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ABSTRACT
Fully autonomous hobbyist drones are typically controlled
using bespoke microcontrollers, or general purpose low-level
controllers such as the Arduino [1]. However, these devices
only have limited compute power and sensing capabilities,
and do not easily provide cellular connectivity options. We
present Captain Buzz, an Android smartphone app capable
of piloting a delta-wing glider autonomously. Captain Buzz
can control servos directly via pulse width modulation sig-
nals transmitted over the smartphone audio port. Compared
with traditional approaches to building an autopilot, Cap-
tain Buzz allows users to leverage existing Android libraries
for flight attitude determination, provides innovative use-
cases, allows users to reprogram their autopilot mid-flight for
rapid prototyping, and reduces the cost of building drones.

Categories and Subject Descriptors
I.2.9 [Computing methodologies]: Artificial intelligence—
Robotics[Autonomous vehicles; sensors]

General Terms
Design; Experimentation

Keywords
Smartphone; Fixed-Wing UAV;Autonomy; PID control; Pulse-
Width Modulation

1. INTRODUCTION
In recent years there has been an explosion in growth

of drones for researchers, commercial uses [2], and hobby-
ists [3]. These low-cost devices allow users with a small
budget to buy and build drones that can be controlled au-
tonomously.

Part of the success of drones has been their“hackability”—
drones can be adapted for new tasks, and enhanced with
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additional components. However, current consumer drones
are often built on bespoke micro-controllers that cannot be
reprogrammed and hobbyist drones are built on quite simple
micro-controllers such as the Arduino [4]. The programming
interfaces, programming workflow, lack of inbuilt sensors,
and limited compute power of micro-controllers all reduce
their ease of adaptation to create innovative use cases or
perform computationally-intensive tasks such as on-line vi-
sual processing.

We present a delta-wing drone that is controlled entirely
by an Android app, including low-level operations such as
commanding the servos. By controlling a drone using an
on-board smartphone, a user can make use of extensive ex-
isting library support, deploy new versions of the software
in flight, access a plethora of inbuilt sensors, and exploit
multiple wireless connectivity options.

We use a delta-wing airframe, standard servos, and a
Nexus 5 smartphone. The audio port of the smartphone
is connected to the servos on the drone via an amplifier to
increase the voltage provided by the headphone connection
to the operating range of the servos. This amplifier is only
needed because we use standard servos; had we sourced low
voltage servos we would not have needed this extra amplifier
component.

Controlling an autonomous drone using just an onboard
smartphone offers the following advantages:

High extensibility. Captain Buzz is implemented entirely
in Android. This allows developers to use existing An-
droid capabilities, such as voice recognition, OpenCV,
integrated communications services, etc. Innovative
and complex solutions can be developed that are in-
feasible with typical drone controller technology.

Live coding of drones. By using Android’s WiFi hotspot
and the remote Android Debugging Bridge, Captain
Buzz can be entirely reprogrammed mid-flight. This
allows for rapid development of flight logic, dynamic
changes to flight characteristics, and could even pro-
vide a human-in-the-loop supervised-machine-learning-
based flight control system in the future.

Low cost. With the prevalence of smartphones, users no
longer have to purchase a series of electronic compo-
nents such as Arduino controllers, GPS units, and sen-
sor boards in order to piece together a complete sensor,
computation and communications package. While top-
end smartphones can be relatively expensive devices
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to purchase, turnover of devices is very high with only
two years being the average time between device up-
grades for smartphone users in the UK and the US [5].
Previous-generation smartphones are therefore readily
available at no cost to many hobbyists. Even in cases
where smartphone screens are damaged, or battery life
is reduced, they can still be used as an autopilot since
the screen is not needed and the phone could be con-
nected to the main power source used by the drone
if needed. In many cases therefore, a new smartphone
may be expensive but an old one may be free. It should
be noted in any case that there are many smartphones
that contain everything needed for this project that
can be purchased for less than $100USD [6], whereas
the total cost of the Arduino-based solution recom-
mended for autopilot purposes is $160USD [7].

Connectivity and networking. Smartphones are incred-
ibly well-connected devices, typically offering multiple
wireless interface options including cellular and WiFi
datalinks. The scope for ease of both long range com-
munication and short range ad-hoc co-operation be-
tween multiple smartphone-based drones is an attrac-
tive reason to investigate the potential for all smart-
phone solutions.

In this paper we describe the challenges in dealing with
increased lag from using a smartphone, rather than a sim-
pler system with faster throughput such as the Arduino (§2);
the design considerations of Captain Buzz’s current airframe
(§3), and an approach for controlling servos using a smart-
phone’s audio output (§4.1).

The contributions of this paper are:

• We present the first all-Android-controlled delta-wing
drone, showing that despite increased latencies com-
pared with existing technology, a modern smartphone
is capable of providing an autonomous flight controller.

• We describe a system design that, to the best of our
knowledge, provides the first drone autopilot that can
be entirely reprogrammed during flight.

• We present a design for a dual-purpose amplifier board
that can increase the voltage provided by a smartphone
audio socket in order to provide servo control, and also
de-multiplex multiple Pulse-Width-Modulation (PWM)
signals superimposed on each audio channel to boost
the number of available control channels from the smart-
phone.

2. A SMARTPHONE AUTOPILOT
A smartphone contains everything that is needed to pro-

vide a fixed wing autopilot [8]. Location, ground speed
and altitude can be measured using the GNSS receiver and
MEMS barometer. Aircraft attitude can be measured using
the MEMS accelerometer, gyroscope and magnetometer [9].
Radio communication is provided via cellular and Wi-Fi con-
nectivity. Control output can be provided by the audio port,
or a micro-USB On-The-Go (OTG) port. A smartphone
contains an excess of processing power and memory for this
purpose, and is powered by its own battery, providing a
telemetry fail safe should the main battery of the airframe
fail. The drawback of a smartphone based autopilot is the

Figure 1: The delta-wing airframe with two-channel
elevon control.

increased lag from sensing input to command output due
to the lack of a low-latency interface for generating PWM
output.

Modern smartphones that contain multicore CPUs and
GPUs are more capable computing systems than the gen-
eral purpose or dedicated microprocessors typically used for
autopilot controllers. This means that the smartphone plat-
form is excellent for developing further system capabilities
involving real-time processing of visual data or processing
data from sensors for other purposes than flight control.

3. AIRFRAME DESIGN
Captain Buzz uses a delta-wing airframe. This gives us

three advantages over a conventional airframe: (i) Only two
channels are required to control the elevons of a delta-wing
glider. The airframe can therefore be controlled using the
left and right audio channels from the smartphone audio
output. (ii) The delta-wing provides the best lifting surface,
and plenty of fuselage space, so is well suited to a project
that needs to accommodate bulky payloads. (iii) A delta-
wing design can also be rapidly constructed, and so new
airframes can be constructed quickly to accommodate re-
designs, damage, etc.

Figure 1 shows the airframe currently in use. It is con-
structed from foam board and folded into shape. The smart-
phone is mounted securely underneath the wing, as shown
in Figure 2. Foam board has proven resilient to both poor
weather, and abrupt landings. We use a custom-design for
prototyping, but the Captain Buzz app can control any
commercially-available delta-wing glider.

3.1 Driving Servos From a Smartphone Audio
Port

A smartphone provides two possible electronic outputs
to control servos: (i) The analog audio port (ii) A micro-
USB On-The-Go (OTG) port. We use the audio port, as all
smartphones provide such a feature, but not all smartphones
provide OTG connectivity. Moreover, direct synthesis of
PWM signals is not possible using the OTG USB interface,
a separate synthesizer board would need to be developed.



Figure 2: The smartphone is mounted in a bay un-
derneath the delta-wing.

The maximum output voltage across the terminals of a
smartphone audio output connector is 1 volt. However,
servo control messages need to span at least 3 volts to be
registered. Rather than attempt to source or build low volt-
age servos we boost the volume of the output from the audio
socket by adding an amplifier.

3.2 Multiplexing the Servo Channels
The amplifier board can be designed in such as way as

to increase the number of control channels available to us.
We present an audio amplifier capable of de-multiplexing
four channels superimposed on the two channel audio output
from a smartphone. This project does not use more than two
control channels, but we recognize the great utility of this
particular amplifier design to permit future expansion and
further system improvements, such as autonomous motor
control. Most fixed-wing aircraft require at least four chan-
nels for full control, and so this amplifier board provides this
flexibility to move to a traditional aileron-elevator-rudder
control system too. The availability of four channels also
permits the development of an all-smartphone quadcopter.
The design of our demultiplexing amplifier board is available
at the Captain Buzz Google+ web page.1

Rather than simply outputting the PWM signals between
0 V and 1 V on each audio channel, we synthesise a chan-
nel between 0 V and −0.5 V, and an independent channel
between 0 V and +0.5 V, and multiplex both onto the same
audio channel (left or right). We then demultiplex these two
sub-channels using op-amps on the amplifier board and am-
plify each of them to the desired 5 V before passing them
on to the servos. This amplifier board therefore provides
four independent channels for control from one smartphone
audio port. In principle, this approach can be extended to
provide more than four independent channels.

1https://plus.google.com/118376347783210514294/
posts
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Figure 3: The PID control loops involved in this
flight controller, and their interactions.

4. APP DESIGN

4.1 Generating Servo Control Signals
The Captain Buzz app exposes an interface that allows the

autopilot to specify a desired deflection of each elevon. The
app generates a corresponding PWM signal with a width
between 1–2 ms to control the deflection of the servos.

Servo control channels are synthesized in this manner, and
output on the smartphone left and right audio channels. If
more than two control channels are needed then multiplexing
can be employed as described in §3.2.

4.2 Smartphone Flight Controller
A benefit of using Android is the availability of both raw

and processed sensor data. We compare our own sensor fu-
sion algorithms to determine gyro-smoothed magnetic head-
ing and to determine gyro-smoothed roll and pitch with the
stock values returned directly from Android calls. Even
though our code aims to take into account specific motion
modelling for a fixed-wing glider, the Android-provided data
is good enough to use in our flight controller, reducing the
size of our codebase and lowering the software processing
overhead of Captain Buzz.

We use standard Proportional-Integral-Differential (PID)
feedback loops [10, 11] to provide flight control. Specifically,
we have three nested PID loops, as shown in Figure 3: the
inner-most loop controls the aircraft’s bank rate; then a loop
around this controls the target angle; and an outer loop
controls the change in rate of heading. Furthermore, there
is coupling between the target heading rate and the target
pitch, since the delta-wing can make sharp turns (the current
limit is 30◦), during which there is a substantial reduction
in lift provided by the wings. We compensate for this by
increasing pitch.

Due to the number of nested PID loops involved in moving
from simple roll and pitch control up to waypoint following,
we need a way of rapidly searching the PID tuning space in
flight. We achieve this by setting up the smartphone as a Wi-
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Fi hotspot and pushing new parameters to the smartphone
live in flight using the Android Debugging Bridge. We push
a completely new version of the autopilot application to the
smartphone in flight while the human operator is in control,
in a few seconds. To the best of our knowledge this is the
first time that a fully autonomous drone has been debugged
and fully reprogrammed while in flight, and is a testament
to the flexibility and rapid-prototyping possibilities of an
all-smartphone autonomous platform for hobbyists.

5. CHARACTERISING LAG
Due to the use of the Android audio framework as an actu-

ator control system, control lag terms are larger than those
commonly found in bespoke flight control systems with em-
bedded bare-metal application design, such as the Arduino-
based systems. In this section we discuss how we minimize
the latency exhibited with Captain Buzz, and how it is still
capable of controlled flight, although with some small head-
ing overshoot and damped oscillation remaining in our final
system when waypoint following.

5.1 Experimental Setup
Finding a smartphone with the minimal processing lag

from sensor input to servo control is an important step in the
system design; the system lag from sensor input to control
output dominates the flight characteristics of this system.
We could choose between a Samsung S3, LG Nexus 4 and
LG Nexus 5 smartphone as our autopilot controller. In order
to test these three devices for the minimum lag, we built an
Android app that measures the lag, using a method based
on the Larsen Test. The app outputs a PWM test tone on
the left and right audio channels when the accelerometers
detect movement of the phone. The microphone input of
an external recording device is connected to both a probe
microphone, and to the audio port of the phone. A user
applies a short impulse to the phone using a rod, such that
the sound of this strike is picked up by the probe micro-
phone. When the smartphone detects this impulse—through
its accelerometers—it outputs a test tone, which is recorded
by the external recording device, and flashes the notification
LED. The notification LED has negligible latency (<1 ms),
so allows us to decompose the end-to-end latency into input,
and output latency. In this manner we perform a differential
measurement to find the time between the impulse trigger-
ing the accelerometers and the resulting output command
from the audio port. This experiment is analogous to a per-
turbation of the smartphone in flight triggering a response
command to a servo controlling an elevon.

5.2 Reducing Latency
We employ multiple techniques to minimize the latency

from an impulse being applied to the airframe, to a response
being exhibited. We determine that use of the standard
Android AudioTrack to synthesize pulse width modulation
results in a round-trip latency of 180 ms. This lag mani-
fests itself in flight with noticeable, but tolerable sluggish-
ness. The principle component in this latency is Android’s
buffering of audio tracks. Each Android model specifies a
minimum buffer size that applications must use to output
audio. On the Nexus 5, and Nexus 4 this is 7680 bytes, and
on the S3 it is 17640 bytes. 2-byte samples are read from
the buffer at 48 kHz. Therefore this buffering accounts for
80 ms of the lag on the Nexus 5.

We therefore do not use the Android AudioTrack, but
rather write a synthesizer—in C—that generates pulse-width
modulated signals, and writes the generated signal directly
to the soundcard. The synthesizer is linked into the Cap-
tain Buzz app using the Java Native Interface. The custom
synthesizer allows us to create arbitrary-sized audio buffers,
and enqueue them to play when the previous buffer fin-
ishes playing. We can therefore create buffers that are a
single pulse-width period in size. To achieve minimal la-
tency we reduce the pulse-width period from the standard
20 ms to 19.5 ms, to align our data with the audio card’s
internal frames, thereby reducing latency from realigning
frames. Moreover, we make further software optimizations
to minimize latency: high thread priorities, zero-copy data
path, and minimal allocations.

5.3 Results
The latency of our most laggy device (Samsung S3) is

480 ms ± 65 ms before applying any of the optimizations
discussed in §5.2. Following the optimizations, our fastest
devices, the LG Nexus 4 and Nexus 5 exhibit latencies of
only 115 ms ± 7 ms and 116 ms ± 10 ms respectively.

We use Android Traceview to determine that the process-
ing time from reading the accelerometer, executing the PID
loops, and outputting a signal, accounts for 1.1 ms.

When the autopilot attempts to maintain straight and
level flight, the lag is insignificant, with Captain Buzz able
to exhibit a meaningful response to small gusts of wind.
However, when performing waypoint-following the lag is ex-
acerbated by the multiple control loops; slight overshoot and
damped oscillation on turning onto new headings are ob-
served.

As efforts continue to reduce Android audio latency2, the
effects on our flight controller caused by lag will be reduced.

We could have built a custom version of Android that ex-
poses a low-latency audio channel, but we feel this defeats
the ease of adoption that we design into Captain Buzz. How-
ever, if future Android versions allow apps to output audio
with low latency, the sluggish effects we have observed in
our flight trials caused by lag would be reduced further.

6. FLIGHT TESTING
Flight tests took place throughout 2014. Figure 4 shows a

screenshot of a video stream of one flight test. Further videos
of Captain Buzz controlling the delta-wing airframe in static
and in-flight demonstrations are available on YouTube.34

6.1 Experimental Setup
The Nexus 5 smartphone runs a Wi-Fi hotspot and is se-

curely mounted in the payload bay of the delta-wing glider.
A laptop connects to the the smartphone Wi-Fi hotspot and
the Captain Buzz application is launched remotely via An-
droid Debug Bridge (ADB). We conduct ground pre-flight
tests for both the smartphone control system and for direct
human control, exercising the control surfaces and verifying
that the airframe is fit for flight. The aircraft is then man-
ually flown to a safe height, and manoeuvred under direct
manual control to further verify control surface responsive-

2https://code.google.com/p/android/issues/detail?
id=3434
3https://www.youtube.com/watch?v=990tmLXrxfk
4https://www.youtube.com/watch?v=-D5B6CrHizY
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Figure 4: Captain Buzz in flight with a stream of
video (main), and telemetry. All flights follow CAA
regulations; visual contact is maintained at all times,
and the view from the human controller is recorded
live with Google Glass (top-left).

ness. It is then levelled out, and configured for a gentle
gliding descent. ADB initializes the the Captain Buzz ap-
plication. When the control loop state is synchronized to the
operating state, the human pilot hands elevon control over
to the smartphone, using a buddy box.5 The buddy box,
mounted in the airframe, lets a human pass elevon control
between themselves and the autopilot as desired.

Multiple tests have been carried out from straight and
level flight (heading and pitch hold), through orbiting single
waypoints and on to waypoint following.

The ADB link to the airframe while it is in flight per-
mits quick, interactive tuning of major control loops by a
ground observer without the traditional “land, recover, and
reconfigure” cycle that is required with standard designs.

6.2 Safety Considerations
Take off and landing are performed by a human pilot

and all flights are performed on private land far from roads
or populated areas. The Civil Aviation Authority’s Infor-
mation and guidance associated with the operation of Un-
manned Aircraft Systems (UASs) and Unmanned Aerial Ve-
hicles (UAVs) [12] are followed at all times.

The master controller (a human using a standard radio
transmitter) maintains throttle control at all times but can
select when the smartphone app is in control of the elevon
servos via the buddy box mounted in the airframe. The
human operator can take back control of the elevons in an
instant, and at any time. There is also a backup control link
to the smartphone via a laptop, as discussed below.

Our airframe carries an audible low-battery indicator alarm
that sounds as the main battery approaches low charge.
Moreover, the ADB link provides us with an indication of
the battery level of the smartphone. Throughout flight, Cap-
tain Buzz streams telemetry over the ADB link, which can
be used to tune the autopilot, or identify failings of the air-
frame.

6.3 PID Tuning
Observation of the behaviour of the airframe allows the

PID loops to be tuned rapidly through successive in flight
tests by adjusting the parameters in flight using the Android

5http://www.hobbyking.co.uk/hobbyking/store/%_
_20002__Wireless_Buddy_Box_System_4CH_Dual_RX_
Controller_.html

Debug Bridge over a Wi-Fi link. Each of the desired autopi-
lot capabilities require a new bank of PID control loops to
be tuned before moving on to the next.

Our initial tests were of rate controllers on the roll and
pitch axes. These controllers have a target law of zero
roll/pitch rate, effectively maintaining airframe attitude. The
controller implementation is a classic Proportional-Integral-
Derivative (PID) loop system, with fused roll and pitch ob-
tained from the smartphone inertial sensors, and actuator
outputs on the audio socket driving the elevon servos. Gain
tuning approximately follows Ziegler–Nichols [13].

The result of this experimentation is a flight controller ca-
pable of maintaining straight and level flight through wind
buffeting or a poorly-trimmed airframe, maintaining safe
bank angles in turns, and following waypoints.

The rate controller is extended to provide angle-of-roll and
angle-of-pitch laws, along with a heading-hold controller.
This is a higher-order controller specifying the desired roll
and pitch angles, as well as desired magnetic heading. Al-
though higher-order roll and pitch angles could be com-
manded as a simple extension of roll-rate and pitch-rate
laws, the yaw controller has no direct equivalent: there is
no direct yaw actuator. Taking a cue from manual flight
operations, we add static “bank-and-yank” yaw excitation,
where target roll/pitch control authority is sacrificed to in-
duce a pitch-up and bank manoeuvre, initiating yaw.

For safety purposes, throttle control is maintained by the
human operator at all times. To achieve waypoint following,
the autopilot compares the current GPS position to the de-
sired waypoint position, then intercept heading and pitch are
calculated. The autopilot then sets its target heading to this
intercept bearing. Once the current GPS position is within
some threshold separation of the current waypoint position,
such as ten metres, the current waypoint is replaced with
the next in the list.

7. FUTURE DEVELOPMENTS
At this stage the smartphone autopilot only controls the

elevons of a delta-wing platform, although we have two spare
control channels through the development of our multiplex-
ing audio amplifier. Motor control could therefore be also
provided by the autopilot, or a traditional airframe com-
prising ailerons, rudder and elevator could be tested. The
multiplexing audio amplifier also allows for the development
of a quadcopter system based around an all-smartphone con-
cept.

We have not yet incorporated the use of the smartphone
camera to provide information for command and control
such as horizon detection, optical flow, or visual SLAM [14].
This would be a useful direction for future work, in order
to aid the attitude determination of the platform, especially
during extended periods of manoeuvring. The ability to
extend the Captain Buzz app to perform some of this pro-
cessing without adding further components further demon-
strates the benefits of an all smartphone drone.

Tuning the PID parameters through test flights is a time
consuming aspect of this project. A future development
could be to manually control the aircraft in flight via the
wireless ADB (perhaps using an Android-based app run-
ning on a tablet or smartphone on the ground). Since the
control commands would pass through the Captain Buzz
app running on the smartphone mounted in the aircraft, the
Captain Buzz app could use the human inputs as part of a
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supervised training scheme to learn optimal values for vari-
ous PID parameters. Such an in-flight supervised-machine-
learning training scheme can only feasibly be performed by
an all-smartphone drone, and would not be possible with
traditional systems based on Arduinos or similar simple con-
trollers.

8. RELATED WORK
In 2014 Intel used Android to control a quadcopter [15].

Intel use the smartphone bluetooth radio to communicate
with a bespoke bluetooth servo controller board, and bene-
fited from an board stabilization board integrated into the
quadcopter. Similarly, Flone is a quadcopter carrying a
smartphone that is controlled by a separate microcontroller
board [16]. The andro-copter project uses an Android smart-
phone but flight control is again provided by an Arduino [17].
Romo is a small robotic tank that originally used the audio
output from a smartphone to control its tracks but depends
on the lightning connector of a modern iPhone [18].

9. CONCLUSIONS
We have developed and demonstrated the first all smart-

phone delta-wing autonomous drone controlled via servo
commands provided by the audio output of the smartphone.
We have determined that the lag associated with this method
were not severe enough to prevent the development of a
useable fixed wing autopilot. There were great benefits to
this approach, such as live debugging and reprogramming
in flight and ease of redundant communication mechanisms.
The ability to run other apps on the smartphone controller
in parallel with the autopilot open up the opportunity for a
great range of science applications and other hobby projects.
The multiplexing amplifier that we developed provides a
means to increase the number of effective control channels
available from the two-channel audio output, this paves the
way for an all-android quadcopter as a future project.

Hybridization with an Arduino or similar microcontroller
could provide reduced lag in the control loops and improve
overall flight performance while in increasing the weight and
complexity of the system, but this project has demonstrated
that this hybridization is not necessary unless an agile air-
frame is required.
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