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Transportation-related greenhouse gas (GHG) emissions account for an increasing proportion of total emissions in

the UK and globally. The provision of rail transit is popularly proposed to reduce transport GHG emissions, but the

provision of new infrastructure is itself GHG intensive. Understanding of the GHG emissions impact of rail projects is

limited and very few longitudinal studies have been carried out. Existing assessments are often limited both in their

scope and the factors considered. A holistic understanding of GHG impacts must include an assessment of capital GHG

emissions, operational energy and maintenance as well as an assessment of ridership mode shift and mode share

impacts and the relationship between transit infrastructure and land use. This paper explores rail infrastructure

projects and their associated GHG emissions. Guidance is given on the aspects of rail planning, design and construction

that must be considered to more fully understand the associated GHG impacts.
1. Background
The UK has declared aggressive greenhouse gas (GHG) reduction
goals for the next 35 years. The importance of the transportation and
infrastructure sectors in addressing GHG emissions and associated
climate change is increasing. Accordingly, civil and transportation
engineers have a special and growing responsibility to understand the
impact of design and construction of transportation infrastructure.
Designing and developing infrastructure are within the purview
of engineers, but there are often complicated trade-offs in the
decision-making and design processes that are not within traditional
engineering training. To be effective agents in the provision of
sustainable transportation infrastructure, engineers must understand
the wide-reaching impacts of their projects on local and global
GHG emissions. Over the next 15 years, US$ 90 trillion will be
spent globally on infrastructure (GCEC, 2014). Success in averting
catastrophic climate change is dependent on ensuring that investment
decisions incorporate sustainability considerations.

In 2012, the transport sector generated approximately 24% of total
UK emissions – passenger cars dominated, generating 56% of
total transport emissions (GCB, 2013). International air transport,
a significant contributor of global anthropogenic emissions, is
excluded from national GHG censuses but also needs to be
addressed. Advances in the transport and infrastructure sectors are
not keeping pace with reductions in other areas and are accounting
for a growing percentage of all emissions (Thistlethwaite et al.,
2012).

To this end, the UK Department for Transport (DfT) is promoting
sustainable transport (DfT, 2011a). To achieve long-term sustainable
transport goals, the following steps must be achieved

■ mode shift away from private cars
■ low GHG intensity for public transit
■ significant reductions in the GHG intensity of international

travel.

This will require behavioural and policy change, as well as
significant infrastructure investment to facilitate low-GHG travel
choices. The provision of rail transit is a popular method
1
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of reducing car use and air travel and their associated GHG
emissions (DfT, 2011a). To advance rail usage, new infrastructure
investment is required in order to maintain service as populations
and ridership grow, and to expand into currently underserved
areas. New infrastructure, however, necessarily results in
significant new emissions.

Together, automobiles and aviation present a large and growing
challenge to GHG reduction. The increase in aviation in the past
decade alone has had a serious impact. Aviation accounts for
12% of global transport emissions and for approximately 2% of
all anthropogenic GHG emissions (ATAG, 2014). Aviation’s
energy requirements make it unsuited for traditional GHG
reduction efforts (MacKay, 2008) and its exclusion from national
GHG inventories means aviation GHG emissions are often
overlooked (Hale, 2010). In urban environments, metro rail has
the potential to be a lower GHG option for travel, while high-
speed rail (HSR) has the potential to be a lower GHG option
for medium-distance trips currently travelled by aeroplane (DfT,
2012; DGMT, 2009). Both types of rail are currently being
expanded in the UK as epitomised by Crossrail and High Speed 2
(HS2), both high-profile UK rail projects currently under
development. In addition, expansion of these projects is already
being discussed, with Crossrail 2 and High Speed 3 (HS3) being
proposed.

Understanding of the GHG emissions impact of rail projects
is limited and very few longitudinal studies have been carried
out. There is a growing acceptance of life cycle thinking in
construction (Chester et al., 2012a; Heijungs et al., 2012;
Heinonen et al., 2012; Kellenberger et al., 2007; Menzies et al.,
2007; Nichols and Kockelman, 2014; Ramaswami et al., 2008;
Ramesh et al., 2010; Sharrard et al., 2008; Yung et al., 2013) and
yet its application in rail projects is still limited. In most cases
where GHG emissions are examined, emissions accounting is
carried out only on operational emissions (Chester et al., 2010,
2012a) and does not account for the myriad impacts of new rail
projects on travel choices and land use.

This paper explores rail infrastructure projects and their associated
GHG emissions from construction through to development
incentives. Harnessing rail infrastructure’s potential requires
optimising planning and design to reflect holistic GHG impacts.
The main objective here is to understand the wider impacts of
design and planning decisions on urban heavy rail systems and
HSR – both rail systems that are currently targeted for expansion
in the UK. It is hypothesised that a careful design, planning
and construction process will best facilitate meaningful GHG
reductions in transport and infrastructure. In order to fully assess
the GHG impact on rail projects, the evaluation must include
the contributions from construction and operation, real mode
shift patterns, the long-term impacts on mode share, the
impacts of increased rail capacity and auxiliary impacts such
as the relationship between transportation infrastructure and
land use.
2
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2. Life cycle carbon dioxide assessments
The first step in understanding the full impact of rail projects
is assessing the GHG emissions associated with construction,
operation and maintenance of infrastructure. Life cycle carbon
dioxide assessment (LCCA) has gained prominence as the
preferred method for accounting for the GHG impacts of
building and operating a rail system (Cano and Chester, 2015;
Gallivan et al., 2014). LCCAs evaluate the impact of a product
from cradle to grave – from gathering of the raw materials
through to final disposal (SAIC, 2006). In building and
infrastructure projects, the disposal phase of an LCCA is often
excluded, as the useful life of the product is long. Accordingly,
assessments of such projects are often cradle-to-site rather than
cradle-to-grave.

In the UK, a widely used embodied energy and GHG database for
construction materials was produced by researchers at the University
of Bath (Hammond and Jones, 2011; Jones and Hammond, 2008).
This database provides factors for a cradle-to-site analysis. In order
to carry out a complete LCCA analysis, other factors such as
construction site energy, maintenance energy and operational energy
must be analysed separately. To be effective, the LCCA calculation
must be carried out in parallel with the planning and design process
so that the GHG impacts inform decision-making and design.

Calculating the lifetime GHG emissions of a project is dependent
on very detailed record keeping – everything from the amount of
concrete used to the shipping distance of construction materials
and the fuel use of on-site equipment has an impact. However, as
LCCAs are relatively new to rail infrastructure projects, there is a
paucity of published data. Future projects would benefit from the
establishment of a database with material and energy use for rail
infrastructure.

2.1 Capital GHGs
Capital GHGs are the emissions accrued as a result of the
infrastructure’s construction. In rail projects the infrastructure
required is significant, and the stations, bridges, viaducts, tunnels,
tracks, rolling stock, temporary facilities, access roads, power supply
infrastructure and earthworks all have substantial GHG costs. Life
cycle GHG assessments of infrastructure projects are becoming
more common, as evidenced by the recent assessment of Crossrail
in London (Paris and de Silva, 2010) and the four HSR case studies
discussed later in the paper (UIC, 2011). LCCAs completed in
advance of a project are necessarily based on projections; careful
documentation of materials use, shipping distances, site energy use
and waste should be carried out to allow confirmation of the
analysis and to facilitate more accurate future work.

2.1.1 Embodied material GHGs
The largest GHG cost is associated with the GHGs embodied in the
materials themselves plus the emissions during their placement (e.g.
Chau et al., 2011; Hughes et al., 2011; Inui et al., 2011). The
construction industry consumes massive amounts of both new and
recycled materials (e.g. concrete, steel, wood and plastics) and each
lishing, all rights reserved.
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material must be extracted, processed and transported to site. Each
stage in the process has GHG impacts.

The three main construction materials used in rail projects are
track ballast, concrete and steel. Reinforced concrete is used in
the tunnel sections, retaining walls and floor slabs. Steel
reinforcing bars are used in most concrete elements, and steel
beams and columns often form the skeleton of permanent station
structures. Reductions in total materials use, particularly concrete
and steel, should thus be examined to reduce the GHG impact of
metro rail and HSR construction. For illustration, the embodied
GHGs in a 170 m span viaduct total around 220 000 tonnes
carbon dioxide (tCO2) (Hughes, 2012), similar to the yearly tail
pipe emissions from 90 000 cars in the UK (DfT, 2013). In
addition to permanent structure materials, temporary works and
waste should also be considered. For example, in buildings, up to
22 m3 of waste materials are generated for every 100 m2 of
constructed floor area (Hammond and Jones, 2011), and similar
levels of wastage would be expected on rail projects.

2.1.2 Construction site energy
Construction site energy is frequently excluded from built
environment LCCAs (Iddon and Firth, 2013). On a heavy
construction project (such as metro urban rail infrastructure or
HSR) the energy cost accounts for approximately 4% of the total
construction expenditure and can account for 5–30% of total
emissions (Nicholson et al., 2012). Construction sites are usually
powered by petrol, diesel, electricity and natural gas, producing
significant quantities of GHGs on site (Sharrard et al., 2007).
Petrol and diesel fuel form the largest contribution to construction
site energy, accounting for 62–75% of site energy consumption
(Sharrard et al., 2007). The actual emissions on any given site are
dependent on equipment and fuel choices as well as the age of the
machines and their usage (Waris et al., 2014).

2.2 Embodied GHGs in metro rail construction:
examples

Few life cycle assessments have looked at public transit and fewer
still have examined metro rail transit. This is starting to change,
however, as understanding of the environmental impacts of
infrastructure projects is gaining prevalence. For example, a
detailed analysis of the expected GHG emissions of Crossrail – a
new metro line under construction in London – has been carried
out (Paris and de Silva, 2010). The predicted construction
emissions for the underground section of Crossrail range from 8·6
to 13·5MtCO2. Construction emissions are predicted to account
for 15% of the life cycle emissions for Crossrail over 120 years.
Of these, materials account for 58% and construction site activity
accounts for 28% (Paris and de Silva, 2010). The Hong Kong
mass transit railway (MTR) attributes 11% of total life cycle
emissions for the railway to civil infrastructure embodied GHGs,
assuming a 120 year life cycle (MTR Corporation, 2013).

Chester and co-workers investigated the GHG impacts of rail
systems in the USA (Chester, 2008; Chester and Horvath, 2009;
 [ UNIVERSITY OF CAMBRIDGE] on [27/11/15]. Copyright © ICE Publishin
Chester et al., 2010, 2012a, 2012b) and found that the life cycle
GHG emissions due to construction of rail projects were 0·8 to
1·5 times the emissions from operation (Chester and Horvath,
2009). The assessments of Chester et al. are broader in scope than
those for Crossrail or the Hong Kong MTR – they include vehicle
operation (active and inactive), maintenance and manufacturing,
infrastructure construction, operation and maintenance, infrastructure
insurance and fuel production. For Bart (Bay Area Rapid Transit), in
and around San Francisco, the GHG intensity of travel was found to
be 87 gCO2 per passenger kilometre travelled (PKT), while the
Green Line in Boston was found to have life cycle carbon dioxide
emissions of 142 gCO2/PKT (Chester, 2008).

The embodied GHGs of rail infrastructure are heavily dependent
on the type of system built and the type of infrastructure. The
systems studied by Chester and co-workers primarily run above
ground, reducing their infrastructure requirements. Crossrail has
underground stations and tunnels, requiring large infrastructure
investment. The quantity of emissions is correlated to infrastructure
requirements. Underground systems, with their tunnels and larger
stations, have capital GHG emissions orders of magnitude higher
than at-grade systems as a result of the greater material and energy
demands of constructing underground.

2.3 Embodied GHGs in HSR construction
High-speed rail has stringent geometrical requirements. The
horizontal and vertical alignment stipulation means that it is often
difficult to adjust the line to local topography. A relatively small
trade-off between vertical and horizontal alignments can be made,
dependent on the type of HSR rolling stock used. For example,
the French TGV Atlantique rolling stock tolerates relatively steep
gradients with long-radius horizontal curves, in contrast to the
Italian Pendolino rolling stock which tolerates shorter horizontal
curves but with less steep gradients. Despite these potential
contrasts, the relatively strict HSR geometry requirements will
often result in an increased need for structures such as bridges
or viaducts to allow for the required large-radii curvature. The
GHG footprint of constructing such structures has been well
documented in the literature (Soga et al., 2011). The GHG costs
are directly related to the engineering challenges faced as a result
of the tight geometric requirements of HSR. Therefore, each HSR
line must be assessed in terms of its specific context.

The International Union of Railways (UIC) assessed the GHG
emissions of four different HSR lines – the South Europe Atlantic,
the LGV Mediterranée, Taipei–Kaohsiung and Beijing–Tianjin
(UIC, 2011). For each of these lines, a cradle-to-grave analysis was
carried out on earthworks, material transportation, structures, track,
signalling equipment, stations and rolling stock. In a comparison of
these lines in terms of tonnes of carbon dioxide due to construction
per kilometre of line and year, the two French lines compare
similarly, at around 60 tCO2/(kmyear). The Taipei–Kaohsiung
and Beijing–Tianjin lines are considerably higher, at around
175 tCO2/(kmyear) and 140 tCO2/(kmyear) respectively. The large
difference between these two lines and the two French lines is
3
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predominantly due to the use of bridges, tunnels and viaducts on
the Taipei–Kaohsiung and Beijing–Tianjin lines.

In addition, the French national rail operator SNCF carried out an
LCCA of a new 140 km TGV line from Rhine–Rhone in eastern
France. It was calculated that the construction amounted to
750 000 tonnes carbon dioxide equivalent (tCO2e) (SNCF, 2011),
roughly equating to 60 tCO2/(kmyear) assuming a 100 year
lifespan (as per UIC, 2011). This is a similar value to those
estimated by UIC for the LGV Mediterranée (≈68 tCO2/(km year))
and the South Europe Atlantic (≈60 tCO2/(km year)). The low
GHG costs of the French lines are a result of few structures
such as tunnels (e.g. 5% of LGV Mediterranée) and viaducts
(e.g. 6·4% of LGV Mediterranée) (UIC, 2011). Conversely, the
Taipei–Kaohsiung line in Taiwan travels through a mountain
range in the densely populated west coast and is mainly run on
viaducts (73%) and in tunnels (13%) (UIC, 2011).

The first phase of HS2 in the UK is a planned new 225 km HSR
line from London to Birmingham. Projections of the scheme’s GHG
credentials estimated that the capital GHGs would be approximately
5·59MtCO2e (HS2, 2013). This value is very large in comparison
to the studied existing projects, and is largely due to the tunnels that
are intended to reduce noise pollution and improve visual amenity
(HS2, 2013). Tunnels account for over 1·1MtCO2e alone along the
HS2 line. Research has found that using a 9·8m diameter over a
10 km long tunnel for a 320 km/h train equates to 64% additional
energy consumption when compared with an at-grade open line
(HS2, 2009). Tunnels therefore pose two GHG challenges. Firstly,
they increase the operational energy required by the rolling stock
indefinitely. Secondly, they have a large GHG capital investment,
primarily as a result of boring and embodied material energy. The
preference for tunnels to mitigate environmental metrics such as
noise and visual amenity may be reduced if a larger premium was
put on the two-sided GHG environmental impacts they have.
However, clearly the choice to utilise tunnels incorporates other
considerations beyond a simple trade-off between GHG emissions
and noise as well as other environmental impacts. For example,
separating land has animal migration impacts and has other wider
local connectivity implications that would need to be considered.

2.4 Operation and maintenance
The embodied GHGs of a rail system increase each year as more
energy and materials are put into system operation and maintenance
(Zapata and Gambatese, 2005) Feedback from asset managers to
design practitioners also has significant importance to GHG
emissions (Mohammed and Hassanain, 2010) A design that requires
little maintenance resource investment over its lifetime, possibly at
the cost of more capital investment, may be more advantageous in
terms of GHGs. Conversely, a design that attempts to defer capital
costs at the expense of increased maintenance may face significant
cumulative GHG emissions.

Most metro rail systems operate using electricity. London
Underground is the largest electricity consumer in London, using
4
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approximately 1 TWh of electricity per year accounting for 2·8%
of all electricity use in London (TfL, 2008). For comparison, the
Hong Kong MTR uses approximately 1·4 TWh of electricity per
year (MTR Corporation, 2013). The GHG emissions associated
with this energy are dependent on the GHG intensity of the
electricity network.

As many countries continue to pursue GHG reductions for their
energy supply, such operational GHG footprints will reduce
accordingly. In the UK, the GHG intensity of electricity rapidly
decreased in the early 1990s and has been approximately
500 gCO2e/kWh since 1997 (Defra and DECC, 2013). The
residual electricity fuel mix in the UK is 46·8% from coal, a
GHG-intensive energy source; accordingly, there is still room
for improvement (DECC, 2014). The UK Pathways to 2050
(Climate Change Act 2008, 2008) calls for an increase in nuclear
energy and investment in renewables to reduce the GHG intensity
of electricity to 150 gCO2e/kWh (AEA, 2011). If progress is made
towards this goal, the GHG intensity of electrified rail travel in
the UK will fall accordingly. It is also important to note that
arrangements with energy providers can be made to make use of
lower carbon dioxide domestic energy sources. For example,
Network Rail signed a deal with EDF Energy in 2013 for a
10 year supply of electricity 100% matched by low carbon
dioxide energy from EDF Energy’s nuclear power stations
(Network Rail, 2013).

When a line is supplied with low-GHG electricity, the GHG
footprint for operation can be vastly reduced. Comparing the
life cycle GHG emissions between HSR in France, Taiwan and
China highlights the impact of electricity GHG intensity – HSR
operation in France emits approximately one-fifth of the GHGs
of the systems in Taiwan and China, and this is in large part
dependent on the GHG intensity of electricity. Critically, the
dominance of low-GHG nuclear energy in France (76·4% of
electricity generation) reduces the impact of operating the
trains while Taiwan’s electricity mix is dominated (52%) by coal-
based electricity (UIC, 2011). On average, an HSR train consumes
24·1 kWh/km (Network Rail, 2009) and the emissions associated
with this operation can be estimated by combining them with
the emissions factors derived from the electricity mix of any
country. In a simplistic comparison of a 100 km track, operational
emissions using nuclear power would be around 0·04 tCO2e
(assuming 16 gCO2/kWh) (SCECC, 2010) while those via coal
would be 2·1 tCO2e (assuming 870 gCO2/kWh) (MacKay and
Stone, 2013).

3. Ridership
It is a widely held view that the development of urban rail reduces
urban GHG emissions by reducing road-based transport emissions.
Studies have repeatedly shown that, per PKT, moving by public
transport results in fewer GHG emissions than car travel at average
occupancies (DfT, 2011b; Newman, 2000; USDoT, 2010). In 2011,
the average UK car – with an average UK occupancy factor of
1·6 – produced 151·0 gCO2e/PKT while London Underground
lishing, all rights reserved.
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produced 83·3 gCO2e/PKT (DfT, 2011b). However, especially in
cities with an existing transit system, the mode shift to new rail is
complex as passengers do not necessarily switch from private to
public transit – a large percentage of riders on the new line have
often switched from other parts of the existing transit system
(JLISU, 2002; Saxe et al., 2015). To understand the emissions
benefits of new metro lines it is necessary to consider the actual
mode shift achieved. This includes an analysis of ridership
redistribution within the existing public transit system, the
possibility of replacing active transportation trips (walking and
cycling) and the effects of induced demand (both onto the new line
and onto existing transportation infrastructure in response to the
mode shift). The impacts of new urban rail lines vary. For example,
the opening of a new metro in Copenhagen was accompanied by a
13% drop in vehicular traffic and a 40% decrease in bus use
(Vuk and Ildensborg-Hansen, 2006). In Athens, the new metro
saw 24% of its ridership come from cars and 53% from buses
(Golias, 2002). However, on London’s Jubilee line extension,
only 2% of initial riders came from cars and 7% from buses
(TSGUW, 2004).

Rail infrastructure expansion also maintains and expands rail
services for a growing population. Investments in transport
infrastructure have long-term impacts on mode share (Henao
et al., 2015). The GHG impacts of new rail capacity and its
influence on long-term mode share trends can be a major
contributor to the net GHG impact of a new rail system. Evidence
indicates that increased rail accessibility correlates with reduced
use of GHG-intensive modes such as car and air travel (Albalate
et al., 2015; Murray et al., 1998; Saxe et al., 2015). In examining
long-term mode share, GHG savings are calculated from trips that
are avoided rather than trips that were previously taken by a
different mode (mode shift). As populations grow, more trips are
taken and, eventually, the initial ridership can be dwarfed. For
example, ridership on the Jubilee line extension more than
doubled from 2000 to 2011 (TfL, 2013). The calculation of long-
term GHG savings due to mode share trends is sensitive to the
variability of long-term predictions. Mode share is complex and
difficult to predict, involving the individual decisions of millions
of travellers interacting to bring about macro behaviour on the
transport network (Lu and Shi, 2007).

As such, predictions for short- to medium-term demand have
historically struggled to provide accurate predictions. For
example, by 2010, the High Speed 1 (HS1) line in the UK was
carrying less than a third of the projection at the time of tendering
(Booz&Co., 2012). A study of 210 projects in 2006 found that,
for nine out of ten rail projects, ridership was overestimated by
an average of 106% (Flyvbjerg et al., 2006). Such a history
of inaccuracy shows the difficulties associated with predicting
user behaviour towards a new mode provision. This said, it is
important to consider the longer term gains. The biggest criticism
of HS1 was that the aviation sector solved the connectivity
problem itself, primarily through low-cost carriers, thus impacting
on the ability of HSR to compete (HCCPA, 2012). However, such
 [ UNIVERSITY OF CAMBRIDGE] on [27/11/15]. Copyright © ICE Publishin
low-cost aviation is unlikely to continue as global emissions
regulations impact on the competitive pricing of aviation. Thus,
although the savings projected were not made in the short term,
they may come to fruition in coming decades.

The GHG savings of rail travel are also sensitive to the
uncertainty surrounding the future GHG intensity of all travel
modes. Over the past decade the GHG intensity of travel has been
decreasing across modes. For example, the GHG intensity of cars
in the UK dropped by 22% from 2001 to 2011 (RAC Foundation,
2012). As all modes become less GHG intensive the net benefit
of rail travel will probably decrease. The GHG intensity of any
travel mode is dependent on ridership and fuel type. In 2011,
London Underground produced less GHGs/PKT than a car with
average ridership (1·6 people/car). However, with an increase in
car occupancy to three passengers, the car produced less GHGs/
PKT (DfT, 2011b).

3.1 Ridership on metro rail
A study of the Sheppard subway line in Toronto, Canada, found
that it produced more GHGs/PKT than the buses it replaced in its
first 6 years of operation (Saxe et al., 2015). This was due to the
replacement of a high-occupancy bus service with a low-
occupancy metro. After 6 years, however, the metro surpassed the
performance of the original buses through a combination of
increasing ridership and a rapid reduction in the carbon dioxide
emissions of the electrical grid (Saxe et al., 2015). A study of
light rail in Los Angeles, USA, found that a minimum mode shift
of 35% from cars was needed to pay back the GHG investment of
building and operating the line (Chester et al., 2012b). This level
of mode shift can be difficult to achieve in a city with an existing
rail system because of established levels of transit usage. As noted
earlier in the paper, early ridership on London’s Jubilee line
extension was only a 2% modal shift from cars, with the vast
majority of riders coming from other tube lines (JLISU, 2002). In
this instance, GHG savings would only be achieved if the new
line provided a more efficient route of travel (reducing travelled
kilometres) or was a more efficient energy consumer than older
parts of the system. In Toronto, the Sheppard line eventually saw
significant savings from growing ridership, which replaced car
trips. However, these saving were very sensitive to backfilling of
car trips by other users (Saxe et al., 2015).

The low-GHG promise of rail transport is very appealing, but the
GHG intensity of the electricity network, real ridership, actual
mode shift and long-term mode share all determine the potential
for GHG savings. Over the long term, metro rail benefits from the
falling GHG intensity of urban electricity systems and growing
ridership beyond the initial mode shift. In addition, any trips
moved onto the new infrastructure may free up space on the
existing network. This can have positive or negative impacts. On
the one hand, increased capacity of the rail network can attract
new riders or trips to the system as a whole but, on the other,
drivers attracted to the new infrastructure may be quickly replaced
by those drawn to the faster moving roads.
5
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3.2 Ridership on HSR
For HSR, the load factor was found to be the most influential
aspect on the GHG credentials in the four UIC case studies (UIC,
2011). The French TGV lines operate at an average load factor of
70%, in sharp contrast to the 46% achieved by the Taiwan HSR
line. UIC carried out a sensitivity analysis of −20% and +20% of
the central assumed load factor on an HSR. The low case (−20%)
was calculated to emit 21 gCO2e/PKT and the high case (+20%)
was found to emit 11 gCO2e/PKT (UIC, 2011) – this is a
significant difference. HSR lines such as those in France have
traditionally run at close to passenger capacity and therefore fare
much better in terms of the GHGs/PKT metric (UIC, 2011).

3.2.1 HSR modal shift from aviation
Phase one of the HS2 line from London to Birmingham estimates
that the line will annually save 23 907 tCO2e through modal shift
onto HSR from aviation (HS2, 2013). In a comparison of
European travel, aviation (164 gCO2/PKT) and cars (151·6 gCO2/
PKT) produced the highest emissions per PKT (UIC, 2011). It is
interesting to note that the higher load factors achieved by aviation
bring its emissions to almost that of a car. HSR was significantly
less GHG intensive at only 11 gCO2/PKT in operation. However,
this belies the high infrastructure investment required for rail. In
addition, the proliferation of low-cost airlines in Europe has
stymied mode shift to rail. Comparison between rail and aviation
in the UK by price found that it was cheaper to fly for the majority
of domestic journeys (National Rail, 2014; Skyscanner, 2014).

4. Transport–land use interaction
A growing body of research highlights the dependent relationship
between transportation infrastructure, real estate development
and urban form (Cervero, 2001; Chen et al., 2007; Gospodini,
2005; King, 2011; Levinson, 2008; Polzin, 1999). Transportation
infrastructure makes land accessible for development and
development gives people reason to use the transportation
infrastructure. While some development will be speculative in
anticipation of a planned or promised new infrastructure, it takes
years or even decades for the effects of new rail infrastructure
to be fully realised (Cervero and Landis, 1993). The potential for
rail infrastructure to influence spatial patterns of development
can lead to significant GHG impacts; it is widely accepted that
intensified land use results in lower GHG emissions (Newman and
Kenworthy, 1989; Norman et al., 2006; Senbel et al., 2010).

4.1 Land use around metro rail
In their report on the land use impacts of rapid transit, Knight and
Trygg (1977) note that metro development can be a driver of
intensified land use given the right external conditions, including
urban development pressure, availability of land and appropriate
public policy. Increased land use intensity is associated with lower
per capita GHG emissions (DECC, 2013; ONS, 2011). Metro
development will not create new development but can redirect its
location in the urban environment (Knight and Trygg, 1977).
Accordingly, real estate developments around new metro stations
can be taken as a concentration of development rather than
6
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induced development. However, this process can be long and the
initial planning of metro rail must take the time delay inherent in
this relationship into consideration.

It can be very difficult to pick out the impacts of a given rail
system on the urban form of a city. However, the densification
potential of metro rail infrastructure is a critical component of the
GHG impact of metro rail. It influences both the footprint of the
city – the lower the density the more land is required to support
the same number of people – and the at-home energy use of
urban residents. It will also influence the types of industry and
employment suited to the newly connected area. The track record
of new metro rail projects in achieving increased density is mixed.
It is widely agreed that new metro is an important factor in
achieving urban density but is insufficient alone.

In the decades following construction of the Yonge line, 90% of
all office construction in Toronto was built within 5 min walk of
the subway. Similarly, half of all new apartments built in Toronto
between 1954 and 1984 were sited within walking distance of a
subway station (Cervero, 1986). However, the next metro line in
Toronto, the Bloor line, did not repeat this success and has much
lower levels of density (TTC, 2001). A review of 20 years of
operation of the Bart system in San Francisco and surrounding
areas found that the impacts on land use had been very
uneven (Cervero and Landis, 1997). The Bart system was
found to be critical to supporting workplace density in
downtown San Francisco and to the construction of multi-family
homes or government offices around some stations. However,
due to local opposition, existing land use and station locations,
some parts of the Bart system saw very little land use change
over 20 years. Government promotion was found to be key to the
success of Bart stations, particularly outside the downtown core
(Cervero and Landis, 1997). Other reports are available in the
literature, but with limited information compared with the
Toronto subway and San Francisco Bart. For example, in
Mexico City, the expansion of line B resulted in significant
increases in local residential density around the stations
(Guerra, 2014). In a study of the Washington metro, Vinha (2005)
found that the metro had a significant impact on attracting
employment but an insignificant impact on residential density and
that the effect of the metro took many years to manifest. An ex-
post study of the metro in Stockholm found that the land use
impact of the metro was small but the planning policies that
accompanied the opening of the metro had had a significant effect
(Börjesson et al., 2014).

4.2 Land use and HSR
The land use impacts of HSR compared with aviation are
predominantly a comparison of land use near a train station and an
airport. HSR stations often share services with local and regional
services (e.g. King’s Cross–St Pancras) and so they share the same
land use impacts discussed above. Airports are generally located
on the outskirts of urban areas as they require a large amount of
space and there must be sufficient buffer space between them and
lishing, all rights reserved.
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residents to protect from noise and other pollutants (Kussner,
2011). Airports are associated with negative pressures on nearby
land use due to noise, safety, environmental degradation and
economic concerns (Brockway, 2007). Conversely, train stations
are generally found in central locations (e.g. St Pancras in
London, Gare du Nord in Paris and Gare du Midi in Brussels). An
assessment of HS1 – the link from London to the Channel Tunnel
in the UK – found that the impact of developments at King’s
Cross, Stratford and Ebbsfleet could be worth £10 billion as a
present value over 60 years (LCR, 2009). There are now plans for
a similar redevelopment of Euston station for HS2 in London. The
land use impacts of aviation are generally limited to the airports
themselves and the takeoff and landing corridors. Contrastingly,
HSR involves the creation of rail corridors that impact land use
over large and highly variable distances (Kussner, 2011). The land
use implications of HSR are much more complex and interlink
with a multitude of other land use considerations along their
length. More research is needed on the land use impacts in
relation to HSR versus aviation in terms of GHGs.

5. Discussion and conclusions
The transportation sector is responsible for a significant fraction
of GHG emissions in the UK and globally. Diverting road and air
passenger traffic to rail systems could result in significant
reductions in overall GHG emissions. To achieve large-scale
uptake of rail travel, new rail infrastructure will be needed, both
to support natural growth in ridership and to extend rail services
to currently underserved areas. The UK is currently pursuing large
rail projects, particularly at the metro and HSR scales. However,
the provision of rail infrastructure is GHG intensive in terms of
materials used and energy expended, and the net GHG impacts of
such projects are not well understood. A holistic assessment
of GHG emissions should inform project design in an integrative/
iterative process to ensure the long-term environmental success of
these large engineering projects.

This paper has highlighted the importance of making a complete
assessment of GHG impacts. Existing GHG assessments of transit
infrastructure have thus far been piecemeal, excluding one or
more of the important impacts highlighted here: embodied GHGs,
ridership impacts and/or urban form. A holistic understanding
of GHG impacts must include an assessment of capital GHGs,
operational energy and maintenance, as well as an assessment of
ridership mode shift and the relationship between transit and land
use. This paper has proposed the key factors that should be
considered in a holistic assessment of the GHG impact of rail
infrastructure projects; these are summarised in Figure 1.

The embodied GHGs of a project can be assessed through detailed
record keeping of on-site activities and ongoing maintenance,
operation energy and materials. Calculating the impacts on
ridership and changes in land use is more difficult to assess and
involves investigating complex relationships between infrastructure
and behaviour. Modelling of ridership changes, discussions with
developers and policy makers, and post-project surveys can provide
 [ UNIVERSITY OF CAMBRIDGE] on [27/11/15]. Copyright © ICE Publishin
critical data for understanding the impact of a given project on
behaviour. To date, few projects have reported on long-term
ridership and land use impacts. In part this is because these can
occur well after completion of a project. Efforts should now be
made to accumulate construction, ridership and land use change
data on ongoing and recent projects to inform future work.
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