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Unsupervised State-Space Modelling Using
Reproducing Kernels

Felipe Tobar, Petar M. Djurić and Danilo P. Mandic

Abstract—A novel framework for the design of state-space
models (SSMs) is proposed whereby the state-transition function
of the model is parametrised using reproducing kernels. The
nature of SSMs requires learning a latent function that resides
in the state space and for which input-output sample pairs are not
available, thus prohibiting the use of gradient-based supervised
kernel learning. To this end, we then propose to learn the mixing
weights of the kernel estimate by sampling from their posterior
density using Monte Carlo methods. We first introduce an offline
version of the proposed algorithm, followed by an online version
which performs inference on both the parameters and the hidden
state through particle filtering. The accuracy of the estimation
of the state-transition function is first validated on synthetic
data. Next, we show that the proposed algorithm outperforms
kernel adaptive filters in the prediction of real-world time series,
while also providing probabilistic estimates, a key advantage over
standard methods.

Index Terms—Support vector regression, system identification,
nonlinear filtering, Monte Carlo methods, state-space models.

I. INTRODUCTION

The filtering problem [1] refers to the estimation of a latent
stochastic process X1:t based on an observed sequence Y1:t =
y1:t, where the processes X1:t and Y1:t are related according to
a mathematical model M. This model is usually chosen from
the class of state-space models (SSMs) with discrete time,
continuous state and additive noise, where Xt is the Markovian
state and Yt the (noisy) observation. SSMs are expressed in
the form

Xt+1 = ft(Xt) +Wt, (1)
Yt = ht(Xt) + Vt

where t ∈ R, Xt ∈ Rn, Yt ∈ Rm, the state-transition function
ft : Rn → Rn, the sensor function ht : Rn → Rm, and the
noise processes Wt ∈ Rn and Vt ∈ Rm. The model in (1) is
general enough to explain a broad class of systems arising in
a variety of applications from control theory [2] to population
models [3] and mathematical finance [4].
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The solution to the filtering problem is given by the
posterior density of the latent process conditional to the
observations, that is, p(X1:t|y1:t). This conditional distribution
is the solution of the Kushner-Stratonovich equation [5], [6],
a nonlinear measure-valued differential equation that admits a
closed-form solution only for a restricted class of systems,
such as linear and Gaussian ones (Kalman filter [7]) or
those satisfying the Beneš condition (Beneš filter [8]). In
the general case, the posterior distribution is mathematically
intractable and numerical algorithms are usually employed
to find approximate solutions. In particular, sequential Monte
Carlo methods (SMC), or particle filters (PF), provide accurate
estimates of the posterior density in the form of a discrete set
of weights and particles; these are recursively updated based
on the observed signal y1:t and the Bayesian filtering equations
defined by the dynamic model M [9], [10].

The flexibility of PFs allows for approximating the posterior
density p(Xt|y1:t) with no rigid constrains on the functions
ft, ht (such as linearity) or the distributions of the noise
processes Vt,Wt (such as Gaussianity). This makes it possible
to design SSMs comprising nonlinear functions and non-
Gaussian noise, for which a posterior cannot be necessarily
found in a closed-form. By virtue of the nonlinear filtering
capability of PF methods, the model design can therefore freely
focus on empirical evidence and prior knowledge (if any) of
the nature of the state and observations, rather than adopting a
simpler model to fulfil the stringent requirements of the filter.
More specifically, our aim is to find a model that is general
enough to account for all possible observations of the process
Yt, while at the same time not being too uninformative, as this
would result in meaningless estimates of the hidden process
Xt. Practical model design involves choosing a state-transition
function ft and an observation function ht, the latter being
usually known and given by the data-collection framework,
whereas the former reflects the dynamical properties of the
hidden process and is unknown when the understanding of
the signal-generating mechanism is vague. This, so-called
design of the prior, is a fundamental component of filtering
applications, yet it remains an open challenge.

Existing sampling-based algorithms for system identifica-
tion include maximum a posteriori model selection [11], SMC
methods for training neural networks [12], and model order
determination using reversible jump Markov chain Monte
Carlo (MCMC) [13]. Low-complexity parameter identification
in SSMs, suitable for online implementation, can be achieved
by means of artificial evolution [14], that is, by considering the
unknown parameters as states evolving according to a random
walk. This concept provides accurate state estimates and has
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even been used in kernel-based SSMs [15]; however, it is well-
known to result in noisy estimates due to the artificial noise
injected into the system.

Notice that the design of the prior can be cast into a func-
tion approximation problem, thus admitting the use of (data-
driven) machine learning algorithms. For instance, Gaussian
processes methods [16] have recently found application in
system identification by performing nonparametric estimation
of the underlying SSM for filtering and smoothing [17], [18];
however, these are not able to operate online. Kernel methods
[19], [20] are particularly suited for this estimation task,
as they are universal function approximators by their very
nature [21] and, akin to neural networks [22], their centres
and weights that can be trained to learn data relationships
in regression settings. Kernel adaptive filters [23] employ the
so-called kernel trick [24] to provide nonlinear extensions
of linear adaptive filters, allowing for real-time nonlinear
estimation at a linear increase in computational cost. However,
existing kernel adaptive filters based on least mean square
[25], [26], recursive least squares [27] and ridge regression
[28], can only perform supervised function approximation to
provide point estimates; this is inadequate when the process
of interest is latent and inherently stochastic, thus requiring
probabilistic estimates.

Kernel-based system identification has been traditionally
performed by modelling the system nonlinearities using ra-
dial basis functions (RBF) [29]. This involves an a priori
choice of the RBF centres in conjunction with Expectation-
Maximisation (EM) to find the kernel parameters. However,
this approach does not provide the complete posterior of
the mixing parameters nor does it admit an online mode of
operation. A nonparametric alternative is to model the state
space as a reproducing kernel Hilbert space (RKHS) [30],
[31], whereby the infinite-dimensional state allows for accurate
filtering and smoothing, but does not provide physically mean-
ingful estimation of the dynamics of the true (original) state.
A more recent approach makes use of the kernel embeddings
of distributions [32], where [33], [34] model the conditional
density of the state as an element in an RKHS; this is also
achieved in an offline and supervised fashion, and the model
needs to be trained using state samples. There is therefore
a void in the open literature on nonlinear filtering when it
comes to the design of state-space models that are: (i) flexible,
in order to approximate the system nonlinearities with an
arbitrary degree of accuracy; (ii) Bayesian, to equip the model
with the ability to approximate the full posterior of the kernel
mixing weights; (iii) unsupervised, not requiring pre-training
using state samples; and (iv) online, whereby both the model
parameters and support vectors are recursively updated.

We here provide a solution to general state-space modelling
by parametrising the state-transition function using kernels,
thus, casting the function approximation problem into that of
finding a finite set of parameters. The posterior density of
these mixing parameters is then approximated using a pseudo-
marginal MCMC approach [35] which combines Metropolis-
Hastings and particle filter stages, and in offline and online
fashions. The choice of the support vectors and the prior
density of the mixing weights is also discussed based on

the empirical knowledge of the observed process. We provide
illustrative examples on nonlinear system identification and
then validate the ability of the proposed method to learn
nonlinear state-transition functions through the prediction of
real-world signals, and over a performance evaluation against
the normalised kernel least mean square algorithm (KLMS).

II. SUPERVISED FUNCTION APPROXIMATION USING
REPRODUCING KERNELS

Consider the training set comprising available input-output
data given by

SN = {(xi, yi) ∈ Rn × Rm s.t. yi = f(xi)}i=1:N . (2)

We approximate the function f(x) by a function in the
the reproducing kernel Hilbert space (RKHS) H [36] with
reproducing kernel K. According to the representer theorem
[37], the optimal estimate with respect to an arbitrary loss
function can be expressed in terms of the kernel function K,
input training samples xi, and a vector of mixing parameters
a = [ai, . . . , aN ] in the form

fa(·) =

N∑
i=1

aiK(xi, ·). (3)

The centres of the kernel evaluations are referred to as
support vectors and the approach to regression is known as
support vector regression (SVR) [28].

A. Choice of Support Vectors and Mixing Parameters in
Kernel Adaptive Filtering

When a large set of data is available to train the kernel
estimator in (3), a subset of these samples needs to be chosen
to deal with the trade-off between estimation accuracy and
model complexity. This is because the computational cost of
SVR increases with the number of training samples without
necessarily improving the estimate. This procedure is known
as sparsification or dictionary learning [38] .

In kernel adaptive filtering [23] (the approach to nonlinear
adaptive filtering using SVR), sparsification criteria include the
approximate linear dependence (ALD) [39], which operates on
the feature space and aims to avoid redundancies of feature
samples, and the novelty criterion [40], [41], which only
admits samples that (i) are distant enough from the current
dictionary and (ii) improve the current estimate. Adaptive
strategies include presence-based sparsification [26], which
eliminates support vectors not contributing to the estimation.

For a fixed set of support vectors, referred to as dictionary,
the problem of identifying the optimal (in the least mean
square sense) mixing parameters is straightforward, since the
SVR estimate is linear in the parameters. Therefore, by treating
the kernel evaluations as regressors and the observed signal as
an output, the mixing weights can be found using gradient-
based methods. These include ridge regression (RR) in the
offline case, and least mean square (LMS) and recursive
least squares (RLS) in online cases. These linear estimation
algorithms are the basis of kernel adaptive filters.
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B. Example: The Gaussian Kernel

An extensively-used kernel in SVR is the Gaussian kernel,
an infinite-support radial basis function given by

K(xi, xj) = exp

(
−‖xi − xj‖2

σ2

)
(4)

where the parameter σ > 0 is referred to as the kernel width.
The properties of the RKHS induced by the Gaussian kernel

have been studied in [21]. In particular, the Gaussian kernel
is proven to be an universal kernel [42, Example 1], meaning
that its induced RKHS is dense in the space of continuous
functions. This property is crucial for the use of the Gaussian
kernel in function approximation.

III. KERNEL STATE-SPACE MODELS

We consider SSMs of the form (1) and address the task
of system identification for the case when the state-transition
function f is unknown and the sensor function h is known.
The analysis of this class of systems is motivated by the fact
that, in real-world applications, the function h is usually avail-
able and given by the sensor chosen for a specific experiment;
the sensor function is often even assumed linear, such as in
the case when the observation is one of the states. We also
assume that a plausible region exists where the state can be
found, this is supported by combining the observations with
the knowledge of the sensor function (likelihood) and known
physical constraints on the latent state. This assumption allows
for a straightforward design of the dictionary.

Our aim is to estimate the state-transition function f in
eq. (1), this is achieved by searching for such an estimate
in H, the RKHS of the Gaussian kernel in eq. (4). The
assumption that H contains functions that approximate f
arbitrarily well stems from the fact that this RKHS is dense
in the space of continuous functions C0(R), meaning that
if f ∈ C0(R), then there exists a sequence of functions
{fi ∈ H}i∈N that converges to f (see also [21], [42], [43]).
Furthermore, the justification to express the optimal estimate
(within H) as a mixture of kernel evaluations follows from
the representer theorem, since in the unsupervised case we
can still assume that there exists a set of input-output samples
(albeit unknown) with respect to which the estimated function
will be found. Indeed, kernels are proven to be useful within
unsupervised learning, see, e.g., kernel density estimation [44],
kernel principal component analysis [45], and unsupervised
multiple kernel learning [46].

By parametrising the transition function f as fa =∑N
i=1 aiK(si, ·), the approximated SSM takes the form

Xt+1 =

N∑
i=1

aiK(si, Xt) +Wt (5)

Yt = h(Xt) + Vt. (6)

We refer to this class of models as kernel state-space models
(KSSM). Within this formulation, the system identification
problem boils down to finding a set of fixed support vectors
that is representative of the region where the state currently
lies, and their corresponding mixing parameters a. We now

propose a procedure to find the posterior density of the mixing
parameters conditional to the observed process in the offline
case, and proceed to choosing the support vectors based on
standard sparsification criteria employed by kernel adaptive
filters.

A. Offline Learning of the State-Transition Function

The estimate fa can be regarded as a mapping from RN to
H according to a 7→ fa =

∑N
i=1 aiK(si, ·). As a consequence,

by considering a as a random vector, fa becomes a random
function, the posterior density of which can be found using
Bayesian inference.

The posterior density p(fa|y1:t) is then uniquely determined
by the posterior density of the weights p(a|y1:t); this allows
us to find the transition-function posterior and, in particular,
the conditional expectation f∗ = E[fa|y1:t] given by

f∗ =

∫
RN

fap(a|y1:t)da =

N∑
i=1

E[ai|y1:t]K(si, ·). (7)

This means that f∗ can be found by only computing E[a|y1:t],
since f∗ = fE[a|y1:t].

We now investigate how to sample from the weights pos-
terior p(a|y1:t). By virtue of the Bayes theorem, this density
can be expressed as

p(a|y1:t) = p(y1:t|a)
p(a)

p(y1:t)
(8)

and can be approximated up to the normalising constant
p(y1:t); thus, we propose to sample from the posterior of a
using the Metropolis-Hastings algorithm [47], where candidate
samples a(c) are drawn from a known distribution and then
accepted on the basis of an acceptance ratio which involves
evaluating the target density p(a|y1:t).

The evaluation of (8) requires to assume a prior p(a),
which can be, e.g., Gaussian or uniform, and to compute the
likelihood p(y1:t|a) =

∏t−1
k=0 p(yk+1|y1:k,a), where

p(yk+1|y1:k,a) =

∫
X

p(yk+1|xk+1,a)p(xk+1|y1:k,a)dxk+1.

(9)

Recall that if the approximation of the filtering density
p(xk|y1:k,a) is available in the (particle) form {x(j)k , w

(j)
k },

the predictive density can be approximated by

p(xk+1|y1:k,a) ≈
Np∑
j=1

w
(j)
k δ

x
(j)
k+1

(xk+1) (10)

where the samples x(j)k+1 ∼ p(xk+1|x(j)k ,a), since the state-
transition density of the KSSM is known (given a).

The particle approximation for the density in eq. (9) is given
by

p(yk+1|y1:k,a) ≈
Np∑
j=1

w
(j)
k p(yk+1|x(j)k+1) (11)

where we have used p(yk+1|xk+1,a) = p(yk+1|xk+1), since
the observation function h is independent of the parameter a,
see eq. (6).
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As within this sampling strategy the evaluation of p(a|y1:t)
is approximated, the presented algorithm is an MCMC with a
PF-approximated acceptance ratio. In this context, observe that
convergence to the target density p(a|y1:t) is guaranteed and
follows from the pseudo-marginal MCMC approach [35], or
more specifically, the particle MCMC (PMCMC) algorithm
[35]. These have shown that when the evaluation of the
acceptance ratio requires sampling of latent variables (i.e., the
state in our case) the sampling algorithm can be seen as an
MCMC operating on the joint space of the parameters and
the state with an exact acceptance ratio. To find the marginal
posterior of the parameters, the state is then integrated out.
The effect of the number of particles Np is also very clear in
the algorithm: the MCMC converges to the marginal MCMC
algorithm (which uses the true acceptance ratio) as long as the
PF approximation converges to the true likelihood. This holds
for the PF estimate, as the square error between expectations
taken under the PF-approximated posterior and the true poste-
rior decreases inversely proportional to the number of particles
Np.

As a result, the posterior of the mixing parameters can be
approximated by the empirical density

p̂ (a|y1:t) ∝
Na∑
l=1

δa(l)(a) (12)

where the samples {a(l)}l=1:Na are obtained through MCMC
sampling as described above. Consequently, the posterior mean
of the KSSM transition function is given by

f∗ =

N∑
i=1

(
1

Na

Na∑
l=1

a
(l)
i

)
K(si, ·). (13)

The pseudocode for the proposed method using Metropolis-
Hastings MCMC is given in Algorithm 1.

B. Choice of Support Vectors and Kernel Width

The support vectors can be chosen based on the observations
yt∈N and the sensor function h(·). For each sample yt, the
(known) observation equation of the KSSM in eq. (6) allows
us to compute a maximum likelihood estimate (MLE) of xt
(conditional to yt) by x̂t = argmax p(Xt|yt). For a sequence
of observations y1:T , this procedure provides a collection
of estimates for the state, given by x̂1:T , which, albeit not
reliable as a filtering estimate,1 provides insight into where the
state can be found. We can now apply standard sparsification
criteria from kernel adaptive filtering, such as approximate
linear dependence or the coherence criterion, to the sequence
x̂1:T so as to choose the support vectors. Notice that standard
kernel adaptive filters operate directly on the MLE sequence
to find the mixing weights, as they do not cater for differ-
ent signal-evolution and observation stages (and noises), as
a consequence, their point estimates become unreliable for
increasingly noisy signals.

Observe that the support vectors can also be found in
a Bayesian fashion together with the mixing parameters,

1Due to not incorporating the state dynamics in eq. (5) but the observation
eq. (6) only.

Algorithm 1 Draw S samples from the posterior density
p(a|y1:t) using Metropolis-Hastings MCMC

1: INPUT: Observations y1:t, support vectors {si}i=1:N ,
kernel width σ and initial particles {x(j)0 }j=1:Np

.
2: Set: MCMC move q(a(l+1)|a(l)), first sample: a(1) ∼
q(a|0), prior p(a), and sample number l = 1.

3: while l < S do
4: Propose a candidate move: a(c) ∼ q(a|a(l))
5: for all k = 1 : t do
6: Approximate p(xk−1|y1:k−1,a(c)) using Np

weighted particles {x(j)k−1, w
(j)
k−1} obtained by a

particle filter.
7: for all x(j)k−1, j = 1 : Np do
8: Sample x(j)k ∼ p(xk|x

(j)
k−1,a

(c))
9: end for

10: Compute p̂(yk|y1:k−1,a(c)) =
∑Np

j=1 w
(j)
k−1p(yk|x

(j)
k )

11: end for
12: Compute p̂(a(c)|y1:t) = p(a(c))

∏t
k=1 p̂(yk|y1:k−1,a(c))

13: Set a(l+1) = a(c) and l = l + 1 with probability A =

min
{

1, p(a
(c)|y1:t)q(a(l)|a(c))

p(a(l)|y1:t)q(a(c)|a(l))

}
14: end while

however, this would require using reversible jump MCMC
methods, thus increasing the computational complexity of the
overall algorithm. On the other hand, the proposed heuristic
approach for the choice of support vectors exploits knowledge
of the sensor function, is straightforward to implement, and has
lower computational complexity.

After the dictionary is chosen, the kernel width can be set
based on the desired smoothness of the estimate. An empirical
approach to find a suitable kernel width is to analyse the
distribution of the norm of the differences across the sequence
x̂1:T , that is, {‖x̂t1 − x̂t2‖ , t1, t2 = 1 : T}, and then choose
a kernel width according to the spread of these variates.
Furthermore, observe that due to the universal property of the
Gaussian kernel, the performance of the kernel regression is
not restricted to a particular value of the kernel width [21].

C. Example: Estimation of a Nonlinear State-Transition Func-
tion

The following example provides an insight into the proposed
algorithm. Consider the system

Xt = 10sinc
(
Xt−1

7

)
+Wt, (14)

Yt = Xt + Vt

where the state and observation noise variances are σ2
x = 4

and σ2
y = 4, and X0 ∼ N (0, 10). This SSM state-transition

function was chosen because its state is bounded (as the norm
of f(x) = 10sinc(x/7) vanishes for x → ∞). Also, this
system does not converge, as the sequence Xt+1 = f(Xt)
has two accumulation points2 about −1.7 and 8.7. We then

2Recall that x̄ is an accumulation point of the sequence {Xt}t∈N if and
only if any neighbourhood of x̄ contains infinite elements of {Xt}t∈N.
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Fig. 1: Observed process for the system in eq. (14).

parametrised the system (14) using a KSSM and estimated
the mixing parameters of the kernel-based transition function
fa =

∑N
i=1 aiK(·, si) as explained in Section III-A.

We considered 40 observations of the process Yt denoted
by y1:40, shown in fig. 1, and set the support vectors according
to Section III-B, where N = 7 support vectors were chosen.
Furthermore, the kernel width was σ2 = 10, and we assumed
a uniform prior p(a), and a proposal density for the MCMC
moves given by p(a(c)|a(l)) = N

(
a(l), L

)
, with the square-

exponential3 covariance matrix

L (a, a′) = 0.22 exp
(
−0.2‖a− a′‖2

)
. (15)

This candidate proposal allows the MCMC moves to be
smooth.

The kernel estimate was then computed according to Algo-
rithm 1, 400 samples were drawn from p(a|y1:40) and only
the last 200 were considered to compute the estimates (thus
allowing the chain to converge). Fig. 2 shows the true SSM
transition function, the hidden-state samples corresponding
to the considered time period, and the posterior mean of
the KSSM transition function (f∗) with its one-standard-
deviation confidence interval. Observe that the mean estimate
f∗ matches the true underlying transition function for the
regions of the state space where the hidden state resides. The
posterior variance of the kernel estimate is also consistent
with the spread of the unobserved samples, as for the regions
where the state samples were more disperse, the estimate of
the posterior variance was larger.

Recall that MCMC sampling generates a sequence of sam-
ples that move to areas of high probability, and then explore
such areas. Fig. 3 shows the value of the posterior p(a|y1:40)
for both the samples drawn using MCMC and the supervised
least squares solution using the hidden samples (i.e., kernel
least squares). Observe that the Markov chain converges in
about 100 iterations to a zone of a probability similar to that
of the supervised solution to then continue to draw samples
of similar probability. Additionally, since a uniform prior p(a)
was assumed, the posterior is equal to the likelihood up to a
normalising constant—see eq. (8). Fig. 3 illustrates that the
supervised solution is different from the maximum likelihood
estimate, as some of the samples drawn using the proposed
method have a higher likelihood. This discrepancy arises from
the fact that the supervised solution uses hidden-state samples
whereas the proposed method does not.

3We refer to square exponential covariance functions and reserve the term
Gaussian for reproducing kernels only.

−30 −20 −10 0 10 20 30
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10
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t
+
1
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True function
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Fig. 2: Original state-transition function, state samples and
kernel-based approximation.
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Fig. 3: Value of the posterior p(a|y1:40) for the supervised
solution and the samples generated by the proposed method.

Remark 1. The proposed method is capable of learning the
state-transition function in a localised manner for regions
containing state samples. Such an approach is unsupervised
and provides a sequence of estimates (i.e., samples of the
posterior of fa) for which the posterior probability is similar
to that of the least-squares supervised solution.

For filtering applications, the estimate of the SSM needs to
be sequentially updated so that it is always representative of
the region of operation. We now introduce an adaptive version
of the proposed algorithm that incorporates new observations
to learn the state-transition function in a recursive fashion.

IV. ONLINE UPDATE OF THE KSSM MODEL

To model time-varying state-transition functions when the
observations yt∈N arrive sequentially, we propose the kernel-
based time-varying SSM of the form

Xt+1 =

N∑
i=1

ai,tK(si, Xt) +Wt, (16)

Yt = h(Xt) + Vt (17)

where at = [a1,t, . . . , aN,t]
T is the vector of mixing parame-

ters at time instant t.

Remark 2. Observe that within the time-varying KSSM, poste-
rior inference on the mixing parameters should be addressed
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by targeting the density p(at|y1:t+1), since at will only be
available through xt+1, and consequently, through yt+1 and
not yt—see eqs. (16)-(17).

A. Recursive Sampling From p(at|y1:t+1)

To find a recursive expression for the posterior p(at|y1:t+1),
we assume: (i) a prior density for the transition of the
weights p(at|at−1), and (ii) a particle approximation for
p(at−1|y1:t)—such as eq. (12). This leads to the following
recursion

p(at|y1:t+1) =
p(yt+1|y1:t,at)
p(yt+1|y1:t)

p(at|y1:t) (18)

=
p(yt+1|y1:t,at)
p(yt+1|y1:t)

∫
p(at|at−1, y1:t)p(at−1|y1:t)dat−1

where, based on Remark 2, we can write p(at|at−1, y1:t) =
p(at|at−1) since, conditioned on at−1, the sequence y1:t does
not provide posterior evidence for at.

Eq. (18) gives a recursive expression for the posterior
in integral form; therefore, using the particle approximation
p(at−1|y1:t) ≈ 1

Na

∑Na

l=1 δa(l)
t−1

(at−1), yields the estimate

p̂(at|y1:t+1) =
p(yt+1|y1:t,at)
Nap(yt+1|y1:t)

Na∑
l=1

p(at|a(l)
t−1). (19)

With the Na samples
{

a
(l)
t−1

}
∼ p(at−1|y1:t) available from

the previous step, the evaluation of (19) is straightforward
up to a normalising constant, since p(yt+1|y1:t,at) can be
approximated by eq. (11) and the prior p(at|at−1) is known.
Therefore, we can also sample from (19) using a pseudo-
marginal MCMC approach. The proposed recursive method
is outlined in a pseudocode form in Algorithm 2.

Algorithm 2 Draw S samples from the sequence of posteriors
p(at|y1:t+1), t = 1, 2, . . .

1: INPUT: Kernel width σ and first observation y1.
2: Initialise: Dictionary {x̂1}, kernel width σ, and particles
{x(j)1 } ∼ p(x1|y1) and {a(l)

1 } ∼ p(a1).
3: for all yt, t = 1, 2, . . . do
4: Calculate x̂t = argmax p(Xt|yt)
5: if x̂t deviates form dictionary then
6: Set N = N + 1, add sN = x̂t into the dictionary
7: Draw Np samples from eq. (25) using MCMC and

the proposal in (24)
8: else
9: Draw Np samples from eq. (20) using MCMC and

the proposal in (21)
10: end if
11: end for

B. Online Sparsification and Choice of the Prior p(at|at−1)

We next consider kernel adaptive filtering sparsification,
where, for every observation yt, we compute the MLE of
the state given by x̂t to assess whether the state is in a
region covered by the current dictionary; we then include x̂t

as a support vector based on either the ALD or coherence
criterion. Notice that this represents an adaptive version of the
sparsification procedure explained in Section III-B.

The proposed algorithm admits a flexible design of the prior
transition for the mixing weights p(at|at−1). One alternative,
based on whether a new sample s = x̂t is added to the
dictionary at time t, can be employed as follows.

1) Sample s = x̂t is not added: When the dictionary is not
modified, we assume p(at|at−1) = N (at; at−1,Σ) where Σ
is a square-exponential covariance matrix that ensures smooth
transition moves; we can then write

p̂(at|y1:t+1) ∝ p(yt+1|y1:t,at)
Na∑
l=1

N (at; a
(l)
t−1,Σ) (20)

where p(yt+1|y1:t,at) is given by eq. (9).
The MCMC candidate can then be drawn from a Gaussian

density
a
(c)
t ∼ N (µ, Lt) (21)

where the mean µ can be a randomly-selected particle of the
previous estimate, i.e., µ = a

(r)
t−1, r ∈ [1, Na], or an initial

guess for the new weight computed by another algorithm (such
as KLMS). Furthermore, the variance of the proposal can be
chosen to be proportional to the likelihood of Xt with respect
to the observation yt, that is

Lt = diag
(
[p(Xt = s1|yt), . . . , p(Xt = sm|yt)]

)
. (22)

By choosing the MCMC moves in this way, the mixing of
the chain can be accelerated if a reliable guess for the mixing
weight is available, while at the same time, the covariance of
the proposal allows to explore zones from where the latest
state sample may have been generated.

2) Sample s = x̂t is added: When the support vector
sN+1 is added to the dictionary, the dimension of the mixing
weights increases to (N + 1). To facilitate learning in the
region where the new support vector has been chosen, the prior
p(at|at−1) is designed as follows: the first N components of
the mixing weights are chosen uniformly from the set of sam-
ples generated in the previous step

{
a
(l)
t−1

}
∼ p(at−1|y1:t),

and the new coefficient, aN+1,t, is chosen to be uniformly
distributed and independent from the previous coefficients,
thus p(aN+1,t|at−1) ∝ 1. In other words,

p̂(at|y1:t+1) ∝ p(yt+1|y1:t,at)
Na∑
l=1

δ
a
(l)
t−1


a1,t...
aN,t


 . (23)

We then consider the MCMC move
a
(c)
1,t
...

a
(c)
N,t

 ∼ Na∑
l=1

δ
a
(l)
t−1


a1,t...
aN,t


 and a(c)N+1,t ∼ N (µ, v)

(24)
where the first N parameters are sampled from the discrete
uniform distribution and the new parameter is sampled inde-
pendently from the rest of the parameters and is given by a
normal density of mean µ and variance v2.
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Fig. 4: The state-transition function of the system in (26) is
time-varying between t = 30 and t = 60, and constant for
t < 30 (system stable) and for t > 60 (system unstable).

Observe that for samples generated according to (24) the
evaluation of the target distribution in (23) is straightforward
and is given by

p̂(at|y1:t+1) ∝ p(yt+1|y1:t,at). (25)

This MCMC proposal move aims to retain previous knowledge
by sampling from the past estimates for the first N entries
of the weights, while at the same time exploring values for
the new parameter by setting a Gaussian prior on the new
coefficient.

C. Example: Identification of a Time-Varying State-Transition
Function

We now test the suitability of the proposed algorithm
for online learning of a nonlinear state-transition function.
Consider the time-varying SSM with an affine observation
function given by

Xt+1 = ft(Xt) +Wt (26)
Yt = 5 +Xt/2 + Vt

where the variances of the state and observation noises were
set to σ2

x = 1 and σ2
y = 0.5, x1 ∼ N (0, 1), and

ft(x) =


x
2 + 25x

1+x2 , t < 30
60−t
30

(
x
2 + 25x

1+x2

)
+ t−30

30 10sinc
(
x
7

)
, 30 ≤ t ≤ 60

10sinc
(
x
7

)
, t > 60.

(27)
This time-varying function is motivated by real-world ap-

plications where systems switch between different operation
conditions. In this example, the system is time-invariant and
stable for t ∈ [1, 30], time-varying for t ∈ [31, 60], and
time-invariant with two accumulation points for t ∈ [61, 90]
(as in Example 1). This case is typical in anomaly detection
scenarios, where an early identification of the data relationship
is crucial. The evolution of the state-transition function is
shown in fig. 4.

We approximated the function ft in a parametric manner by
fat(·) =

∑N
i=1 ai,tK(·, si), where the mixing weights were

computed in a recursive fashion according to Section IV-A
and Algorithm 2. The procedures for choosing the support

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

KSSM estimates for different times

xt

x
t
+
1

State samples
for t ∈ [61, 90]

KSSM estimate at t=90

State samples for t ∈ [1, 30]

KSSM estimate at t=30

Fig. 5: KSSM estimate (mean and standard deviation) of the
time-varying state-transition function in (27) for t = 30 and
t = 90. The true state samples are plotted with red borders
for the regions [1, 30] (green fill) and [61, 90] (blue fill).

vectors and the MCMC candidates are given in Section IV-B.
Furthermore, for fast convergence of the chain, the parameter
µ in (24) was chosen using optimal least squares fit of the
MLE samples x̂t.

Fig. 5 shows the so-learnt state-transition function at two
different time instants, t = 30 and t = 90. Observe that
the function learnt until t = 30 is very localised; this is
due to the system state being stable and therefore residing
within a limited region of the state space. As t grows larger,
the transition function changes according to eq. (27), thus
becoming time varying for t ∈ [30, 60]. In the last third of
the analysed period, t ∈ [60, 90], the transition function is
again time invariant and the state lies on a larger region of
the state space. Fig. 5 also shows the estimate at t = 90,
where the KSSM successfully learnt the dependency of the
state samples through the observation sequence. Notice that
the estimate at time t = 90 resembles the data samples
corresponding to the region and successfully updated the value
of the function learnt with previous measurements (i.e., those
for t < 30); furthermore, this estimate also shows the ability
to retain useful information by not relying exclusively on new
samples only, as the estimate at t = 90 still resembles the
samples in t ∈ [1, 30].

Similarly to the offline learning case in the previous section,
the recursive estimate provided by the proposed KSSM is
localised, since kernel adaptive filtering sparisifcation criteria
only allow for learning the transition function in regions visited
by the hidden state—see eq. (11). In this sense, attempting to
find a full-support estimate of the true transition function in
fig. 4 is unrealistic, therefore, the proposed method aims to
find an estimate of the transition function that is consistent
with the observed sequence, even if it only learns the state
dynamics for a limited region of the state space.

Recall that the proposed algorithm performs joint parameter
identification and state estimation, as the samples from the
filtering density are needed to sample from the posterior
of the mixing parameters—see eq. (11). The filtered state
signal resulting from the function estimation implementation
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Fig. 6: Filtered state signal using the KSSM and SIR particle
filter. The original state is shown in blue and the posterior
mean in red, with a one-standard-deviation confidence interval
in light red.

is shown in fig. 6 (mean and standard deviation), together with
the true state.

V. LEARNING AND PREDICTION OF REAL-WORLD TIME
SERIES

Kernel adaptive filters perform prediction of time series
through nonlinear autoregressive modelling based on a fixed
number of delayed samples. This task can be naturally ad-
dressed using SSMs by considering the delayed samples of the
time series as the hidden state of the SSM. We now introduce
a multivariate version of the proposed KSSM that performs
autoregressive modelling and prediction in the context of
frequency prediction of the UK national grid.

A. Multivariate KSSM for Autoregressive Modelling

Recall that the stochastic process satisfying the τ -order
difference equation Xt+1 = ft(Xt, . . . , Xt−τ+1) + Wt can
be expressed as a first-order multivariate process of the form

X̄t+1 = Ft(X̄t) +Gt (28)

where X̄t = [Xt, . . . , Xt−τ+1]T ,

Ft(X̄t) =


ft(Xt, . . . , Xt−τ+1)

Xt

...
Xt−τ+2

 , and Gt =


Wt

0
...
0

 . (29)

The process X̄t can then be considered as the hidden state
of an SSM, thus yielding a SSM formulation of higher-order
autoregressive process with noisy observations. Furthermore,
if the state-transition function ft is modelled using kernels, we
obtain a multivariate version of the proposed KSSM suited for
autoregressive time series given by

Xt+1

Xt

...
Xt−τ+2

 =


∑N
i=1 ai,tK(si, X̄t)

Xt

...
Xt−τ+2

+


Wt

0
...
0

 (30)

Yt = h(X̄t) + Vt (31)

where Yt is the observed process, ht is the observation function
and Vt observation noise.

Remark 3. The proposed KSSM method can be used for
the design of nonlinear higher-order autoregressive models.
Observe that the order of the process (τ ) and the number of
support vectors (N ) are independent design parameters which
can be chosen, respectively, according to the dynamics of the
signal and the desired accuracy. As a consequence, the number
of parameters to find is given by the number of support vectors
and not by the order of the process.

B. Frequency Estimation using KSSM

Frequency estimation is a key paradigm in Signal Processing
and has been used in Smart Grids applications [48], where it
allows for the planning and control of grid operation.

We considered the frequency signal of the UK national
grid4 for the day 17 July 2014, where measurements became
available every five minutes. The frequency data, originally in
the region [49.85 Hz, 50.15 Hz], were scaled according to

Scaled frequency = 50(Raw frequency− 50) (32)

for simplicity of presentation; the scaled frequency was then in
the region [-8,8] and had an average power equal to E[x2t ] =
4.593. The scaled frequency was modelled, according to eq.
(30), by the hidden process of a KSSM of order two, and the
observation process was created by adding Gaussian noise of
standard deviation σy = 1 to the state. For fast convergence
of KSSM, the proposal density for the MCMC sampler was
set to the value of the weights found by KLMS applied to the
noisy observation sequence y1:T . The aim of this experiment
was to recursively approximate the transition function of the
frequency process, using the method in Section IV, and to
perform a one-step ahead prediction.

Fig. 7 shows the estimates of the transition function for
time instants t ∈ [2, 7], together with the state samples until
the corresponding time step.5 Notice that support vectors
were included for all six time steps considered, where the
learnt mapping corresponded to a smooth mapping form R2

to R that represented the hidden state samples. As in the
synthetic examples in the previous sections, the estimates were
updated only locally; this is a consequence of the MCMC
move densities presented in Section IV-B. To facilitate online
prediction, the transition prior of the parameter was set to be
uniform, thus accepting samples with high likelihood which
capture the instantaneous dynamics of the signal—see eq. (19).

The proposed KSSM was also implemented for Bayesian
prediction of the frequency signal. We considered 200 samples,
corresponding to approximately 16.7 hours, and validated the
KSSM in the one-step-ahead prediction setting. The prediction
algorithms considered were:

Persistent Estimation: The prediction at time t is simply
the previous value of the observed process yt−1.

Kernel Normalised Least Mean Square (KLMS): A stan-
dard in kernel adaptive filtering, where the estimate is
produced by performing nonlinear regression directly on

4Data available from http://www.gridwatch.templar.co.uk/.
5The case t = 1 is omitted since at least two observations are needed to

perform the inference on the mixing parameters—see Remark 2.

http://www.gridwatch.templar.co.uk/
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Fig. 7: Online estimation of the state-transition function for
t ∈ [2, 7]. The hidden state samples are shown in red.

the observation signal yt using kernels and an LMS-based
update rule; see [41].

Kernel State-Space Model (KSSM): The adaptive version
of the proposed method, where the predictions are gener-
ated by propagating the particles of the state according to
the estimated transition function. The mean of the MCMC
proposal was set to the weights found by KLMS; fur-
thermore, a sequential importance resampling (SIR) [49]
particle filter with stratified sampling was considered.

For a meaningful comparison, both KLMS and KSSM
used the same dictionary based on the coherence criterion
[41], the same sequence of maximum likelihood estimates
{maxxt

p(xt|yt)}t=1:200, and the same kernel width σ = 2.
Fig. 8 shows the one-step-ahead predictions using the consid-
ered kernel algorithms against the true frequency signal (top),
and the number of support vectors (bottom). Observe that the
kernel predictions were fairly inaccurate for t < 50, as not
enough samples had been processed, and that consequently
a large volume of support vectors were added during this
period. We can therefore consider this period as the transient
of the kernel adaptive estimators. As t increased, the kernel
predictions became progressively better. In particular, the one-
standard-deviation confidence interval of the KSSM prediction
also became larger to include the true frequency signal.

The steady-state prediction performance was assessed for
different levels of observation noise, over 100 realisations,
in terms of the average mean square error (MSE) for t ∈
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KSSM prediction KLMS prediction True state

Time [samples]
0 50 100 150 200
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Fig. 8: Kernel predictions of the UK National Grid frequency.
[Top] The original signal is shown in red, the KLMS predic-
tion in green, and the KSSM prediction in blue with its one-
standard-deviation confidence interval in light blue. [Bottom]
Number of support vectors for kernel algorithms using the
coherence sparsification criterion.
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Fig. 9: Average prediction performance of the considered
algorithms over 100 trials. The MSE was calculated in steady
state, that is, for the last half of the estimation period (100
samples).

[100, 200] defined by

Average MSE =
1

R

R∑
r=1

1

T − T0

T∑
t=T0

(xt − xrt|t−1)2 (33)

where R = 100 is the number of realisations, T0 = 100 and
T = 200 are the initial and final time steps considered for
the MSE respectively, and xrt|t−1 is the rth realisation of the
one-step-ahead prediction of the frequency signal. For each
realisation, the observed signal was recreated by adding zero
mean Gaussian noise of standard deviation in the range σy ∈
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[0.25, 2].
Fig. 9 shows the average steady-state MSE for all three con-

sidered algorithms with respect to observation noise and the
power of the signal to give intuition as to when the estimates
become inaccurate due to the large observation noise. Both
kernel predictors outperformed the persistent estimate in all
cases, confirming that the kernel-based predictors are indeed
capable of capturing the nonlinear dynamics of the signal. Ob-
serve that KSSM, while considering candidate mixing weights
given by KLMS, outperformed KLMS by incorporating the
prior on the existence of observation disturbances, a model
property that is absent in the KLMS formulation. Furthermore,
notice how the MSE of both algorithms approached the power
of the hidden state as the observation noise increased, after this
point any algorithm becomes irrelevant since their estimate
would be worse than setting the estimate to zero. Finally,
recall that the KSSM-based particle filter allows for placing
error bars on the estimate (as seen in fig. 8), whereas KLMS
provides point estimates only. This illustrates the ability of
the proposed KSSM algorithm to design meaningful dynamic
models in an unsupervised learning setting, since the estimated
model not only outperforms the standard in kernel adaptive
filtering (KLMS), but also give a full probabilistic description
of the nonlinear dynamics.

VI. DISCUSSION

The proposed KSSM paradigm for unsupervised learning
of state-space models is flexible and admits different criteria
for finding the mixing parameters, designing PF and MCMC
stages, and setting hyperparameters. We now further elaborate
on some key steps within the proposed approach.

A. Criterion to Find the Mixing Parameters

As explained in Section III-A, we performed parameter
estimation by targeting the posterior density p(a|y1:t). This
allows us to impose desired properties on the solution through
the prior density p(a), such as regularisation, to then use
the observations to approximate the posterior of the mixing
weights. An alternative approach is to find the maximum like-
lihood estimate of the weights; this is achieved by maximising
p(y1:t|a) and then replacing the unknown vector a in eq. (3) by
the maximum likelihood estimate rather than integrating out
the parameters as in eq. (7). This dilemma is common to many
problems in Bayesian inference [50] and either alternative has
advantages and disadvantages. The posterior density approach
gives a complete pdf of the estimated transition function
at an increased computational cost, whereas the maximum
likelihood approach is of lower complexity but gives only a
point estimate.

B. Candidate Move for Markov Chain Monte Carlo

We considered a Metropolis-Hasting MCMC sampling from
the posterior p(a|y1:t), where the candidate move plays an
important role in both convergence of the chain and the area
it explores. To boost the convergence of the chain, we can
consider the sequence of maximum likelihood estimates of the

state x̂t∈N and perform supervised learning of this signal—
we can then propose the MCMC moves in this region. This
concept was applied in the above online simulations, as it
provided short convergence time and explored a localised
region of the parameter space.

C. Choice of Hyperparameters: Noise Variances, Support
Vectors and Kernel Width

The standard in Bayesian inference is to define prior den-
sities for all the unknown parameters and then find their
posterior with respect to the observed data, which includes
model orders and variances. Although this leads to a full
Bayesian model where all the quantities follow from the
observations, in practice this approach can be prohibitively
expensive, especially when the dimension of the parameters
needs to be determined (as it is the case with the choice of
support vectors). To this end, we considered concepts from
kernel adaptive filtering so as to reduce the computational
complexity of our method; in particular, the support vectors
were chosen by sparsifying the maximum likelihood estimates
of the state x̂t∈N and the kernel width and noise variances
by trial-and-error. We have shown that this approach is well
suited for real-world signals and is also in line with the KSSM
formulation since (i) the performance of kernel regression is
robust to the choice of the kernel width [21] and (ii) the
misadjustment of the choice of the noise variance can be
corrected by the (posterior) variance of the mixing weights.

D. Estimation of the Filtering Density p(xt|y1:t)
Within the proposed KSSM, the filtering density is com-

puted in order not only to perform joint system identification
and state estimation, but also because such a density is needed
to sample from the posterior p(a|y1:t) using MCMC—see eq.
(11). Although the simulations in this paper considered the
classic SIR approach [49], any variant of particle filter can be
used. In the online case, we can consider uninformative priors
for the state when the current estimate is still in its transient
[15], or risk-sensitive PF [51] so as to explore critical regions
of the state-space; these are proven to be advantageous in the
identification of critical state behaviour [52].

VII. CONCLUSIONS

We have proposed a novel framework for the design of
state-space models by parametrising their (nonlinear) state-
transition function using reproducing kernels and then finding
the mixing parameters in an unsupervised fashion using Monte
Carlo methods.

The representer theorem allows us to express the optimal
estimate of the state-transition function as a weighted sum of
kernels evaluated on a set of support vectors. The proposed
KSSM chooses the support vectors using sparsification criteria
from kernel adaptive filtering (this provides a representative
dictionary at low computational cost), and then finds the
posterior of the mixing weights using a combination of MCMC
and particle filters (the convergence properties of which are
guaranteed by the pseudo-marginal MCMC approach). The
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resulting estimation method then provides probabilistic esti-
mates for both the model and the underlying state process.

Through simulation examples on synthetic time series, we
have first validated the proposed approach by comparing the
likelihood of the estimates with those obtained via supervised
learning, and by showing that the learnt transition function
resembles the (unobserved) state samples. We have then em-
ployed the KSSM for learning and prediction of real-world
power-grid frequency signals, where the proposed method has
provided meaningful estimates of the transition functions and
outperformed the deterministic KLMS for noisy observations,
while also providing a full statistical prediction including
confidence intervals for nonstationary time series in real time.
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