 considered significant (GraphPad Prism 6; GraphPad Software, La 227 

Jolla, CA). Response variables shown to have significant effects by treatment group were 228 

subjected to pairwise mean comparisons using the Tukey-Kramer test. 229 

Results 230 

Genetic characterization of the novel H3 viruses. Phylogenetic analysis of the HA 231 

genes of the human-like H3N2 and H3N1 isolates Sw/MO/12 or Sw/MO/14 used in our 232 

study, and other human-like H3N1 and H3N2 swine viruses identified in GenBank, 233 

demonstrated that they were most closely related to human seasonal H3N2 strains from 234 

2010-2011 (Fig. 1; Fig. S7), and they did not cluster with the contemporary circulating 235 

swine H3 genetic clusters (30). The HA genes of the recent swine human-like H3 236 

clustered together in the phylogeny with human seasonal H3 from 2010-11, suggesting 237 

these swine isolates were of similar ancestry, and that the Sw/MO/12 isolate most likely 238 
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evolved from a human-seasonal virus that circulated between the 2010-2011 seasons. The 239 

NA phylogeny indicated the NA gene of the initially identified human-like H3N2 swine 240 

virus (Sw/MO/12) was closely related to human N2 genes that circulated in 2010-2011, 241 

similar to the HA phylogeny (Fig. 2A; Fig. S8A). However, the NA of the more 242 

contemporary human-like H3 viruses were closely related to N1 of cH1N1 viruses or the 243 

N2 of the swine 2002 N2 lineage (Fig. 2B, Fig. S8B). The internal genes of five human-244 

like H3 viruses (the first H3N2 and four H3N1) were all closely related to H1N1pdm09 245 

viruses, and more recent human-like swine H3N2 had a combination of internal genes of 246 

the TRIG lineage with the M gene of H1N109pdm lineage (Fig. S1-6). The viruses 247 

recovered from two primary and two contact pigs of each infected group (when 248 

recoverable) were sequenced and compared to the original inoculum to investigate 249 

whether amino acid changes occurred after animal passage, and no differences were 250 

found. 251 

Pathogenesis of the swine and human H3 viruses in pigs. The A/VIC/11 did not cause 252 

significant macroscopic or microscopic lesions when compared to non-infected pigs 253 

(Table 2). Pigs challenged with the swine viruses (Sw/MO/12 and Sw/MO/14) had 254 

significantly higher percentages of the lungs affected with cranioventral consolidation 255 

when compared to A/VIC/11 (Table 2), with Sw/MO/14 infected pigs showing the 256 

highest percentage of lesions.  257 

Microscopic lung lesions in the Sw/MO/14 group consisted of moderate to severe, 258 

lobular and patchy to locally extensive interstitial pneumonia and moderately dense 259 

peribronchiolar cuffs that extended into the adjacent interstitium. Locally extensive 260 

alveolar lumina were expanded by large numbers of neutrophils and macrophages 261 
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admixed with mild edema. Multifocal bronchi and bronchioles demonstrated moderate to 262 

severe epithelial attenuation and necrosis with infiltrates of neutrophils and occasional 263 

macrophages in the airway lumen. Pigs challenged with Sw/MO/12 showed less airway 264 

impairment compared with the Sw/MO/14 group, but consistent with uncomplicated 265 

influenza virus infection. In contrast, pigs challenged with A/VIC/11 exhibited minimal, 266 

patchy interstitial pneumonia and mild and loosely formed peribronchiolar cuffs. Trachea 267 

epithelial attenuation or necrosis was mild to moderate in three of ten pigs challenged 268 

with Sw/MO/14, although all pigs demonstrated moderate tracheitis, which was also 269 

observed in the Sw/MO/12 group. Mild tracheitis was observed in only a few of the 270 

A/VIC/11 H3N2 challenged pigs.  271 

Lung and trachea pathology observed for the A/VIC/11rg was consistent with the wild-272 

type strain in Experiment 1; however, pathology for the Sw/MO/14rg was milder than 273 

that observed in Experiment 1 for wild-type Sw/MO/14 (Tables 1 and 2), although still 274 

relatively high compared to the remaining rg-viruses. The Sw/MO/14 and A/VIC/11 rg-275 

reassortant viruses did not cause significant macroscopic lung lesions when compared to 276 

non-infected pigs, with the exception of VIC11-NA (7 genes of Sw/MO/14), with a trend 277 

for increased macroscopic lung lesions and significant microscopic lung scores.  278 

IAV-specific antigen staining was detected by IHC in Sw/MO/12 and Sw/MO/14 279 

challenged groups, with average IHC scores in the lungs of 2.0 ± 0.2 and 5.3 ± 0.4 280 

respectively, and average scores in the trachea of 2.5 ± 0.4 and 2.6 ± 0.2 respectively. 281 

Immunoreactive IAV signals were not observed in any of the A/VIC/11 challenged pigs.  282 

In Experiment 2 with reassortant viruses, IAV antigen was detected in the lungs and 283 

trachea of pigs challenged with Sw/MO/14rg (scores of 2.15 ± 0.3 and 1.7 ± 0.3 284 
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respectively) and VIC11-NA (scores of 2.4 ± 0.4 and 1.7 ± 0.5, respectively), and in the 285 

trachea of pigs challenged with VIC11-HA (score of 0.6 ± 0.4), consistent with virus 286 

titers described below.  287 

Infection and transmission of the human-like swine H3 viruses. The back-titration of 288 

the inoculum of A/VIC/11, Sw/MO/12 and Sw/MO/14 were 104.5, 104.5 and 104.0, 289 

respectively. IAV was not isolated from BALF or NS of non-challenged (NC) control 290 

pigs. Virus was detected in the BALF of all pigs challenged with Sw/MO/12 and 291 

Sw/MO/14, with Sw/MO/14 showing the highest average virus titers (Table 2). In 292 

contrast, BALF of only two pigs inoculated with A/VIC/11 were virus positive at 5 dpi, 293 

and the group mean titer was not significantly different from the non-infected group.  294 

The back-titrations of the inoculum used in Experiment 2 ranged from 104.25 to 105.0. 295 

Both rg-generated parental viruses resulted in viral titers in BALF similar to the titers 296 

observed for the wild-type viruses in Experiment 1 (Table 3). Although the rg-reassortant 297 

viruses did not result in significant lung pathology, significant mean viral titers in the 298 

lungs were detected in an increased number of pigs in the two groups containing the HA 299 

of Sw/MO/14 on the A/VIC/11 backbone (MO14-HA/NA and MO14-HA; Table 3). 300 

The magnitude and kinetics of virus shedding in nasal secretions was considerably 301 

different between the human and the swine H3 viruses in Experiment 1. Only two 302 

primary pigs shed low titers of A/VIC/11 during the study period (Fig. 3). Pigs infected 303 

with Sw/MO/12 started shedding at 1 dpi and all were shedding by 3 dpi. All pigs 304 

challenged with Sw/MO/14 shed virus from 1 dpi until the day of necropsy, with titers 305 

similar to the Sw/MO/12 pigs at 3 and 5 dpi (Fig. 3).  306 
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None of the indirect contact pigs shed A/VIC/11 at any time point. In contrast, pigs in 307 

indirect contact with both groups of swine H3-infected pigs shed virus starting at 4 dpc, 308 

with similar average titers. One pig in the Sw/MO/14 contact group was still shedding at 309 

9dpc. By 15 dpc, all Sw/MO/12- and Sw/MO/14-contact pigs had seroconverted to 310 

homologous virus (average HI titers of 422.2 ± 13.2 and 2228.6 ± 12.9 respectively), 311 

confirming exposure to the challenge virus. None of the A/VIC/11-contact pigs 312 

seroconverted. 313 

Pigs infected with both parental rg-generated viruses in Experiment 2 showed similar 314 

nasal shedding patterns as pigs infected with the wild-type viruses in Experiment 1 (Fig. 315 

4), consistent with what was observed for viral replication in the lungs. Despite 316 

detectable virus titers in lungs for MO14-HA/NA and MO14-HA, all reassortant viruses 317 

that contained A/VIC/11 internal genes or NA alone resulted in significant loss in nasal 318 

viral shedding compared to Sw/MO/14rg (Fig. 4). In contrast, the HA of A/VIC/11 with 319 

the Sw/MO/14 backbone (VIC11-HA/NA and VIC11-HA) demonstrated the opposite 320 

pattern, with significant virus titers in nasal swabs (Fig. 4) despite limited replication in 321 

the lung (Table 3). Apart from the shedding patterns observed in primary infected pigs in 322 

Experiment 2, only Sw/MO/14rg resulted in airborne transmission to indirect contacts, 323 

with similar titers to the wild-type Sw/MO/14 (data not shown). 324 

Antigenic analysis of the novel H3N1. The antigenic distances between the human-like 325 

H3 viruses (Sw/MO/12 and Sw/MO/14) and human and swine H3N2 reference viruses 326 

are shown in Fig. 5 (tabulated cross-HI titers are shown in Table S4 in the supplemental 327 

material), with the antigens color-coded according to Lewis et al. (28). The human-like 328 

swine H3 viruses did not cluster with either of the two major antigenic clusters recently 329 



 

 15

identified for contemporary swine H3 viruses descended from the historic cluster III, or 330 

with prototypic antigens representing historic swine H3 clusters I and II (Fig. 5A). The 331 

novel human-like H3N1 and H3N2 were positioned at least 5 antigenic units away from 332 

other contemporary influenza viruses endemic in swine (Fig. 5B). Sw/MO/12 was located 333 

1.4 antigenic units away from Sw/MO/14. The human seasonal H3 representative, 334 

A/VIC/11, was 1.9 and 3.1 antigenic units away from Sw/MO/12 and Sw/MO/14, 335 

respectively (Fig. 5B). 336 

Human-like H3 genes from swine contained many mutations. To investigate a 337 

possible molecular basis for antigenic properties and pathogenesis observed with the 338 

human-like swine H3 viruses studied here, the deduced HA1 amino acid sequences were 339 

compared against a panel of reference H3 strains. The human-like Sw/MO/14 H3 gene 340 

differed in 25 amino acids in comparison to the human vaccine strain with similar 341 

evolutionary history (A/VIC/11; Fig. S9); eight of these mutations were located in the 342 

previously recognized antigenic sites (A to E) (31, 32) (Fig. S9). The human-like 343 

Sw/MO/12 differed in 18 positions from A/VIC/11, three in the antigenic sites, and in 16 344 

positions from the 2014 H3N1 (Fig. S9). Positions 140 and 145, which differed in 345 

Sw/MO/14 from A/VIC/11 and the other swine H3 strains, might be key in determining 346 

the relative antigenic map position among these strains. Putative N-linked glycosylation 347 

sites were predicted using the Net NGlyc 1.0 Server 348 

(http://www.cbs.dtu.dk/services/NetNGlyc/). Substitutions predicted to result in the loss 349 

of putative N-glycosylation sites were detected at four amino acid sites observed in 350 

Sw/MO/14 H3N1 and at two positions for the Sw/MO/12 H3N2 in comparison to 351 

A/VIC/11.  352 
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Discussion 353 

Despite a certain level of host specificity, many interspecies transmission events of 354 

influenza A viruses have been documented (33). In that context, pigs are an important 355 

natural host for IAV and are closely associated with the ecology and evolution of IAV 356 

(33). Notably, human IAV can infect swine and establish new lineages of endemic 357 

viruses (6, 9). The continuous spillover of human viruses into pig populations followed 358 

by reassortment and evolution has resulted in the circulation of swine IAV containing 359 

human-origin segments in North America, such as the TRIG H3N2 viruses and the 360 

human seasonal H1-related viruses known as the delta-cluster swine viruses (1, 8, 34). In 361 

our study, swine human-like H3 viruses newly identified through the USDA surveillance 362 

system caused significant lung pathology in infected pigs and resulted in airborne 363 

transmission. This is consistent with evidence from recent diagnostic investigations that 364 

demonstrate the virus has spread to a second U.S. state to a location without known 365 

epidemiologic links to the index case in Missouri. However, submissions to the USDA 366 

IAV surveillance system are voluntary and anonymous, including viruses described in 367 

this report. Therefore, details regarding the clinical disease on some of the source farms 368 

and potential epidemiologic links between the outbreaks were not always available. Both 369 

the human-like viruses were antigenically distinct from swine H3 viruses currently 370 

circulating in the U.S. and antigenic drift from human seasonal H3N2 vaccine strains was 371 

also apparent. 372 

Globally, endemic strains of IAV in pigs are of three main subtypes: H1N1, H1N2, and 373 

H3N2 (1, 33). Nevertheless, H3N1 viruses resulting from the reassortment between swine 374 

viruses (14, 35, 36) or from interspecies transmission and reassortment (2, 37, 38) have 375 
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been detected previously. The HA of the newly emerging H3N2 and H3N1 viruses we 376 

describe are most genetically similar to recent human seasonal H3N2 strains from 2010-377 

2011, suggesting these viruses evolved from a relatively recent spillover event of a 378 

human virus into pigs. These human-like viruses have been detected in multiple 379 

reassorted genome constellations, containing human H3, either human N2, classical 380 

swine N1, or swine 2002 N2, and internal genes from H1N1pdm09 or TRIG with 381 

H1N1pdm09 M genes. Recently, Nelson et al. (6) showed that relatively frequent human-382 

to-swine transmission occurred since 1965 in at least 8 countries, often with the 383 

replacement of the human IAV internal genes with swine-origin genes, suggesting 384 

reassortment and swine adaptation are important for sustained onward transmission.  385 

The human-like H3N2 detected first appears to be a precursor to the H3N1 viruses, 386 

differing from the H3N1 primarily by mutations in the HA gene and in the subtype of the 387 

NA gene. The N1 gene of the H3N1 human-like viruses is of the classical N1 lineage that 388 

circulates at a relatively similar frequency as N2 in pigs. Two lineages of N2 co-circulate 389 

in swine in the U.S., one of a human seasonal N2 lineage from approximately 1998 and 390 

the other a more recent human seasonal N2 lineage from approximately 2002 (1). 391 

Sw/MO/12-like H3N2 viruses containing human-origin NA were not detected by the 392 

USDA system since 2012, yet the H3N1 was repeatedly detected in 2013-2014, 393 

suggesting the N1 replaced the human-origin N2, although a direct evolutionary link to 394 

an N1 source virus could not be made. However, the most recent evaluation of the 395 

surveillance data revealed that human-like H3 viruses with swine N2 of the 2002 lineage 396 

are now being detected as a third generation reassortant from a putative human seasonal 397 
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precursor. These findings underscore that these novel viruses continue to evolve and 398 

adapt to the swine host.  399 

The internal gene constellation also appears to be important in the evolution of these 400 

human-like viruses in swine. Reassortants containing surface genes from endemic viruses 401 

and the TRIG constellation with the H1N1pdm09 M gene have become predominant in 402 

North American swine IAV (1, 39), and other H1N1pdm09 internal genes are 403 

increasingly being detected through the USDA surveillance system (39). The novel field 404 

isolates studied here contained all internal genes from H1N1pdm09, leading to a 405 

speculation that they may be associated with the fitness of these viruses in the swine host. 406 

Indeed, pairing the A/VIC/11 HA or HA and NA with the H1N1pdm09-lineage internal 407 

genes from the Sw/MO/14 virus resulted in significantly higher nasal shedding compared 408 

to the whole human virus. More recent isolates detected in the surveillance system 409 

contain TRIG plus pandemic M gene constellations, but were detected after these studies 410 

were initiated and will be the subject of future studies. 411 

Our results demonstrated that the human-like viruses efficiently infected pigs, caused 412 

moderate to severe pneumonia and resulted in airborne transmission to indirect contacts. 413 

In contrast, the prototypic human A/VIC/2011 H3N2 virus did not cause significant 414 

pathology and failed to transmit to indirect contacts. Unaltered wild type human IAV 415 

were shown to cause mild respiratory disease and lung pathology in comparison to swine-416 

adapted virus previously (40). Conversely, the H1N1pdm09, a swine-origin human 417 

seasonal virus, causes typical influenza-like clinical signs and shedding in pigs (41, 42), 418 

suggesting IAV has the potential to be fully adapted to humans and swine. Individual 419 

gene segments or mutations within gene segments as well as combinations of genes 420 



 

 19

contribute to viral fitness; for example, an ideal balance between surface genes HA and 421 

NA is necessary to result in effective influenza infection (43). Our results suggest that the 422 

Sw/MO/14 HA alone conferred the ability to replicate in the lungs regardless of the NA 423 

or internal genes paired with it. However, the HA combined with the other genes (NA 424 

and/or internal genes) were critical for ability to replicate in nasal epithelium and transmit 425 

to indirect contacts. While the HA from Sw/MO/14 contributed to replication in the lower 426 

respiratory tract, the virus containing the HA of A/VIC/11 replicated in the upper 427 

respiratory tract when paired with the H1N1pdm09-lineage internal genes of the 428 

Sw/MO/14. These findings indicate that the Sw/MO/14 HA played a critical role in the 429 

adaptation of these novel viruses to swine, but the combination and balance between viral 430 

genes was also essential. 431 

Human influenza viruses have been shown to replicate more efficiently at 33-34°C due to 432 

amino acid 627K in the PB2 gene (44, 45). In contrast, the baseline body temperature of 433 

pigs ranges between 38.5-39.5ºC, and thus may restrict replication like observed for the 434 

human A/VIC/11 virus backbone in the pig’s respiratory tract. However, H1N1pdm09 435 

virus has been shown to efficiently replicate in both the upper and lower respiratory tracts 436 

of pigs (42), and this internal gene backbone likely contributed to the increased 437 

replication of the reassortants with the A/VIC/11 HA in the upper respiratory tract. The 438 

ability of the H1N1pdm09 to replicate in the lower respiratory tract and thus result in 439 

lung pathology has been associated, among other factors, with lower number of 440 

glycosylations in the HA and reduced surfactant protein D (SP-D)-mediated clearance 441 

(46). The two wild-type human-like swine H3 viruses described here had fewer predicted 442 
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N-glycosylation sites in the HA protein when compared to the putative human IAV 443 

ancestor, which might have contributed to their increased pathogenicity in pigs.  444 

Additionally, the presence of carbohydrates on the HA might alter the antigenicity of 445 

IAV (47), and the reduction observed in the Sw/MO viruses may have impacted the 446 

cross-reactivity to the H3 reference antisera panel, in addition to other potential 447 

antigenic-impacting amino acid substitutions. Substitutions in as few as seven amino acid 448 

positions were shown to be largely responsible for the antigenic evolution of H3N2 449 

viruses circulating in humans for 35 years (48). In addition, positions 145 and 159 near 450 

the receptor-binding site, among others, are likely responsible for antigenic changes in 451 

H3N2 swine virus evolution (28). Amino acid substitutions in these two positions as well 452 

as others detected in the human-like swine H3 likely contributed to the low cross-453 

reactivity observed here between the human-like Sw/MO viruses and the swine endemic 454 

IAV. However, the magnitude of the effect of each of these individual substitutions is 455 

unclear at the current time. Commercially available swine IAV vaccines in the U.S. 456 

contain swine strains from phylogenetic clusters I and/or IV in their composition. The 457 

human-like H3N2 and H3N1 showed little HI cross-reactivity with current and historical 458 

swine H3N2 and, therefore, immune response elicited by the commercial swine vaccines 459 

are highly unlikely to result in cross-protection against these novel H3 viruses.  460 

Though new subtypes or genotypes of IAV are sporadically detected in pigs, the 461 

properties required for a virus to efficiently transmit and become established in pig 462 

populations are still largely unknown and likely contextual with the whole genome. The 463 

recurring bidirectional exchange between swine and human influenza A viruses has 464 

contributed much to the diversity of viruses circulating in pigs currently, and the frequent 465 
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incursions of human seasonal viruses to swine have greatly influenced the dynamics of 466 

IAV evolution in swine. We demonstrated that wild type field isolates of the human-467 

origin H3N2 and H3N1 swine viruses efficiently infected pigs and resulted in onward 468 

transmission. However, the adaptation of human viruses to swine appears to be complex 469 

as the HA gene as well as the internal gene constellation played important but variable 470 

roles in infectivity, replication, transmission, and pathogenicity in swine, with different 471 

phenotypes in the upper compared to lower respiratory tract. Importantly, the novel 472 

human-like viruses were antigenically divergent from all U.S. swine viruses included in 473 

our contemporary H3N2 serum panel and from the strains used in commercially available 474 

swine vaccines, therefore pigs likely have limited immune protection against these novel 475 

human-like viruses. Hence, effective surveillance and close monitoring of the evolution 476 

of these human-origin viruses in pigs are critical for vaccine preparedness and to improve 477 

preventive measures in the swine industry. 478 
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Tables 672 

Table 1. List of viruses generated by reverse genetics (rg) using A/Victoria/361/2011 673 

(A/VIC/11) and A/Swine/Missouri/ A01410819/2014 (Sw/MO/14) used as challenge 674 

viruses in Experiment 2.  675 

Virus HA gene origin NA gene origin Internal genes origin

Sw/MO/14rg Sw/MO/14 Sw/MO/14 Sw/MO/14 

VIC11-HA/NA A/VIC/11 A/VIC/11 Sw/MO/14 

VIC11-HA A/VIC/11 Sw/MO/14 Sw/MO/14 

VIC11-NA Sw/MO/14 A/VIC/11 Sw/MO/14 

A/VIC/11rg A/VIC/11 A/VIC/11 A/VIC/11 

MO14-HA/NA Sw/MO/14 Sw/MO/14 A/VIC/11 

MO14-HA Sw/MO/14 A/VIC/11 A/VIC/11 

MO14-NA A/VIC/11 Sw/MO/14 A/VIC/11 

HA= hemagglutinin; NA= neuraminidase 676 

  677 
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Table 2. Macroscopic pneumonia, lung and trachea microscopic pathology, and lung 678 

virus titers obtained in pigs challenged with wild-type A/Victoria/361/2011 (A/VIC/11), 679 

A/Swine/Missouri/A01476459/2012 (Sw/MO/12), or 680 

A/Swine/Missouri/A01410819/2014 (Sw/MO/14), and non-challenged controls (NC). 681 

Results shown as means ± standard error of the means. 682 

Group 
Macroscopic 

pneumonia (%) 

 Microscopic 

pneumonia score 

(0-22) 

Microscopic 

tracheitis score 

(1-8) 

Log10 virus titer 

(TCID50) in 

BALF 

NC 0.0 ± 0.0a,x 0.2 ± 0.1a 0.1 ± 0.1a 0.0 ± 0.0a (0/5)y 

A/VIC/11 0.0 ± 0.0a 0.8 ± 0.2a 0.8 ± 0.2a 0.6 ± 0.4a (2/8) 

Sw/MO/12 4.2 ± 1.0b 4.9 ± 0.5b 2.8 ± 0.5b 3.6 ± 0.2b (10/10)

Sw/MO/14 12.0 ± 0.8c 9.4 ± 0.6c 2.1 ± 0.3b 5.1 ± 0.2c (10/10)

xDifferent lower case letters within the same column indicate significant differences 683 

(p≤0.05). 684 

yThe number of virus-positive pigs/total number of pigs tested is indicated in parentheses. 685 

  686 
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Table 3. Macroscopic pneumonia, lung and trachea microscopic pathology, and lung 687 

virus titers in pigs challenged with reverse genetics-generated A/VIC/11rg, Sw/MO/14rg, 688 

VIC11-HA/NA, VIC11-HA, VIC11-NA, MO14-HA/NA, MO14-HA, and MO14-NA, 689 

and non-challenged controls (NC). Results shown as means ± standard error of the 690 

means. 691 

Group 
Macroscopic 

pneumonia (%) 

 Microscopic 

pneumonia score 

(0-22) 

Microscopic 

tracheitis score 

(1-8) 

Log10 virus titer 

(TCID50) in 

BALF 

NC 0.3 ± 0.2a,x 0.1 ± 0.1a 0.0 ± 0.0a 0.0 ± 0.0a (0/5)y 

Sw/MO/14rg 6.3 ± 1.9b 6.4 ± 1.0b 1.1 ± 0.4b 4.1 ± 0.3b (10/10)

VIC11-HA/NA 0.5 ± 0.4a 0.1 ± 0.1a 0.1 ± 0.1a 0.0 ± 0.0a (0/10) 

VIC11-HA 0.0 ± 0.0a 0.2 ± 0.1a 0.2 ± 0.1a 0.0 ± 0.0a (0/10) 

VIC11-NA 2.7 ± 0.7a 2.3 ± 0.7b 0.2 ± 0.1a 3.6 ± 0.4b,c (9/10)

A/VIC/11rg 0.4 ± 0.2a 0.6 ± 0.2a 0.2 ± 0.2a 0.4 ± 0.3a (2/10) 

MO14-HA/NA 1.0 ± 0.3a 0.5 ± 0.2a 0.4 ± 0.2a 1.7 ± 0.4c (7/10) 

MO14-HA 1.1 ± 0.5a 0.9 ± 0.2a 0.1 ± 0.1a 2.6 ± 0.4c (9/10) 

MO14-NA 1.4 ± 0.6a 0.4 ± 0.1a 0.0 ± 0.0a 0.4 ± 0.2a (2/10) 

xDifferent lower case letters within the same column indicate significant differences 692 

(p≤0.05).  693 

yThe number of virus-positive pigs/total number of pigs tested is indicated in parentheses.694 
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Figure Legends 695 

Fig. 1. Phylogenetic analysis of HA genes of the swine human-like H3 viruses. 696 

Maximum likelihood phylogeny of the HA of 20 human-like H3 swine viruses and 155 697 

H3N2 viruses collected from humans and swine in the United States. Branch color 698 

reflects evolutionary history and is indicated in the inset: swine human-like H3 in purple; 699 

human seasonal H3 in gray; swine cluster I H3 in brown; swine cluster II H3 in blue; 700 

swine cluster IV H3 in orange; and human reference H3 vaccine strain in red. Numbers 701 

above or below branches indicate bootstrap support (%): bootstrap values ≤50% are not 702 

shown. The tree is midpoint rooted for clarity and all branch lengths are drawn to scale: 703 

scale bar indicates nucleotide substitutions per site. A phylogeny with taxon names 704 

indicating viral isolate, prefaced by GenBank or GISAID EpiFlu accession identifier, is 705 

presented in the supplementary material.  706 

Fig. 2. Phylogenetic analysis of NA genes of the swine human-like H3 viruses. 707 

Maximum likelihood phylogeny of the NA of 20 human-like H3 viruses and 155 708 

representative viruses collected from humans, swine, and turkeys in the United States; 709 

(A) N2 influenza A virus isolates; and (B) N1 influenza A virus isolates. Numbers above 710 

or below branches indicate bootstrap support (%): bootstrap values ≤50% are not shown. 711 

H3N2 NA sublineages are colored: (A) the 1998 swine-lineage in magenta, the 2002 712 

swine-lineage in green, and human seasonal lineage in gray; and (B) the H1N1pdm09 713 

lineage in red and the classical swine lineage in cyan. The novel human-like H3 viruses 714 

described in this study are colored purple. The trees are midpoint rooted for clarity and all 715 

branch lengths are drawn to scale: scale bar indicates nucleotide substitutions per site. 716 
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Phylogenies with taxon names indicating viral isolate, prefaced by GenBank or GISAID 717 

EpiFlu accession identifier, are presented in the supplementary material. 718 

Fig. 3. Nasal viral shedding observed in the in vivo Experiment 1. Virus titers in nasal 719 

swabs of (A) primary pigs at 1, 3, and 5 days post infection (dpi) with 720 

A/Swine/Missouri/A01476459/2012 (Sw/MO/12), A/Swine/Missouri/A01410819/2014 721 

(Sw/MO/14) or A/Victoria/361/2011 (A/VIC/11) and of (B) their respective indirect 722 

contact pigs at 4, 5, 7, and 9 days post contact (dpc). Results shown as means and 723 

standard error of the means. Numbers of infected pigs/total number of pigs are indicated 724 

in parentheses. Different lowercase letters between groups within the same sampling day 725 

indicate significant differences (p≤0.05). 726 

Fig. 4.  Nasal viral shedding observed in the in vivo Experiment 2 with reassortant 727 

viruses. Virus titers in nasal swabs of primary pigs at 1, 3, and 5 days post infection (dpi) 728 

with reverse genetics generated parental viruses (A) A/Swine/Missouri/A01410819/2014 729 

(Sw/MO/14rg) or (B) A/Victoria/361/2011 (A/VIC/11rg), and reassortant viruses with 730 

surface genes exchanged on the parental backbones (A: VIC11-HA/NA, VIC11-HA and 731 

VIC11-NA in the Sw/MO/14rg backbone; B: MO14-HA/NA, MO14-HA and MO14-NA 732 

in the A/VIC/11rg backbone). Results shown as means and standard error of the means. 733 

Numbers of infected pigs/total number of pigs are indicated in parentheses. Different 734 

lowercase letters within the same sampling day indicate significant differences (p≤0.05). 735 

Levels of lung replication indicated for comparison: crosses illustrate approximated log 736 

viral titers. 737 

Fig. 5. Antigenic relationships between the swine human-like H3 viruses and a panel of 738 

reference H3N2 viruses. (A) 3D antigenic map of swine and human H3 influenza viruses. 739 
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(B) Graph illustrating the antigenic distances between the human-like swine H3 viruses 740 

(Sw/MO/12 in the first panel and Sw/MO/14 in the second panel) and all viruses 741 

represented in the 3D map. The viruses used in this study, Sw/MO/12 H3N2, Sw/MO/14 742 

H3N1, and A/VIC/11, are represented by green, purple and gray larger spheres/circles, 743 

respectively. Swine and human isolates are colored according to Lewis et al. (28): 744 

A/Wuhan/359/1995 and the cluster I prototype swine H3N2 are shown in light blue; 745 

A/Sydney/5/1997, A/Moscow/10/1999, and the cluster II prototype swine H3N2 are 746 

shown in light pink; swine H3 antigenic clusters are shown in red and cyan, and outliers 747 

as multicolor; and human vaccine strains are shown in gray. The scale bar represents one 748 

antigenic unit distance, corresponding to a 2-fold dilution of antiserum in the HI assay. 749 
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