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Abstract

The gelation kinetics of silica nanoparticles is a central process in physical chemistry,

yet not fully understood. Gelation times are measured to increase by over four orders

of magnitude, simply changing the monovalent salt species from CsCl to LiCl. This

striking effect has no microscopic explanation within current paradigms. The trend

is consistent with the Hofmeister series, pointing to short-ranged solvation effects not

included in the standard colloidal (DLVO) interaction potential. By implementing a

simple form for short-range repulsion within a model that relates the gelation time-

scale to the colloidal interaction forces, we are able to explain the many orders of

magnitude difference in the gelation times at fixed salt concentration. The model

allows to estimate the magnitude of the non-DLVO hydration forces, which dominate

the interparticle interactions at the length-scale of the hydrated ion diameter. This

opens the possibility of finely tuning the gelation time-scale of nanoparticles by just

adjusting the background electrolyte species.
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The total interaction potential in acqueous suspensions of charged colloidal particles is

often taken as the sum of the van der Waals attraction and a simple approximation of the elec-

trostatic double-layer repulsion, forming the classical Derjaguin-Landau-Verwey-Overbeek

(DLVO) potential1. The electrostatic repulsion can be overcome by adding salt, thus in-

creasing the screening of electrostatic repulsion, and lowering the energy barrier against

aggregation2. Colloid particles then typically aggregate into clusters, which grow over time

with the possibility of forming a sample-spanning network. Silica particles, and specifically

Ludox, have been a classical model system for colloidal physical chemistry, and also have a

key place in industrial processing, coatings, ink receptive papers, metal casting, refractory

products, and catalysts.

DLVO theory predicts that there is a salt concentration at which the suspension ag-

gregates (critical coagulation concentration); here the maximum DLVO interaction and its

derivative are both zero (i.e. there is no energy barrier against aggregation). This concentra-

tion is proportional to z−6, where z is the valency of the salt ions, and is one of the successes

of DLVO theory2,3. It is well known that DLVO theory breaks down completely for high salt

concentrations (above 0.1M, which unfortunately is the regime of biological interest)4,5. In

this range, the basic assumptions of point charges, a solvent continuum and neglecting ion-

surface adsorption and dispersion forces, are called into question. On a fundamental level,

even the assumption that electrostatic forces and dispersion forces are additive is incorrect6,7.

It is shown in this letter that there is a spectacular failure of DLVO theory in estimating

gelation times, for identical particles, in the presence of different monovalent salts even at

low concentration. Changing the salt type dramatically affects the aggregation process. Us-

ing a model for relating the gelation kinetics to particle interactions, a non-DLVO hydration
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Figure 1: The time required for gelation of the sample is related to the interparticle in-
teraction potential, and the specific hydration of the ions has a huge effect, controlling the
inter-colloid hydration repulsion at a h < λ. (a) Schematic, and (b) plot, of the “total”
interaction obtained in this work, including the strongly ion-specific short-ranged repulsive
hydration potential. Also illustrated are the classical terms in the DVLO interaction. At
very short distances, on the order of the hydrated ionic diameter, the repulsive shoulder
dominates the interaction. (c) The macroscopic sample initially flows as the vial is inverted
(left), while after some time it becomes solid (right). This sample has φLudox = 0.140 and
374 mM NaCl.

repulsion is characterised, and the dramatic changes in gelation kinetics are explained mi-

croscopically in terms of ion solvation and its interplay with the charged colloid surface. The

proposed framework will make it possible to finely tune the gelation rate of nanoparticles

simply by the choice of monovalent electrolyte species in the colloidal solution.

A minimum of context and concepts proposed to explain the Hofmeister series are useful

to the reader. It was first shown by Hofmeister8 that the stability of a colloidal solution

(he made observations on proteins, which were then investigated by others9, while other

work investigated colloidal particles7,10–12) can be drastically different upon the addition of
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different salts of the same valency, even if all other parameters (such as the salt concentration)

are kept constant. Electrolytes could be arranged according to their efficiency in salting out

protein (now known as “Hofmeister series”). The effect is understood to be related to how

salt ions structure the water around themselves. For monovalent cations the series is NH+
4 ,

Cs+, Rb+, K+, Na+, Li+, from most chaotropic (weakly hydrated, structure breakers) to most

cosmotropic (strongly hydrated, structure makers), and which extreme is most destabilising

depends on the surface properties of the colloids13.

There are numerous, partially conflicting, theories as to the origin of these short-ranged

ion-specific colloidal interactions, linking to the ioni size12,14,15. Strongly polarisable ions are

large and have more diffuse electron clouds. The energy penalty for being less well hydrated

(for example due to adsorption at an interface) is low for such ions because the charge can

be easily redistributed16. The decreasing size trend in going from chaotropic to cosmotropic

in the Hofmeister series is consistent with this picture11. However the effective polarisability

of the ions consists of contributions from both the ion itself and the solvent molecules in its

hydration shell16; This by extension may significantly augment the dispersion forces, and

give further ion-specific interactions17. Another suggestion is that the large electric field

on the colloidal surface, arising from the finite size of the counterions, results in the ions

acquiring appreciably large effective polarisabilities18.

Experiments with (negatively charged) mica surfaces showed that there is adsorption of

cations. More hydrated cations (such as Li+) are adsorbed only at high salt concentrations,

while the less hydrated ions adsorb at lower concentrations. However, once adsorbed, the

cosmotropic ions retain part of their hydration layer. This gives rise to a repulsive interaction

as two surfaces approach each other2. For mica, for example, cosmotropic ions are thus much

more efficient at providing stabilisation than chaotropic ions.

Models have been made to describe ion-specific distribution of ions near surfaces, and

their surface adsorption: an important factor is the ion diameter, and whether or not the ions

are hydrated11. Chaotropic ions have smaller effective diameters (as they are not hydrated),
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Figure 2: There is a very strong power law dependence (approximately -6 exponent) between
gelation time and salt concentration, and a striking difference between the five monovalent
salt species. The experimental observations (markers) are well recapitulated by the theoret-
ical predictions (one parameter fits, as described in the text) (solid lines). Data is obtained
from samples with volume fractions 0.13 and 0.14, and are undistinguishable. For each curve,
the only free fit parameter is the hydration force amplitude F0, which is a function dependent
on the salt-concentration (see Fig. 5). The theory is calculated assuming volume fraction
0.133, and provides a match with the data for values of F0 well within the typical range of
106 to 5× 108 Nm−2 (ref19).

and they can adsorb to the surface. Based on this model it was possible to calculate the

critical coagulation concentration for a range of salts11.

A fully quantitative description of hydration interactions should include all factors out-

lined above (finite ion sizes, discrete nature of the solvent, many-body dispersion forces and

polarization effects); Such a description does not exist, and is beyond the scope of this letter,

which instead aims to provide motivation, guidance and useful constraints for future models.

We take a simplified approach to modeling the hydration interactions, which is described be-

low, and we show how the total interparticle interaction can be related to the gelation times,

and thus measured. The DVLO potential VDVLO is a linear superposition of an attractive van

der Waals potential VvdW, an electrostatic repulsion potential VR and a short-ranged Born

repulsion potential VB, which we neglect in this study due to the fact it does not impact on
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the gelation process. The attractive component is given by

VvdW(r) =
−AH(r)

6

(
2a2

r2 − 4a2
+

2a2

r2
+ log

r2 − 4a2

r2

)
,

(1)

where a is the colloid radius and r = 2a + h is the colloidal centre-to-centre separation, see

Fig. 1(a). The Hamaker function AH can be written in the form20 AH(r) = Aε=0fscr(r) +

Aε>0fret(r),where Aε=0 is the zero frequency contribution which is screened by the counterions

through the screening function fscr(r), and Aε>0 is the non-zero frequency contribution which

is mitigated by retardation through the retardation function fret(r) (their full form is given

in SI for completeness).

The DLVO theory is based on a number of assumptions, the most important of which is

the linearized Poisson-Boltzmann treatment of the electric-double layer repulsion, which is

valid only within the Debye-Hueckel limit for the surface potential, i.e. for potentials lower

than 20-25 mV. In our calculations, however, we used an extension due to Sader, Carnie and

Chan21, which extends the validity of DLVO theory to much higher potentials:

VR = 4πε0εm

(
kBT

e

)2

Y (r)2
a2

r
ln[1 + exp(−κh)], (2)

where ε0 is the permittivity of free space, εm is the relative permittivity of water, kB is the

Boltzmann constant, e is the counterion charge and T is the temperature. The function Y (r)

is given in full in SI, and depends on the surface potential ψ0.

The other assumptions of the theory are the following: (a) The ions are treated as point-

like (their finite volume and excluded-volume effects are neglected); (b) Spatial correlations

among ions are neglected; (c) Ion-adsorption on the colloid surface is neglected; (d) Dis-

sociation equilibria between charged species on the colloid surface and ions in solution are

neglected. Many studies have shown that the interparticle potential deviates significantly

from DLVO theory below a surface-to-surface separation h of about 2 nm in water22. An
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additional repulsive potential has been postulated to arise from the hydration of the water

due to the presence of counterions and/or on strongly hydrophilic surfaces. This potential

is still not fully understood microscopically and, as outlined above, there are different com-

peting theories relating to its origins exist in the literature. Since the 1970s there has been

a general agreement that the effective hydration potential decreases exponentially from the

surface23, and can thus be taken to have the following general form:

Vh = F0πaλ
2 exp

(
− h

λ

)
, (3)

where the fitting parameters F0 and λ control the magnitude and the decay of the poten-

tial, respectively. This expression has been used quantitatively to successfully describe the

huge energy barrier contributed by repulsion between structured water layers on hydrophilic

surfactant-coated colloids, a big effect which cannot be explained by DLVO-theory alone24.

The full potential we consider is then a sum of dispersion, electrostatic and surface

hydration terms:

Vtot = VvdW + VR + Vh. (4)

The interaction potential and gelation time are linked: A recent theoretical study25 has

established that the gelation time tgel can be evaluated according to the following expression:

tgel =
1

2kc[(1 + c)φ0/2]df/3
, (5)

where df is the fractal dimension of the clusters (which for reaction limited aggregation

RLCA is df = 2.126), and φ0 = (4/3)πa3n0 is the volume fraction of the colloids where

n0 is the total number of colloidal particles per unit volume, n0 = N/V . The parameter c

equates to c = (1 − φc)/φc, where φc is the critical volume fraction at which the systems

gels (the zero-shear viscosity diverges), which for spherical-like clusters is φc ≈ 0.64. The
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characteristic aggregation rate kc is given by the relation

kc =
n0kagg

2
, (6)

where kagg is the rate constant of aggregation. The stability ratio W is defined as27,28:

W =
kS
kagg

= 2a

∞∫
0

exp(βVtot)

(2a+ h)2G(h)
dh, (7)

where Vtot is the total interparticle potential, kS is the Smoluchowski diffusion limited ag-

gregation rate kS = (8/3)kBT/µ with µ the solvent viscosity. The hydrodynamics of two

spheres approaching is given by G(h) = (6(h/a)2 + 4(h/a))/(6(h/a)2 + 13(h/a) + 2). Com-

bining Eqs. 6 and 7, and rewriting the colloidal concentration n0 in terms of the volume

fraction φ0 and the volume of one particle Vp, we can recover the expression

kc =
4φ0kBT

3VpWµ
. (8)

This identity can be inserted into Eq. 5 to obtain an explicit form for the gelation time as a

function of the sample material characteristics and interaction parameters:

tgel =
3VpWµ

8φ0kBT [(1 + c)φ0/2]df/3
. (9)

Gelation times of various samples, varying salt type in Fig. 2, salt concentration and

Ludox concentration in Fig. 3, were determined by checking when macroscopic samples no

longer flowed. Clearly, there is a progressive shortening of gelation times switching samples

with the same salt concentration, going from LiCl to NaCl, KCl, RbCl and CsCl, and this

is in agreement with the Hofmeister series. There are four orders of magnitude of difference

in the gelation times - quite remarkable! - for the same concentrations of monovalent salts.

There is a clear power law dependence of the gelation times on the salt concentration,
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Figure 3: The power law dependence of gelation time with salt concentration, and the
strongly salt-specific gelation times (shown here are (a) NaCl and (b) KCl), are seen in
samples with varying Ludox concentration. Values of the best fit power law exponents are
listed in Table 1.

with exponents (see Table 1) all close to −6. There appears to be a decrease of power law

exponent (to a more negative value) as the cation becomes more chaotropic. For samples

with NaCl, the power law exponent decreases (becomes more negative) as the Ludox con-

centration decreases, but no clear trend is observed for samples with KCl. Reerink and

Overbeek29 found similar power law behaviour for AgI colloids, with power law exponents

from around −6 to −11, depending on the particle size and surface potential. Other power

law exponents had been reported in classical literature29, ranging from −2 to −12. The

value of −6 falls into this range, and seems very robust in our silica colloid data.

A power law relation is also expected if the Ludox volume fraction is varied, at fixed salt
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Table 1: Power law exponents for gelation times, from the tgel vs. salt concen-
tration data in Figs. 2 and 3; error quoted is the 95% confidence interval.

Salt Volume fraction Ludox Exponent
KCl 0.140 −6.27± 0.24
KCl 0.105 −6.42± 0.34
KCl 0.070 −5.92± 1.06
KCl 0.035 −7.03± 0.42
NaCl 0.140 −5.67± 0.11
NaCl 0.105 −6.06± 0.30
NaCl 0.070 −6.47± 0.56
NaCl 0.035 −6.60± 0.34
LiCl 0.133 −5.49± 0.07
NaCl 0.133 −5.77± 0.10
KCl 0.133 −6.68± 0.15
RbCl 0.133 −7.33± 0.06
CsCl 0.133 −8.44± 0.10

concentration25. If the colloidal aggregation is taking place with fractal dimension df = 2.1

(as is the case in the RLCA regime), then the exponent in this plot is expected to be

−(df/3 + 1) = −1.7; the data in Fig. 4 show a good agreement with this theoretical expec-

tation. Note however that since (as explained later) we cannot assume to have a constant

hydration force, we can’t use the data of Fig. 4 to robustly go backwards and extract the

fractal dimension.

The theoretical framework outlined above, along with the experimental data on the gela-

tion times at varying salt concentration, now allows us to obtain the hydration parameters of

the monovalent salts LiCl, NaCl, KCl, RbCl and CsCl. The first question to address is how

to define the exponential decay length λ in eq. 3. Throughout the literature this parameter

has been varied within the range 0.2 − 1.0 nm19 for different colloidal systems. It seems

reasonable to us to set λ as the characteristic hydration diameter of the counterions ( Cs+

= 658 pm, Rb+ = 658 pm, K+ = 662 pm, Na+ = 716 pm, Li+ = 764 pm)30.

The second, more delicate question, is how to determine the two other unknown interac-
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Figure 4: Gelation times also depend on the volume fraction φLudox of Ludox particles: (a)
KCl and (b) NaCl. The solid line is a guide to the eye, illustrating the slope from a power
law with exponent -1.7, which is expected for a fractal dimension of 2.1.

tion parameters, which are the amplitude F0 of the hydration interaction (in eq. 3), and the

surface potential ψ0 (in eq. 2).

Our first approach was to fix the hydration force constant F0 equal to a reasonable value

from the literature2, and allow the surface potential to vary as a function of the salt concen-

tration. Indeed, it might be expected that the association of counterions with silica surface

groups will diminish the magnitude of the surface potential with increasing salt concentra-

tion, thus reducing the electrostatic repulsion and speeding up the gelation process31. This

effect, while certainly present, is however far too small to justify by itself the rapid fall in the

gelation times for increasing salt concentrations, as observed in Figs. 2 and 3. Coupled with

the fact that experimental ζ-potential measurements have been observed to be relatively

insensitive to counterion adsorption on the surface32, we proceeded to approximate the sur-
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Figure 5: The hydration force constant F0 diminishes with increasing salt concentration.
These values are obtained from samples with a volume fraction φLudox of 0.133.

face potential to be constant, and set it equal to its dilute value of -30 mV33. The second

approach was therefore to proceed with the surface potential fixed, so that we could fit the

experimental data in Figs. 2 and 3, to obtain the hydration force constants F0 for each salt,

and for each concentration. This is shown in Figs. 5 and 6, as function of salt concentration

and particle volume fraction. It is clear from this framework that the reduction in F0, and

by extension in the repulsive hydration potential, upon increasing the salt concentration, is

what controls the power-law relationship observed in Figs. 2 and 3.
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Figure 6: The hydration force constant F0 has a weak but systematic dependence on the
particle volume fraction φLudox.

The hydration force magnitude values F0, are obtained at each salt concentration (c)

from a one-parameter fit to the experimental data points in Fig. 3. The resulting functions
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F0(φ(c)) are shown in Fig. 5 (five salts) and Fig. 6 (four different values of the particle volume

fraction φLudox). Three trends are visible: (1) F0(c) is higher for KCl than for any of the

other ions, this means a non-monotonic behaviour in terms of ionic size; (2) F0(c) increases

as Ludox concentration decreases; (3) F0(c) decreases as salt concentration increases. If our

effective potential is valid, we have to assume all three effects are related to the association of

the counterions with silica surface charge groups (or else, other factors might be contributing

to the interaction, and are being assimilated into these F0 trends).

A plausible expected behaviour is that it is more difficult for the smaller, more hydrated

monovalent cations to approach and thus associate with the surface hydroxyl groups. Coun-

terions adsorbed on the silica surface act as a repulsive force between particles. This explains

why the hydration potential Vh increases monotonically as a function of the hydration diam-

eter (see Fig. 7). Note that since Vh ∝ F0λ
2 (eq. 3), the trend of F0 (Figs. 5 and 6), which is

observation (1) above, is more complex. A greater particle volume fraction corresponds to

a greater total surface area, which is consistent with diminishing counterion association per

unit surface area, and slight reduction of F0, which is observation (2) above. Also consistent

with this picture is the fact that as we increase the salt concentration, the proportion of

surface charge groups remaining free for counterion association dwindles and the ion-specific

values of F0 begin to converge. Fig. 7 shows that the hydration potential increases as the

hydration diameter λ lengthens, with the ordering of the salts by the relative strength of

repulsive hydration forces remaining the same over all distances. Therefore the greater the

hydration diameter of the counterion, the more long-ranged the hydration force becomes,

and the greater the potential barrier to gelation. As a key result, the gelation time increases

together with the hydration diameter of the ions in the Hofmeister series.

In Fig. 8, the hydration potential is observed to be a short-ranged monotonically decreas-

ing function of the salt concentration (observation (3) considered above). The precise origin

of this effect is not obvious. In our simple picture of counterion adsorption we expect more

ions to adsorb, the higher the bulk concentration. A possibility, similarly to what proposed
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Figure 7: The salt specific repulsion is very important at short range, as shown in (a) by
comparing the total interparticle potential (Vtot, solid line) to the potential (VDVLO, dashed
line) without the hydration potential Vh, and in (b) by plotting the hydration contribution
by itself. The potentials decrease with salt species in the order LiCl-NaCl-KCl-RbCl-CsCl.
Salt concentration is equal to 0.3M for both plots.

in5, is that one needs to consider a loss of hydration shell when many ions adsorb, with a

corresponding decline in repulsion. A final point we should remind the reader is that the

surface charge density in the DLVO terms has been kept constant; this is unlikely to be

strictly correct, but it is very difficult to do otherwise with the data at hand31. Also, there

are no experimental techniques to accurately evaluate the surface potential, and standard

zeta-potential measurements are not adequate for this task. So the question of whether

this particular trend originates from some physical force or change in conditions at the gap,

or an external force such as the bulk osmotic pressure, remains to be properly addressed in

future studies.

Of particular interest to this work, Trompette and co-workers have described in a series
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of papers33–35 the effect of NH+
4 and Na+ on the stability of colloidal silica, and found that

samples with NH+
4 aggregated much faster than those with Na+. They ascribed this to the

different degrees of hydration of the ions. For the experiments described in this paper, only

LiCl, NaCl, KCl, RbCl and CsCl were studied since the ammonium salt ion is somewhat

acidic, and the pH itself also affects stability of colloidal silica.

Experimental papers investigating short-ranged hydration forces have classically em-

ployed Surface Force Apparatus (SFA), and more recently also Atomic Force Microscopy

(AFM). These techniques can be applied to measure the forces between smooth solid sur-

faces, lipid bilayers and biomembrane surfaces22. Some of the most recent studies include

the use of AFM to estimate short-ranged hydration forces induced by multivalent salts36,37,

the investigation of ion-specific Hofmeister effects between planar single-crystal sapphire38

and the measurement of charge inversion as a function of pH and salt concentration. These

studies are in agreement39,40 with the trends presented here, whilst in other conditions the

Hofmeister series is in reverse order41, but we have not found experiments that can be di-

rectly compared to our results. We also note that our modeling shows that variations in the

surface potential are insignificant compared to the dominant short-ranged hydration forces

at close surface to surface separations. Ion-specific double layer pressure has been calculated
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using the full nonlinear Poisson-Boltzmann equation with the addition of the ionic disper-

sion energy between the ions and the two interfaces42: By treating the electrodynamic ionic

dispersion potentials on the same non-linear level as electrostatic potential, the ion-specific

Hofmeister effects are recovered. We believe that there is great scope to combine studies

such as this with experimental approaches such as in this manuscript, to help isolate and

calibrate the various possible mechanisms underpinning the hydration forces and bridge the

gap between molecular and macroscopic observation.

In conclusion, systematic experiments were carried out quantifying the gelation kinetics

as a function of monovalent salt species. By using a simple model for the kinetics of cluster

aggregation to fit experimental data of gelation times, at different salt conditions, for the

first time it was possible to extract the magnitude of a non-DVLO hydration repulsion,

that has a range set by the solvated diameter of the counterion. The very simple non-

DVLO term used here is obviously coarse graining the detailed molecular mechanisms (the

ordered “rigid” water layers repelling each other, and the energy required to “squeeze”

these away as the particles approach contact) and is an effective semi-empirical term. This

approach is powerful because experiments can then be readily fitted by a single parameter,

the amplitude of repulsion force (F0, function of salt concentration). The latter decreases

with increasing salt concentration due to de-solvation of the counterions upon adsorption on

the surface. The key finding is that the hydration repulsion correlates positively with the

chaotropic nature and the size of the cation species. This framework and the molecular-level

mechanism proposed here can be used in the future to devise tunable gelation protocols of

nanoparticles by choosing the salt type.

Methods

All samples studied consist of colloidal silica, water and salt in different concentrations.

Commercial silica colloids of Ludox HS-30, (Sigma-Aldrich), were used. Ludox HS size
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measurements vary from 16.7 nm43 to 18.5 nm44 diameter, and we have taken 17 nm diameter

as a value in our calculations.

The Ludox was filtered prior to use, using Millipore Millex GS 0.22µm filters, to en-

sure the removal of larger aggregates. The resulting Ludox “stock” used in most of the

experiments had a density of 1.23 g/ml and contained 31.5% silica by weight. The pH of

the original Ludox suspension (before filtration and dilution) was 9.8 (determined by the

manufacturer), and was not regulated during the experiments. Stock solutions of salt were

prepared using LiCl (99.0%, Sigma Aldrich and 99%, Acros), NaCl (99.0%, Sigma Aldrich

and analysis grade, Merck), KCl (99.9%, Fischer and 99+%, Acros), RbCl (99.8+%, Acros)

and CsCl (99+%, Acros). All water used for preparation of stock solutions and samples was

of Millipore grade.

The salt solution was always added last to make the final sample, of 1 ml volume. All

samples were mixed on a vortex mixer for around 10 seconds immediately after the addition

of salt stock. The gelation time was determined on a macroscopic scale, by gently inverting

the vials to observe the presence (or not) of flow. When there was no discernable flow for

around 1 second, the sample was judged to be gelled. This criterion is somewhat arbitrary,

but was strictly adhered to, so that results of different samples are consistent. Fig. 1(c)

shows photographs of a sample before and after its gelation time.

Preliminary runs were carried out, so that the gelation time was approximately known.

This ensured that subsequent samples were not inverted unnecessarily (we did not notice in

any case correlations between the gelation time and the frequency of inspection). Identical

samples prepared on different days did sometimes show different gelation times, which could

be due to small temperature changes or minor differences in sample composition or prepa-

ration. These differences were never very large (around 10%) and do not affect the observed

trends.

Supporting Information Available: Details the complete expressions for the attrac-

tive van der Waals potential and electrostatic interaction terms used in this work. This
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material is available free of charge via the Internet http://pubs.acs.org.
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