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We describe forms of adiabatic transport that arise for dressed-state atoms in optical lattices.
Focussing on the limit of weak tunnel-coupling between nearest-neighbour lattice sites, we explain
how adiabatic variation of optical dressing allows control of atomic motion between lattice sites:
allowing adiabatic particle transport in a direction that depends on the internal state, and force
measurements via spectroscopic preparation and readout. For uniformly filled bands these systems
display topologically quantised particle transport. An implementation of the dressing scheme using
optical transitions in alkaline-earth atoms is discussed as well as its favorable features for precise
force sensing.

PACS numbers: 37.10.Jk, 03.65.Vf, 67.85.-d, 37.10.Vz

The topology of energy bands [1, 2] is a concept that
has had profound influence in recent years, in the areas
of both solid state systems and ultra-cold atomic gases.
In ultra-cold gases, important experimental progress has
been made in realising physics related to the integer
quantum Hall effect, by contructing two-dimensional
(2D) lattice models [3] whose energy bands have nontriv-
ial topology [4, 5], as characterized by a nonzero Chern
number [6]. Indeed, a nonzero Chern number has recently
been measured in transport studies of bosons [5].

Closely related to quantised Hall transport of 2D sys-
tems is the quantised particle transport of (quasi)-one-
dimensional (1D) systems under time-periodic adiabatic
drives. In such “Thouless pumps”[7], the number of par-
ticles transported along the 1D system is also quantised
according to a Chern number, defined over a periodic 2D
parameter space spanned by the quasi-momentum across
the 1D Brillouin zone and by a time-dependent periodic
parameter varied over one cycle.

Ultra-cold gases provide an ideal setting in which to
realise such adiabatic pumping. They afford very flexi-
ble control of the lattice potential, the possibility to vary
parameters in time, and have access to very precise prob-
ing tools [8]. Although theoretical proposals have illus-
trated ways to achieve quantised adiabatic transport us-
ing optical superlattices [9–11] these have been limited
to far-detuned implementations that couple to atoms in
a spin-independent manner.

In this Letter, we describe the new features that arise
in optical lattices involving optically dressed states of
internal “spin” states of the atoms, within a model
proposed in Ref. [12] and recently realised experimen-
tally [13, 14]. Although motivated by Thouless pump-
ing, and inheriting all features of this quantized pump,
our results will not be restricted to filled bands. We
shall emphasize a local description which shows how adi-

abatic control of dressed states can lead to novel and
useful consequences. Notably, the direction of adiabatic
transport depends on the spin-state of the atom. More-
over, the coupling of spin and orbital degrees of freedom
facilitates force measurements using only spectroscopic
control. The local description also allows one to under-
stand in simple terms the role of inter-atomic interac-
tions. We discuss an implementation using the long-lived
clock states in alkaline earth atoms (AEA)[15–17].

We consider a model for a spin-orbit coupled atomic
gas of the form proposed in Ref. [12], which uses M long-
lived internal states to implement a synthetic dimension.
The model is illustrated in Fig. 1(a). The atoms are pre-
pared in the lowest band of a 1D optical lattice. The hori-
zontal links represent tunnel coupling, −t, between neigh-
bouring lattice sites at positions x = . . . ,−1, 0, 1, 2, . . .,
and are taken to be the same for all internal states as
is appropriate for state-independent lattices. The verti-
cal sites correspond to the s = 1, 2, . . .M internal states
which form the synthetic dimension.

We consider the case of cyclic coupling where the state
s is coupled to both s−1 and s+1 with s interpreted mod-
ulo M (i.e. s = M + 1 is equivalent to s = 1). We choose
the coupling from s to s+1 to be Ωs,s+1

x = −Ωeiφs,s+1(x,τ)

with uniform amplitude Ω. We shall require two features
of the phases φs,s+1(x, τ). First, the phases should be
spatially dependent, leading to coupling of “spin” and
spatial degrees of freedom. We take

φs,s+1(x, τ) = φs,s+1(0, τ) + xΦ , (1)

for which the model maps to the Harper model in a
square lattice at “flux” of Φ through each plaquette.
Since we consider neutral atoms it is convenient to mea-
sure flux in dimensionless variables. Throughout we use
the convention that the “flux” threading any loop is the
phase picked up as a particle is transported around the
loop. Hence one flux quantum is 2π.
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FIG. 1. Schematic illustration of the model. (a) The numbers
denote the internal state s = 1, . . .M , spanning the verti-
cal synthetic dimension. Vertical links represent the cyclic
Rabi coupling. Horizontal links represent the tunnel cou-
pling of neighbouring lattice sites, x = . . . ,−1, 0, 1, 2, . . .. (b)
The coupling phases are such that the system can be viewed
as a cylinder with a flux χ threading the periodic loop at
x = 0, and a flux Φ threading each square plaquette on the
surface. (c) Implementation of the four level cyclic scheme
using the clock states in 171Yb (nuclear spin I = 1/2) as
bare states: |1〉 = |1S0, Iz = −1/2〉, |2〉 = |3P0, Iz = −1/2〉,
|3〉 = |1S0, Iz = 1/2〉, |4〉 = |3P0, Iz = 1/2〉.

Second, it should be possible to vary the phase

χ(τ) ≡ −
M∑
s=1

φs,s+1(0, τ), (2)

in real time τ . This phase has the simple interpretation
as the flux through the periodic loop in the synthetic
dimension at x = 0. [See Fig. 1(b).] For M ≥ 3 inter-
nal states χ is a non-trivial, gauge-invariant phase that
influences the spectrum.

As shown in Ref. [12] the vertical links and the “flux”
Φ can be created via hyperfine states coupled by Ra-
man transitions in a far-detuned optical lattice. This
implementation was recently realized for M = 3 in
Refs. [13, 14]. Alternative implementations, allowing
larger M , can be realized using the long-lived clock
states, 1S0 − 3P0, of AEA in a “magic” wavelength
optical lattice [19]. A direct one-photon transition is
enough to couple the levels while imparting enough mo-
mentum to generate a significant Φ. One ideal realiza-
tion of the M = 4 case can be done with 171Yb (with
nuclear spin I = 1/2) as shown in Fig. 1c. Its sim-
ple level structure guarantees that the Rabi frequencies
|Ω12/Ω34| = |Ω23/Ω41| = 1. |Ω23 6= Ω12| but the dif-
ference can be easily compensated by adjusting the in-
tensities of the circularly polarized laser beams. Physi-
cally, flux through the periodic loop is set by the relative
phases of the M different Rabi couplings, so is readily

controllable in experiments. The temperature needed for
our proposal is just to avoid population of higher bands.
This temperature is determined by the band gap which
can be several kHz and currently easily achieved in most
cold atom experiments. Note that we shall not require
any type of quasi-momentum resolution, so thermal pop-
ulation of the lowest band is not a problem. The only
requirement is to be able to reach laser frequency sta-
bility of a few Hz in order to vary χ at a rate slower
than the tunneling. This type of laser frequency stability
can be achieved with current laser technology as demon-
strated in recent clock experiments. Those have achieved
record levels of stability and residual laser drift less than
mHz/s [15–17].

To make the ideas concrete we focus on M = 4 internal
states and Φ = π/2, but the key features appear in more
general cases. Without loss of generality, we can choose
a gauge in which the phases are uniform, with

φs,s+1(x, τ) = φ(x, τ) ≡ −χ(τ)/4 + xπ/2. (3)

We consider first the limit of vanishing tunnel-coupling
t = 0, for which the sites x can be treated independently.
The Hamiltonian describing the local Rabi couplings in
the rotating wave approximation is

ĤΩ =
∑
x

4∑
s=1

[
Ωx|s+ 1〉x〈s|+ Ω∗x|s〉x〈s+ 1|

]
, (4)

with Ωx ≡ −Ωeiφ(x,τ). The eigenstates are the dressed
states

|ks〉x =
1

2

4∑
s=1

eikss|s〉x (5)

labelled by the allowed wavevectors along the synthetic
direction, ks ∈ {0, π/2, π, 3π/2}. The wave functions
take the same form for all x, but their energies vary with
position according to

εx,ks = −2Ω cos(ks − xπ/2 + χ/4) . (6)

Note that the change χ → χ′ = χ + 2mπ and ks →
k′s = ks −mπ/2, with m an integer, leaves the spectrum
unchanged and reflects its gauge invariance.

For isolated lattice sites, t = 0, one can readily envis-
age ways to prepare the atoms in a given dressed state.
For example, this can be accomplished by slowly ramp-
ing up the Rabi coupling Ω from zero while keeping the
lasers slightly detuned from resonance to introduce en-
ergy offsets that are proportional to s. This generates
the net rotating-frame Hamiltonian Ĥδ + ĤΩ, with

Ĥδ = δ
∑
x

∑
s

s|s〉x〈s| . (7)

For an atom at site x initially in internal state s, turning
on Ω slowly compared to δ/h will adiabatically transfer it
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FIG. 2. Dressed-state energies (6) for vanishing tunneling
t = 0, on sites x = 0,−1, 1 as a function of ks + χ(τ)/4. At
the allowed ks ∈ {0, π/2, π, 3π/2} degeneracies between states
on neighbouring sites, |∆x| = 1, appear only for χ(τ) = π
(modulo 2π). These degeneracies are split by t 6= 0: a particle
initially in state |ks = 0〉x=0 at χ(0) = 0 (filled circle) is
then transferred adiabatically to the state |ks = 0〉x=1 as
χ(τ) increases to 2π (open circle); a particle initially in |ks =
π/2〉x=0 at χ(0) = 0 (filled square) is transferred adiabatically
to |ks = π/2〉x=−1 at χ(τ) = 2π (open square).

into the sth lowest energy dressed state of ĤΩ once Ω�
δ. (It may be advantageous to simultaneously vary the
detunings δ → 0 over this ramp.) For χ = 0, and starting
from s = 1 on site x this is the state with ks = xπ/2.
Reversing this protocol will allow measurements of the
dressed state occupations, since each dressed state will
be adiabatically mapped to a different internal state s.

Now, imagine that the atom located on site x in a deep
lattice, t = 0, has been prepared in a dressed state |ks〉x.
Consider reducing the lattice depth to introduce weak
tunnel coupling t � Ω. The tunnel coupling conserves
the synthetic momentum ks, so, for typical values of χ,
the state |ks〉x is out of resonance from the neighbouring
states, εx,ks 6= εx±1,ks . Since the energy offset is of order
Ω, for t� Ω the energy eigenstates are well described by
the localised states |ks〉x. We note that the periodicity
of εx,ks under x → x+ 4 requires the energy eigenstates
to be extended Bloch waves. However, the bandwidth of
these states is of order t4/Ω3 which for now we assume
to be small. (For t/h ∼ 100Hz and Ω/h = 10kHz, this
bandwidth is of order 10−4Hz× h.)

The key feature that allows adiabatic transfer is that,
by varying the phase χ(τ), neighbouring states can be
brought into resonance and the tunnel coupling restored.
This is illustrated in Fig. 2, which shows the variation of
the energy levels (Eq. 6) at sites x = 0, 1 and −1 as a
function of ks + χ(τ)/4. Consider a particle that is pre-
pared in the state |ks = 0〉x=0 for χ(0) = 0, denoted by
the filled circle in Fig. 2. As χ(τ) is increased from 0 the
energy of this state increases smoothly until it encoun-
ters a crossing with the state |ks = 0〉x=1 at χ(τ) = π.
For non-zero tunnel coupling, −t, these two states anti-
cross with gap 2t. So if χ(τ) is varied slowly compared to
2t/h the particle will follow the ground state, ending at

χ(τ) = 2π in the state |ks = 0〉x=1 (open circle in Fig. 2).
Thus the particle is adiabatically transported in the lat-
tice, in a direction determined by the sign of dχ/dτ . This
encapsulates the local picture of the adiabatic pumping
protocol. It is a robust process, with each particle trans-
ferred by one lattice constant as χ(τ) = χ(0)+2π, within
the assumption of adiabatic evolution.

Moreover, this adiabatic transfer has the feature that
the direction of motion depends on which dressed state
the particle occupies, ks. For example, a particle start-
ing in the state |ks = π/2〉x=0 at χ = 0 (filled square in
Fig. 2) will be transferred to the state |ks = π/2〉x=−1

(open square in Fig. 2) if χ(τ) is adiabatically increased
to χ(τ) = 2π. This internal-state dependence contrasts
with prior pumping protocols based on scalar optical lat-
tices. It can be used as a way to separate spin states
in an adiabatic manner: while the states ks = 0, π move
to the right, the states ks = π/2, 3π/2 move to the left
when χ(τ) = χ(0) + 2π.

These adiabatically prepared dressed states are highly
sensitive to external forces along the 1D lattice and of-
fer the interesting potential to detect them using spec-
troscopy. Forces could arise from external influences (e.g.
gravity, or magnetic fields) or from inter-atomic interac-
tions. We shall first illustrate the ideas for an external
force, Fx, such as gravity, that provides an internal-state-
independent energy difference ∆V = Fxa between neigh-
bouring lattice sites (a is the lattice spacing).

Note that in the above pumping protocol if the phase
χ is varied from χ = 0 to χ = π (not as far as
2π), then an atom initially in state |ks = 0〉x=0 will
evolve into the state (1/

√
2) [|ks = 0〉x=0 + |ks = 0〉x=1]

(this in-phase combination is selected by the tunnel cou-
pling, −t). In the presence of an additional energy off-
set ∆V = Fxa between neighbouring lattice sites, adia-
batic evolution to χ = π loads the atom in the ground
state |ψ〉+ = sin(θ/2)|ks = 0〉x=0 + cos(θ/2)|ks = 0〉x=1

where θ = sin−1(t/
√

(∆V/2)2 + t2). One can envisage
various ways to extract ∆V from subsequent measure-
ments. One way is to measure the mean occupations
sin2(θ/2) and cos2(θ/2) of the two states |ks = 0〉x=0

and |ks = 0〉x=1, which depend linearly on ∆V/t for small
∆V : sin2(θ/2) = 1 − cos2(θ/2) ' 1

2 [1−∆V/(2t) + . . .].
Rapidly ramping up the 1D optical lattice to t = 0 freezes
the particles in given lattice sites: |ks = 0〉x=0 is the lo-
cal groundstate but |ks = 0〉x=1 is an excited state, so
on reverting from χ = π to χ = 0 and then removing
the coupling Ω → 0 adiabatically in the presence of the
detunings (Eq. 7) the dressed states evolve into different
internal states s which are readily detected spectroscop-
ically. Another possibility is to start from the state |ψ+〉
and ramp up the lattice to suppress tunneling t = 0 for a
time τR, during which the system performs Ramsey oscil-
lations between |ψ±〉 at frequency ∆V/h. These can be
measured once t is restored by reversing the preparation
sequence.
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Currently, precise local force sensing protocols with al-
kali atoms rely on measurements of Bloch-oscillations.
The experiments use spin-polarized Fermi gases to sup-
press s-wave collisions but require reaching ultralow tem-
peratures T < TF � t (TF the Fermi temperature) in
order to resolve the oscillations [20, 21]. Our dressed
state approach allows measurements of ∆V/h using the
same spectroscopic methods as those developed in atomic
clocks and it is not limited to quantum degenerate con-
ditions. In fact it can be implemented in current AEA
optical lattice clocks which can operate at conditions of
density and temperature where interaction effects can be
suppressed. Thus taking advantage of the high insensi-
tivity to magnetic field fluctuations and limited sponta-
neous emission offered by AEA clocks [18] our method
has the potential of reaching at least one order of magni-
tude larger sensitivity than time-of-flight based protocols.

The high sensitivity of the adiabatic protocol can ad-
ditionally be used to measure inter-atomic interactions
if they become relevant. Consider two atoms that start
in the same internal state (e.g. s = 1) at two adjacent
lattice sites (e.g. x = 0, 1). For weak onsite interaction,
|U | � t,Ω, the above preparation sequence and ramp
to χ = π would place these atoms approximately in
an equal superposition of the states |ks = 0〉x=0|ks =
π/2〉x=1, |ks = 0, π/2〉x=1, |ks = 0〉x=0|ks = π/2〉x=2,
and |ks = 0〉x=1|ks = π/2〉x=2. Since there is non-zero
amplitude for both atoms to occupy x = 1, if tunneling
is suddenly suppressed and the system is let to evolve
for some time, the onsite interactions will generate Ram-
sey fringes with frequency U/h. The connection to force
measurement with a single atom, described above, can
be made precise by filling a superlattice of double-wells,
such that only one atom is displaced at χ = π. Note
that only SU(M) symmetric interactions preserve ks as
a good quantum number. SU(M)-breaking interactions
will further lead to detectable couplings to states with
ks 6= 0, π/2.

We have focussed on motion and force detection in the
weak tunneling regime, t � Ω. For t ∼ Ω the eigen-
states must be considered to be extended Bloch waves
of the Harper model. They are characterized by the 2D
wavevectors (kx, ks + χ/M) with continuous kx and dis-
crete ks ∈ {2π/M × integer}. At flux Φ = (2π)(p/q),
with p and q relatively prime integers, the Harper model
has a set of energy bands with topological character, as
described by non-zero Chern number, C [6].

For the 1D model considered here, C sets the number of
particles that move along the length of the system under
the adiabatic evolution of χ = 0→ 2π [7]. The resulting
quantised transport for an insulating state with an inte-
ger number, α, of bands filled (1D filling n1D = Mα/q)
is described by the application of the iconic results of
Refs. [6, 7]. For M = 4, Φ = π/2 (i.e. p/q = 1/4),
the case α = 1 corresponds to one particle per lattice
site (n1D = 1). The lowest energy band of the Harper

model at t = Ω has Chern number 1. Thus, precisely one
particle transported along the 1D lattice for each cycle
χ(τ) = χ(0) + 2π.

This topological phase of the dressed atoms can be
adiabatically prepared starting from vanishing Rabi cou-
pling, Ω = 0, and a band insulator of n1D = 1 fermion
per lattice site in a single internal state, say s = 1. To
do so, one simply ramps up the coupling Ω of Eq.4 in
the presence of the detuning (Eq. 7) for χ 6= π. It may
seem surprising that one can adiabatically connect the
trivial band insulator (at Ω = 0) to an insulating state
at Ω = t which is characterised by a non-zero Chern
number. However, in this 1D setting ks is discrete, so by
ramping at fixed χ the system only explores certain lines
through the 2D Brillouin zone. For M = 4, Φ = π/2,
for which ks ∈ {0,±π/2, π} the lowest band only has gap
closings at ks + χ/4 = ±π/4,±3π/4. For χ 6= π the
spectrum remains gapped and the system evolves adia-
batically.

For a filled band the adiabatic transport is topologi-
cally protected, so is insensitive to weak perturbations,
such as interparticle interactions with strength |U | . t,Ω
and variations of the Rabi frequencies δΩ that are small
compared to the the average Ω̄ and the tunnelling t (the
energy scales that determine the band structure and band
gaps). For t � Ω̄, where the “local picture” is valid
these conditions can become restrictive since one needs
δΩ� t� Ω̄. As discussed above in this limit the use of
171Yb could facilitate reaching homogeneous couplings.

The coupling between positional motion and the
dressed states allows force detection with spectroscopic
read-out also in this regime where the energy eigenstates
must be viewed within band theory [22]. Consider a sys-
tem of non-interacting atoms that fill a set of the Harper
bands at a fixed χ (e.g. a fermionic band insulator), or
that are uniformly distributed in kx. Since the band is
uniformly occupied, a force Fx does not lead to Bloch os-
cillations along the x-direction. However, it does lead to
a current along the synthetic dimension, corresponding to

a nonzero expectation value of Îs ≡ 1
~
∂ĤΩ

∂χ . This arises
from the existence of an anomalous velocity associated
with the Berry curvature[24, 25] of the occupied states.
The mean synthetic current is Is ≡ 〈Îs〉 = −(Na/~)ΣFx
with N the total number of atoms, a the lattice constant,
and the dimensionless conductivity Σ determined by the
average Berry curvature along the lines (kx, ks + χ/M).
The dependence of Σ on χ is shown in Fig. 3 for M = 4,
Φ = π/2 and n1D = 1. For t/Ω � 1 the Berry cur-
vature is maximum close to χ = π, which is where
bandgaps close at t → 0. While at any given χ this

conductivity is not quantized, its integral
∫ 2π

0
Σ dχ is

the (integer) Chern number. Note that the eigenstates
of Îs are the same as those of ĤΩ (Eq. 4), given by
Eq. 5. Thus, their occupations — and therefore the
mean synthetic current when weighted by the eigenval-
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FIG. 3. Dimensionless conductivity Σ, describing the mean
synthetic current Is in response to a force Fx, as a function
of the phase χ. (M = 4, Φ = π/2 and n1D = 1 particle
per lattice site.) For weak tunneling, t � Ω, the response at
χ = π is well-described within the local picture (points).

ues Ix,ks = (Ω/2~) sin(ks − xπ/2 + χ/4) — can be mea-
sured by the adiabatic ramps described before, in which
dressed states adiabatically return to different internal
states s. For weak tunneling t � Ω this reduces to the
two-state problem described above in the local descrip-
tion. The linear dependence of sin2(θ/2) on ∆V = Fxa
for χ = π corresponds to a Berry-curvature induced syn-
thetic current, Is = Ω

2~
1√
2

∑
x

[
sin2(θ/2)− cos2(θ/2)

]
=

− Ω
2
√

2~
∆V
2t × N = −Na~

Ω
4
√

2t
Fx with N the number of

atoms. This limiting result, Σ = Ω
4
√

2t
, is shown as points

in Fig. 3, accurately describing Σ for t/Ω� 1 [26].
In summary we have shown how an interesting and

subtle concept from condensed matter physics (adiabatic
pumps), implemented by the coherent optical dressing of
internal atomic states, can lead to new forms of transport
and of force-sensing. Those can arise even on a local level,
not requiring the standard band-theoretical formulation
and can be observed in non-degenerate gases, facilitated
by the spectroscopic preparation and read-out.

The authors thank Jun Ye and Michael Wall for use-
ful discussions. This work was supported by EPSRC
Grant EP/K030094/1, by the JILA Visiting Fellows
Program, the NSF (PIF-1211914 and PFC-1125844),
AFOSR, AFOSR-MURI, NIST and ARO individual in-
vestigator awards.

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).
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