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Abstract 

The paper investigates the potential for Level 2 autonomous vehicle (AV) technology to improve four 

prevailing sustainability issues specifically on highways: high congestion levels, increasing accident rates, 

high CO2 emissions and poor journey time reliability.  Co-operative Adaptive Cruise Control (CACC) 

shows potential to achieve high volume co-operative driving on highways by controlling these 

parameters and forming vehicle platoons. Accident rates, CO2 emissions and journey times can be 

reduced as a result. The risks of platooning are discussed and a minimum safe platoon headway is 

established to mitigate the risk of vehicle platoon collisions. This headway is applied to a real highway 

case study demonstrating the potential to increase notional highway design capacity from 3,600 

vehicles per hour (vph) to 9,213 vph, with significant sustainability improvements possible.  

Recommendations are made to complete a number of policy implementation and technology 

development tasks aimed to create the best chance of achieving the identified sustainability benefits 

within a 20 year timeframe.   

Keywords: Transport Planning, Traffic engineering,  Sustainability,  Autonomous Vehicles, 
congestion, emissions, highways 

Introduction 

Autonomous Vehicle Technology is gaining momentum during a period of unprecedented and 

potentially unmanageable growth in the automotive industry. Road transport is one of the fastest 

growing global sectors in relation to greenhouse gas (GHG) emissions currently accounting for 17% of all 

global anthropogenic CO2 emissions (International Energy Agency, 2012). Growth has steadily increased 

from 1.2Gt CO2/year in 1960 to 6.2 GtCO2/year in 2012 (The Shift Project Data Portal, 2014) caused by a 

sustained growth of the global vehicle population from 126 million in 1960 to 1.1 billion in 2011 (Davis 

et al, 2011). The upward trend is set to continue and the total vehicle population is expected to increase 

to 1.34 billion by 2016 (Zahren, 2012), and 2 billion by 2050 (International Transport Forum, 2011). If 

road transport CO2 emissions continue on their current trajectory, levels may reach 10.8 GtCO2/year by 

2050. 
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If the road transport sector is to take a proportionate share of the targeted 80% reduction in 

anthropogenic  global carbon emission by 2050 ( Edenhofer et al, 2014)  then it must reduce vehicle 

borne emissions to 2.1GtCO2/year by 2050; a figure that is one third of 2012 levels, yet must be 

achieved with a significantly higher vehicle population (2 billion, 81% higher than 2011). The road 

transport sector is unlikely to decarbonise before 2050 due to the lack of technologically mature 

alternatives to petroleum (International Transport Forum, 2011), meaning the challenge will probably 

be in supporting higher numbers of road movements while consuming significantly less fuel. 

 

As a result of the growing vehicle population, road movements are forecasted to increase by 30% in 

2030 and 50% in 2050 (Miles et al, 2013). Higher traffic volumes could create additional stress on 

existing road networks leading to increased congestion and delays for highway users. Increasing vehicle 

movements and congestion have caused a growth in global accident rates, currently estimated by the 

World Health Organisation to be between 30 and 50 million injury-causing accidents per year (World 

Health Organisation, 2013). 

 

A traditional government response to traffic congestion and high accident rates is to build more roads, 

thereby theoretically increasing notional design capacity and reducing congestion and accidents. It has 

long been established that building your way out of congestion is not always possible due to a 

phenomenon called ‘induced traffic demand’; i.e. the attraction of more people to motorised transport 

as the availability of useable roads increases leading to traffic problems persisting in the long term 

(Douglass, B. L. Jr, 2002). Upgrade schemes also bear a significant economic, environmental and societal 

cost and are becoming increasingly unpopular as a way of improving road traffic conditions. The A14 

highway has a disproportionately high rate of accidents and delays caused by excessive traffic volumes 

during peak hours, however the UK Government abandoned an upgrade scheme costing £1.2billion 

pounds for this road due to the cost being deemed unaffordable during the 2010 Comprehensive 

Spending Review (Department for Transport, 2011).  

 

The automotive industry is confident that fully Autonomous Vehicles will be available to purchase and 

drive on the road by 2025 (Juliussen & Carlson, 2014). When the technology does come to fruition, 

drivers will be able to enter an Autonomous Vehicle, type in a destination and let the car drive itself 

without any further human input. The reality is that automotive manufacturers, as well as Google and 

other major technology suppliers are progressing a concerted schedule of real world tests and 

technology development programmes aimed at proving Autonomous Vehicle technology as a reliable 

and marketable concept. Transport authorities in highly motorised countries are beginning to shape 



transport policy to reflect the rapid development of Autonomous Vehicle  technology and four specific 

technology levels have been established as shown in Figure 1: 

Figure 1: Different Levels of Autonomous Vehicle Technology (Developed from: NHTSA, 2013) 

There is still much work to do before Level 4 Autonomous Vehicles are sufficiently capable of coping 

with the myriad of chaotic and random circumstances that are created on highways. Level 4 

Autonomous Vehicles are underpinned by a vast array of sensors, processing hardware, operating 

systems and communication systems collectively enabling the vehicle to interpret its surroundings and 

navigate roads safely. The cost of this technology is currently very high.  Level 4 Autonomous Vehicles 

rely on an infrared sensor made by Velodyne called the HDL-64 that creates a 360° field of view, 

allowing Autonomous Vehicles to achieve a high level of situational awareness. The HDL-64 is 

recognised as a key component in achieving Level 4 autonomy and due to its complex design, each unit 

costs £46,875 (Petrie, 2013,). Even if Level 4 Autonomous Vehicles  are developed and taken to market 

by the industry target date of 2025, technology costs are expected to remain high resulting in forecasts 

that they will make up only 3.7% of total global car sales in 2035 (Juliussen & Carlson, 2014,). Many 

other issues such as insurance liability, policy implications, consumer trust in the technology and legal 

implications mean that the potential for Level 4  Autonomous Vehicles to replace manually driven cars is 

still unknown. Such uncertainty makes it difficult to make a reasonable assessment of the potential 

sustainability benefits that Level 4  Autonomous Vehicles may provide until the technology reaches a 

higher level of maturity and many of the issues hindering its development are addressed. 



Whereas Level 4   will be designed to take full vehicle control from a human driver, Level 2 Autonomous 

Vehicles  systems can be used for the design of on-board features that aid humans in controlling 

vehicles efficiently and safely rather than taking full control from them. Level 2 systems such as Co-

operative Adaptive Cruise Control (CACC) and Collision Mitigation Braking (CMB) are currently being 

tested by researchers and producing encouraging results. CACC utilises a vehicle-to-vehicle (V2V) 

communication protocol enabling vehicles to form platoons that share real time speed data so that 

uniform headways and similar constant velocities are achieved to potentially improve traffic flow. 

Highway capacities can be increased where smaller headways are maintained making more efficient use 

of road space and potentially reducing congestion as a result. Smaller platoon headways at highway 

speeds increase the risk of rear-end collisions necessitating the use of CMB to apply braking quickly 

where collision hazards are detected, potentially reducing accident rates. Because Level 2 Autonomous 

Vehicle technology has developed to a higher level of maturity than Level 4 systems with cheaper and 

simpler system architecture, it potentially offers a shorter route to market deployment. For the reasons 

discussed, this paper only assesses Level 2 AV systems with the objective of identifying how they could 

address a number of sustainability issues, including vehicle emissions, accident rates, congestion and 

journey time reliability.    

 

Potential Technology Applications 

Co-operative Adaptive Cruise Control (CACC) 

CACC is an autonomous driver assist system combining an on-board radar sensor with a Vehicle to Vehicle 

(V2V) communication adapter known as 802.11p (Ploeg et al, 2011), enabling the formation of vehicle 

platoons ( Figure 2). A platoon leader is assigned, connecting to a string of following vehicles using V2V 

telematics to distribute real time information about its driving patterns. Vehicles that join the platoon use 

an on-board radar sensor to establish a pre-determined platoon headway while connecting with the 

platoon leader using V2V telematics. As the platoon leader accelerates or brakes it rapidly transmits 

velocity data back to following vehicles, theoretically allowing them to closely follow the same longitudinal 

driving pattern and facilitating the maintenance of uniform headways and similar constant velocities. 

 

Figure 2: V2V telematics enable vehicle platooning using CACC. 



Tests using 6 Toyota Prius cars monitored the accuracy to which 5 platoon followers could duplicate the 

pattern of a platoon leader (Ploeg, 2012). Without deploying CACC,  speed variations between 

platooned vehicles increased over time and cars further down the platoon were unable to follow the 

driving pattern of the lead vehicle (Figure 3a). At certain points cars at the rear of the platoon 

decelerated while the leader accelerated, demonstrating that the speed and headway stability within 

the platoon had broken down. 

  
 

a) No CACC used                                                    b) V2V telematics and CACC were utilised 

Figure 3 : Car following pattern for platoon of 6 cars (adapted from (Ploeg, 2012)) 

Where all vehicles were equipped with CACC, a significantly different result was achieved. The platoon 

leader followed an identical driving pattern to the first run but also transmitted all speed changes to the 

following 5 vehicles within milliseconds using V2V communication. Figure 3 b) demonstrates that all 6 

vehicles were able to maintain a very similar driving pattern where uniform headway and similar 

velocities were more closely maintained than previous runs without CACC. The test also demonstrated 

that CACC virtually eliminated the effect of braking manoeuvres amplifying as they propagate upstream, 

highlighting the potential to reduce traffic jams where traffic density is high. The European Commission 

SARTRE (Safe Road Trains for the Environment) Project is examining a more ambitious 15 vehicle 

platoon with a uniform headway of 10 m at highway speeds (Smith, 2012). 

The relevance of achieving small uniform platoon headways becomes clear when considered against 

highway policy governing safe vehicle spacing. The UK Highways Agency recommends that a spacing of 

2 seconds is maintained between all highway vehicles travelling at 70mph (Department for Transport, 

2006) allowing the average driver to interpret and react to potential hazards quickly enough to avoid or 

cause collisions. A headway of 2 seconds equates to 62m at speeds of 70mph, leading to Department 

for Transport (DfT) published notional design capacities of 3,600 vehicles per hour (vph) for dual 



carriageways and 5,400 vph for 3 lane motorways, based on Equation 1 where nveh is vehicles per hour 

per lane and Tmin is the minimums safe headway in seconds (distance/speed): 

𝑛𝑣𝑒ℎ =
3600

𝑇𝑚𝑖𝑛
                                                                                                                                            Equation 1 

In reality hourly traffic throughputs regularly exceed these notional capacities, especially during peak 

hours, but DfT emphasises that they are associated with decreasing levels of service and safety for road 

users. Theoretically, if all traffic maintained a uniform headways of 10m on highways at 70mph, the 

notional design capacity would be increased to 22,536 vph over 2 lanes and 33,804 vph over 3 lanes. It 

seems unlikely that such figures could be achieved without dramatic advances in technology and 

complete optimisation of traffic co-ordination and flow. Practical testing of CACC has so far 

demonstrated that platooning has potential to facilitate platoon headways of less than 62m, but its 

ability to safely control headways of 10m requires further testing. 

Collision Mitigation Braking (CMB) 

Vehicle platooning is being tested with the objective of minimising uniform platoon headways so the 

need for an additional safety system becomes apparent as reaction times to hazards reduce as headway 

reduces. Where brakes need to be applied CMB can be used in conjunction with CACC to ensure 

collisions are avoided where speed differences between platooned vehicles become higher. Because of 

the high speeds involved and objective to maintain small platoon headways, CMB seems to be an 

essential function in allowing CACC to operate safely. 

Current CMB systems receive data from optical and radar sensors allowing a processor to interpret 

potential collisions (Delphi Corporation,2009) but there are limitations in application where small 

platoon headways apply. The processor can apply brakes to their maximum power using brake 

actuators to ensure collisions are avoided where hazards are detected. For the purpose of platooning 

with small headways such as 10m it is doubtful that time would exist for the processor to interpret a 

dangerous speed difference and then apply braking with sufficient time to avoid a collision. A possible 

way to counteract this limitation is to use the V2V protocol as an additional trigger. In the case of a 

platoon leader braking heavily, the transmission of this information would then be received by platoon 

followers within 50ms allowing more rapid activation.  

Risks  

The definition of a suitable headway distance for vehicle platooning on highways seems to be debated but 

currently undecided although a review of the application risks associated with CACC could lead to a more 



credible result. V2V communication systems are designed to ensure that safety critical information is 

transmitted to other vehicles with a maximum latency of 50ms (Fernandes & Nunes, 2012). Other road 

tests of V2V networked platoons have confirmed that signal strength is significantly weakened at ranges 

of over 70m and where line of sight is disrupted between networked vehicles (Bergenhem et al, 2012). 

Testing of V2V signal latency has shown that data transmission delays can reach 0.3s where an unstable 

signal exists (Zhou et al, 2012). Signal delays, particularly regarding the safety critical information used by 

CMB, can lead to a higher collision risk where small headways are maintained.   

 

Furthermore V2V signal is particularly vulnerable to interference from Unlicensed National Information 

Infrastructure (U-NII) devices operating at similar frequency bandwidths to the 5.9GHz frequency 

allocated to V2V adapters.  Such a threat must be dealt with comprehensively as not only would 

unspecified signal dropout times cause unacceptable safety risks, they would also leave vehicle platoons 

vulnerable to external hacking and control. Interference could cause multiple vehicle collisions and 

create risk to human life.  

 

 Mechanical variations between vehicles also need to be considered which would affect the safe 

maintenance of small uniform headways. For example average braking distances between different cars 

vary depending on tyre grade, tread depth and weather conditions.  Research has shown that tyres 

with a 3mm tread have  a 25% better performance than those at 1.6mm in wet conditions. In 

terms of braking distance this represents an extra 8 metres (MIRA, 2014) 

Evaluating risk of collisions under small platoon headways 

Kinematic equations allow an accurate evaluation of the feasibility of 10m uniform platoon headways at 

highway speeds considering the application risks identified above. As the risks are variable a number of 

potential scenarios will be evaluated to determine a minimum safe platoon headway based on the 

worst case scenario. The following kinematic equation will be used (Huang, 2002,):  

 

𝐻𝑠 =  
1

2𝑎2 
  𝑣2

2 −   
1

2𝑎1 
  𝑣1

2   +   𝑣2  𝑇𝑟          Equation 2 

Where:   Hs = safe headway;  a = deceleration ( m/s2);  v = velocity (m/s);  Tr = Reaction time of platoon 

follower (Figure 4). 

 



 

Figure 4: Contextualising Equation 2  parameters 

The kinematic equations assume car deceleration profiles to be truly linear when in fact they are slightly 

curved. Accuracy of calculations should not be affected as all vehicles brake with a similar curve.  The 

calculation below are based  on modern cars decelerating at an average rate of 6.5m/s² (Driver and 

Vehicles Standards Agency, 2007).  ‘0.3’ seconds is classified as high latency, so is used as the default V2V 

lag time.  HGVs are not factored into the equations due to complex variations in braking performance.   

 

There are four scenarios that will be considered to establish the worst case scenario resulting from a 

combination of application risks, and which allow for a relative difference in performance between 

vehicles. There are a large number of unknowable mechanical variations which can cause such 

performance differentials, so the calculations are based on assumed variations in tyre tread from 3mm 

to 1.6 mm which directly affect braking distances :  

 

Scenario 1. Vehicles have the same braking performance but 0.3s V2V transmission lag exists.  
 

Scenario 2. The platoon leader has a 25% braking performance advantage compared to the follower, 
and V2V lag exists.  
 

Scenario 3. The platoon leader has a 25% braking performance advantage compared to the follower, 
but V2V is lag free.  
 

Scenario 4. The platoon follower has a 25% braking performance advantage compared to the leader, 
and V2V lag exists.  
 

 Calculation Safe 
Headway, Hs 

Scenario 1 

 

9.39 m 

Scenario 2 

 

24.46 m  

Scenario 3 

 

16.64 m 

Scenario 4 
  

9.39 m 

Table 1: Calculation of minimum  safe platoon headway in four scenarios 



Safe headways under these scenarios are calculated in Table 1 . The results indicate that a platoon 

headway of 10m is only suitable when the platoon follower has at least equal braking performance to 

the leader regardless of V2V transmission lag issues. Even in scenarios 1 and 4 where minimum safe 

headway is below 10m the safety margin is minimal. In both scenarios where the platoon leader has a 

braking performance advantage, the maintenance of a 10m platoon headway would result in a rear end 

collision if an emergency stop was conducted. If signal lag were to be eliminated then Scenario 3 

demonstrates that platoon headway could be reduced to 16.64m, necessitating mitigation for braking 

performance variations only. Nevertheless platoon headways below 24.46m would significantly increase 

the likelihood of rear end collisions and create an unnecessary safety risk.  

 

Defining a minimum safe headway is important as it has a direct effect on the potential throughput of 

traffic on a stretch of highway. If inter-vehicle headway increases, vehicle throughput becomes more 

limited as vehicles become stretched out in space and time. Increasing platoon headways from 10m to 

24.46m reduces maximum theoretical throughput across 2 lanes from 22,536 vph to 9,213 vph which 

still represents potential for more than a doubling of notional capacity 

 

Case Study: A14 between Huntingdon and Cambridge. 

 

The A14 dual carriageway running between Huntingdon and Cambridge is a 16 mile stretch of highway 

that suffers regular breakdown of traffic flow at peak hours due to excess traffic volumes. The notional 

design capacity is 3,600vph in each direction but actual flows often reach 7,200vph during peak hours 

(Department for Transport, 2011). Using a safe platoon headway (established above) of 24.46 m the 

effect on congestion, vehicle emissions, accident rates, and journey time reliability are discussed in the 

next sections.    

 

Congestion 

Even though the A14 speed limit is 70mph, average traffic flow rate reduces to below 20mph during 

peak hours leading to traffic operating in ‘stop and start’ conditions (Department for Transport, 2011,). 

Congestion and delays for road users on this stretch of road are noted to be severe, suggesting that 

attention should be applied to find possible solutions. 

 

The purpose of CACC is to enable the sharing of velocity data, allowing platooned vehicles to safely 

travel at higher speeds with smaller uniform headways than the 62m figure advised by the Highways 

Agency. If the identified minimum safe platoon headway of 24.46m were to be applied at speeds of 



70mph then traffic flow could reach 9,213 vph, more than coping with the maximum volumes observed 

on the A14 during peak hours.  Similar constant velocities and uniform headways could be maintained 

through high volume vehicle co-operation, generating steady state traffic flow and reducing stop and 

start conditions. The ability of all vehicles to adhere to close driving patterns would also dampen the 

amplification of speed variations as they propagate upstream. The effect of damping would reduce the 

frequency of instances where traffic stops for no apparent reason. 

 

The Design Manual for Roads and Bridges (Department for Transport, 2006) acknowledges the principle 

that small vehicle headways can create traffic flow disturbances especially where traffic joins the 

highway from a slip road. The maintenance of a 24.46m uniform platoon headway should provide 

sufficient room for the lateral interaction of vehicles that want to change lane and enter or leave the 

carriageway using slip roads. Bearing in mind that the A14 study area has 13 separate junctions, it is 

important to consider the lateral movement of vehicles in relation to platoon behaviour to ensure traffic 

flow is not disrupted.  

 

CO2 Emissions 

Due to the stop and start nature of driving on the A14 engine load is significantly increased when 

compared to free flowing traffic, resulting in higher fuel consumption for every mile covered. The 

subsequent GHG emission increases have resulted in two sections within the A14 case study being 

assigned Air Quality Management Area (AQMA) status because limits of the UK Environment Act (1995) 

have been breached (Department for Transport, 2011).  

 

For an assessment of how CO2 emissions could be influenced by reducing congestion, the 

Comprehensive Modal Emissions Model (CMEM) sponsored by the U.S Environmental Protection 

Agency (Boriboonsomsin & Barth, 2008, ) is used here to measure the difference between traffic that 

flows at steady state velocity and traffic that flows in stop and start conditions. The model takes into 

account the CO2 emission profiles of 30 separate vehicle categories ranging from small cars to HGVs.  

This identifies  how CO2 emissions could be reduced if traffic flow is smoothed out on the A14 during 

peak hours.   

 
 



 
 
Figure 5: Potential CO2 emission reductions resulting from speed changes and smoother traffic flow; 
A14 and Strategic Road Network (SRN)  average peak hour flow rates added to articulate potential 
emission savings (adapted  from Boriboonsomsin & Barth, 2008) 

 

Traffic moving at an average speed of 20mph in stop and start conditions is shown to emit 43% more 

CO2 than traffic travelling at a 20mph average speed at steady state flow (Boriboonsomsin & Barth, 

2008). Average flow speed on the A14 is also 20mph during peak hours indicating that very high CO2 

emission savings could be made by bringing traffic to steady state flow. Reducing emissions by 43% 

would positively contribute to any strategy aiming to rid the A14 of its AQMA status. From a holistic 

viewpoint if such savings were achieved on wider road networks they could significantly contribute to 

2050 IPCC CO2 reduction targets .  

 

Accident rates  

Accident rates are unusually high in the A14 study area where road closures occur at a rate of 

approximately 200 per year, each lasting an average of 2.1 hours (Department for Transport, 2011).  

 

A study of 700,000 accidents on UK roads carried out by the Institute of Advanced Motorists found that 

87% of them were attributed to human error. The most common cause related to ‘reaction factors’ 

meaning that drivers were often not able to predict or interpret hazards in time to avoid collisions. The 

significance to highway collisions is that driver reaction is reported as a cause in a larger proportion of 

accidents on motorways than on minor roads. Impairment and distraction were also identified as the  



causes for a large proportion of motorway accidents (Institute of Advanced Motorists, 2009). Highway 

accidents tend to involve rear end collisions possibly explained by the fact that human motion 

perception is weaker in the field of depth (Green, 2013), meaning that vehicle closing distances are 

interpreted ineffectively.  

 

CACC and CMB create an acute level of situational awareness that should reduce reaction factors 

leading to accidents. A platooned vehicle should know the driving pattern of the preceding vehicle 

quickly enough to allow automatic reaction to speed changes and where the need arises CMB can be 

applied to help avoid rear end collisions. Both autonomous systems should therefore reduce the 

potential for slow human driver reactions and limited motion perception to contribute towards 

accidents on highways. The identified minimum safe platoon headway of 24.46m should ensure that 

platoon application risks do not add to the risk of rear end collisions. 

 

The use of technology to assist human drivers in managing safety critical controls could lead to an 

increased perception that there is less need to pay attention to road conditions as collisions will be 

avoided automatically. This could inadvertently lead to increased risk of accidents as the driver becomes 

more distracted. In cars containing Level 2 AV systems the driver is assumed to be in full control of the 

vehicle (NHTSA, 2013,) meaning it is essential that focus is maintained on highway conditions. Volvo are 

aware that such risks exist and are developing dashboard mounted driver monitoring (DM) sensors to 

detect driver distraction and impairment. The sensor is capable of constantly monitoring eye 

movements to detect whether vision leaves the road for a significant time period and alerting the driver 

to bring their attention back to the road if a distraction is detected (Volvo Ltd, 2014, online). If used 

alongside CACC and CMB, DM systems should further reduce the number of accidents caused by 

distraction or impairment.  

 

Journey Time reliability  

Road users are generally unable to plan journeys efficiently on the A14 during peak hours because 

journey times are variable as a result of sporadic congestion levels and high accident rates. Problems 

are caused for commuters who cannot afford to regularly be late for work and businesses that may lose 

revenue as a result of traffic delays. In some cases allocating extra time for each journey may not be 

enough because A14 closures occur that last for hours on a regular basis.  

 



Journey time reliability is considered a key performance measure for highway reviews and is rated as 

more important than journey speed for road users because it allows them to make more effective use 

of their time (Cambridge Systematics Inc, 2005).  

 

The application of CACC facilitates the movement of heavy traffic towards steady state flow and away 

from stop and start conditions. Increases in steady state flow will improve the reliability of journey 

times on the A14 because traffic flows more freely and is disrupted less by congestion which is difficult 

to plan for. The relationship between journey time reliability, congestion levels and accident rates is a 

fairly simple one; increases in either congestion or accident rates lead to reductions in journey time 

reliability. Because the combined use of CACC, CMB and DM reduce congestion and accidents, the 

potential to improve journey time reliability is high. 

 

The effect of Heavy Good Vehicles (HGVs) on A14 

HGVs can disrupt highway traffic flow because they travel at a maximum speed of 60mph and often use 

both lanes of dual-carriageways in the UK resulting in cars being slowed down where they cannot pass 

on either lane. Heavy Goods Vehicles make up 19% of traffic on the A14 because it is part of the Trans-

European Network (TEN) for freight carriers; most HGV journeys to and from Europe use this section of 

highway (Department for Transport, 2011). The effect of HGVs reduces overall traffic speed from 70mph 

which would lead to reductions in the identified maximum throughput of 9213 vph. The application of 

CACC should be effective in automatically managing speed variations between HGVs and cars and 

although it would be necessary for cars to slow down, steady state traffic flow would be maintained. If 

traffic were to slow to a uniform speed of 60mph on the A14, headways between cars would also 

reduce. Using kinematic equations to recalculate a minimum safe platoon headway necessary at 60mph 

produces an interesting result: 

   

 

Uniform headways of 18.86m at 60mph increases maximum throughput to 10,231vph, but the 

calculations are limited as they do not consider that HGVs decelerate more slowly than cars. If HGVs 

were to participate in platooning, as would be necessary on the A14 to realise the identified 

sustainability benefits, it is expected that increased headways ( greater than 18.86) would be necessary   

to minimise the risk of rear end  collisions  where HGVs follow cars and so would reduce the maximum 

throughput . 

 

=  18.86 m 



HGV deceleration rates vary significantly based on weight which can range from 15 tonnes un-laden to 

40 tonnes at maximum payload (European Transport Safety Council, 2011, online). Additionally there 

are a number of further factors that increase deceleration variations including: load retention, vehicle 

suspension limitations, vehicle stability and braking system type (Department for Transport, 2004, 

online).  Analysing these effects would allow the average deceleration performance of HGVs to 

enable the calculation of a minimum safe platoon headway to be computed as above ( but not 

attempted here).  

 

Challenges 

There are currently no signs that a standardised version of CACC has been developed to enable 

universal vehicle compatibility. Toyota has confirmed its intention to introduce an in-house version of 

CACC to the market by 2016 (Toyota-USA, 2013, online), indicating that a system is currently in 

development and is expected to be released within a few years.  A standardised version is probably 

further on the horizon with the high level of research and development activity suggesting this could be 

available within 5 years. 

 

Regulatory activity is moving towards mandating that manufacturers include certain Level 2 AV systems 

in all new vehicles built. The American National Highway Traffic Safety Administration (NHTSA) has 

confirmed plans to introduce a regulatory proposal mandating that all new registered light utility 

vehicles contain V2V telematics after a certain date ( yet to be established) (NHTSA, 2014, online). 

NHTSA has also expressed its desire to stimulate the automotive market towards an accelerated 

development programme of V2V technology with the specific aim of achieving high market penetration; 

a condition needed for high volume vehicle platooning on highways.  

 

Without regulatory intervention, factors exist that could limit the possibility of V2V technology 

becoming widely adopted on highways including economic cost and consumer choice. Some 

manufacturers could choose to exclude V2V communication systems from cheaper models in their 

product ranges to offer consumers the most competitive prices possible as a marketing strategy. 

Consumers may choose  not to voluntarily pay for AV technology if they are unaware of the benefits 

that it could provide. In unregulated circumstances moderate volume deployment of CACC is the best 

scenario to be expected; a scenario that would limit the realisation of identified sustainability benefits.  

 

In establishing an overall timeframe before high volume deployment of CACC could occur it is estimated 

that the necessary policy steps will not be taken for at least another 5 years. Given that consumers 



replace their cars every 10 – 15 years on average (The Automotive Council UK, 2013) there appears to 

be an issue of technical lock-in that will only undo over time as old vehicles are replaced by new ones 

containing AV technology. Considering all challenges discussed, a likely timeframe before high volume 

deployment of CACC could occur is approximately 20 years (2035). 

 

     Discussion 

Uncongested roads 

The Department for Transport (DfT) estimates that approximately 24% of journeys were not on time on 

the English Strategic Road Network during 2012 (Symonds, 2013,) implying that many English roads do 

not have major congestion problems. Although systems like Co-operative Adaptive Cruise Control 

(CACC) would significantly enhance the driving experience by providing the driver and passengers a 

more relaxing and  smoother driving conditions, there is no opportunity to reduce congestion where 

none exists. The holistic ability of AV technology to reduce congestion on road networks containing a 

mix of uncongested and congested highways would therefore be reduced. Potential emissions savings of 

43%  possible on a busy section of the A14 achieved  through smoothing traffic flow speeds (would not 

be applicable to all highways, significantly reducing the overall potential to achieve emission reductions.  

 

Collision Mitigation Braking (CMB) and Driver Monitoring (DM) appear to have a more diverse capability 

to reduce accident rates in a wide range of conditions. Distraction and impairment are human factors 

that lead to accidents and are still present on uncongested highways. Considering that uncongested 

highways naturally flow at a much quicker rate than congested highways there is potential for the 

severity of accidents to increase, even if their frequency is reduced. DM and CMB are not dependent on 

high volume deployment to be effective like CACC, so for every vehicle on the road that contains them a 

positive safety benefit can be achieved. Added to the potential for accidents on uncongested road to be 

more severe, the potential for CMB and DM to reduce accident rates remains high. 

 

Transport Policy 

Without policy intervention it is unlikely that the sustainability benefits from a move towards fully 

autonomous vehicles would be achievable because high volume deployment would not occur. Road 

transport policy is therefore a critical component in driving the improvement of highway sustainability, 

and delays in policy implementation would result in the identified sustainability benefits being delayed 

or failing to materialise.  

 



There is a good chance that V2V technology, the platform upon which CACC based, will be mandated for 

all highway vehicles in future but this is not guaranteed. The capabilities of automotive manufacturers 

and researchers to demonstrate the potential benefits of CACC to regulatory authorities will be a key 

influential factor in determining if and when mandatory policy is introduced. V2V communication has 

already been standardised under protocol 802.11p so that universal telematic compatibility will be 

guaranteed internationally. The next step is to achieve the same for CACC, allowing universal platooning 

capability. If CACC can be standardised under International Standards Organisation (ISO) regulations 

there is a greater chance of influencing transport policy on a global scale, creating a higher likelihood 

that all highly motorised nations will participate. 

 

External Influences 

Considering that traffic volumes on key strategic roads are already pushing capacity limits, it is difficult 

to understand how they will cope with predicted 50% volume increases by 2050. Such  peak hour 

increases may raise traffic levels to 10,500vph, beyond where uniform platoon headways of 24.46m can 

be maintained  indicating that traffic flow would break down on highways even where CACC is in 

operation.  

 

The forecast of a doubled global vehicle population indicates that road transport demand should be 

addressed to ensure that traffic volumes do not become unmanageable. Road transport policy can play 

a part in reducing road transport demand by developing viable alternatives to motorised transport and 

incentivising people to lower their use of private vehicles where possible. Increases in road building and 

vehicle manufacturing may also increase as a consequence of increased road transport demand as 

transport planners and manufacturers try to accommodate road user needs. CO2 emissions will be 

increased as a result and are beyond the potential influence of Autonomous Vehicle technology to fully 

mitigate.  

Autonomous Vehicle  technology is just one facet in a very complex transport system leading where the 

sustainability criteria will be influenced by external factors including road transport demand and road 

transport policy. The combination of influential factors discussed, including   Autonomous Vehicle  

technology, provides an opportunity for the intelligent use of transport policy to target the optimised 

use of existing highways without exceeding capacity limits.  If planners recognise that road transport 

demand could lead to traffic volumes exceeding 10,000vph on some highways then transport policies 

could be developed aiming to reduce demand to manageable levels. The benefits of a multi-faceted 

approach to managing the holistic transport system could lead to reductions in road construction and 

vehicle manufacturing levels where road transport demand is reduced. CO2 emissions would then be 



reduced in three dimensions: transport operations, vehicle manufacturing and road construction. If road 

transport demand levels are kept to within limits that allow CACC to operate effectively, reduced CO2 

emissions will be complemented by reduced congestion, reduced accident rates and improved journey 

time reliability. 

Sustainability assessment 

Now that a clearer understanding of where AV technology sits within the holistic transport system has 

been established, it is possible to consolidate a  sustainability assessment of Level 2 Autonomous 

Vehicle technology   identifying where it can have the greatest influence and areas where its potential is 

more limited. This is summarised in Table 2. 

CONCLUSION 

 Sustainability of road transport can be improved through the introduction of autonomous vehicle (AV) 

technology by exploring its potential to optimise the flow of traffic on highways. There are limitations in 

the capabilities of human drivers that deny the opportunity for high volume vehicle co-operation on 

highways and while these limitations remain, traffic will never flow in an optimised way. There are Level 

2 AV systems available that can address these limitations and potentially optimise traffic flow by making 

the most of existing highway space.  

 

Organisations testing highway platooning seem to be optimistic about the safe maintenance of small 

platoon headways at highway speeds. However there is little evidence to suggest that the identified 

application risks have been evaluated with enough scientific veracity to justify this optimism. Safe 

headway distances are significantly greater than the 10m platoon headway currently being tested. The 

calculations used to determine  this are primarily based on mechanical braking variations that are very 

unlikely to change in the foreseeable future, so it is difficult to see how small uniform headways can be 

applied safely using current technology.  

 

However a safe minimum platoon headway of 24m at 70 mph can still significantly improve the 

sustainability of traffic on existing highways. It is known by highway authorities that traffic flow is 

disrupted where small headways exist between vehicles because insufficient space exists for lateral 

interaction. Considering that lateral  interaction is a common occurrence on highways, the case for



Criteria Condition Description  Potential  to improve 
sustainability  

CO2  

Emissions 

Congested Roads  Effective use of CACC (assisted by CMB) can potentially lead to 43% emission reductions. CACC enables co-operative 
driving and accurate vehicle platooning in a way that is beyond the control of human drivers. 

 The ability of CACC to reduce emissions is limited by a theoretical maximum throughput of 9213 vph on dual 
carriageways and is vulnerable where road transport demand becomes too high, leading to potential for traffic flow to 
breakdown and increase emissions even where CACC is in operation. 

 AV technology cannot influence CO2 emissions generated by manufacturing and road construction brought about by 
increased road transport demand  

 

High 
 

Mixed Roads  
(Congested  
and Uncongested) 

 Emission reductions are lower where congestion is low as traffic tends to flow well. The ability of CACC to reduce 
congestion on a mix of roads is reduced. 

 CO2 emissions can be reduced by systems like CMB and DM as their ability to lower accident rate will also reduce traffic 
jams caused by road closures. 

Moderate  
to Low 
 

Emissions  
(2050 IPPC) 

 Based on estimates that the requisite market penetration may occur in approximately 20 years, CACC could be in full 
operation on highways by 2035 in time to meet IPCC CO2 emission reduction targets for 2050.  

 Large forecasted growth in road transport demand could compromise identified carbon emission reductions unless 
transport policy is implemented effectively to limit highway traffic volumes. 

Moderate  
  

Congestion On congested  
highways 

 CACC enables uniform headways and similar constant velocities to be maintained between groups of vehicles (platoons), 
identified as key parameters to enable congestion reduction. Traffic is managed to create steady state flow even where 
volume is high, improving congestion significantly 

 The influence of road transport demand may mean that future traffic throughputs are beyond the control of CACC 
meaning that congestion could occur even in the presence of the technology 

High 
 

Mixed Roads  
(Congested  
and Uncongested) 

 CACC can only influence congestion where it is a significant issue. As many highways on the Strategic Road Network are 
uncongested the overall potential to reduce congestion is significantly reduced 

Low 
  

Accident 
rate 
 

  Accident rate appears to be the biggest benefit of AV technology. CMB and DM are versatile and can operate effectively 
in all road conditions without the need for high volume deployment. The systems control the human factors that lead to 
accidents very effectively.   

 CACC also reduces accident rates by establishing safe platoon headways. Reducing congestion directly reduces accident 
rate  

 As increased flow leads to higher speeds, potentially increasing accident severity, CMB and DM address the human 
factors that lead to accidents meaning the risk of severe accidents is also reduced . 

High 
 

Journey time    Journey time reliability is closely coupled with congestion. Where congestion increases, journey time reliability 
decreases. A combination of CACC, CMB and DM contribute to reduce congestion and accident rates meaning journey 
times will improve in speed and reliability 

High 
 

  Table 2: Sustainability assessment matrix  

 



longer platoon headways that can still lead to improvements in highway sustainability appears to be 

strengthened.  

 

Transport policy plays a vital part in driving the tasks necessary to enable high volume deployment of 

Co-operative Adaptive Cruise Control (CACC). If appropriate policies are implemented by all highly 

motorised nations within the next five years the anticipated benefits to congestion, accident rates, CO2 

emissions and journey time reliability could materialise by 2035. From a timeframe perspective it means 

that the Level 2 AV systems investigated should contribute to IPCC CO2 emission reduction targets for 

2050. Nonetheless, achieving the range of policy implementations necessary is a major task and could 

be the dimension most likely to hinder the development CACC.  

 

Issues which need addressing are as follows. Vehicle category based minimum safe platoon headways 

should be assimilated into transport policy to establish safety standards. The NHTSA has set a precedent 

in mandating V2V technology in all small cars sold in America. The policy should be expanded to cover 

all vehicle categories and also be adopted by other countries with high motorisation rates.  

Manufacturers should develop CACC collaboratively to ensure universal compatibility and lead 

development towards the system being standardised by the International Standards Organisation. 

Because V2V communication has already been standardised under protocol 802.11p, standardising 

CACC is a logical further step in development.  CACC development should then follow the same policy 

pathway as V2V technology to ensure that high volume deployment remains feasible within a 20 year 

timeframe.  Because CACC is reliant on CMB to operate effectively where small platoon headways are 

maintained, any policies that standardise or mandate CACC inclusion in new vehicles should include 

CMB.  
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