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Abstract At the heart of technology transitions lie complex processes of so-
cial and industrial dynamics. The quantitative study of sustainability tran-
sitions requires modelling work, which necessitates a theory of technology
substitution. Many, if not most, contemporary modelling approaches for fu-
ture technology pathways overlook most aspects of transitions theory, for in-
stance dimensions of heterogenous investor choices, dynamic rates of diffusion
and the profile of transitions. A significant body of literature however exists
that demonstrates how transitions follow S -shaped diffusion curves or Lotka-
Volterra systems of equations. This framework is used ex-post since timescales
can only be reliably obtained in cases where the transitions have already oc-
curred, precluding its use for studying cases of interest where nascent inno-
vations in protective niches await favourable conditions for their diffusion.
In principle, scaling parameters of transitions can, however, be derived from
knowledge of industrial dynamics, technology turnover rates and technology
characteristics. In this context, this paper presents a theory framework for
evaluating the parameterisation of S -shaped diffusion curves for use in simu-
lation models of technology transitions without the involvement of historical
data fitting, making use of standard demography theory applied to technology
at the unit level. The classic Lotka-Volterra competition system emerges from
first principles from demography theory, its timescales explained in terms of
technology lifetimes and industrial dynamics. The theory is placed in the con-
text of the multi-level perspective on technology transitions, where innovation
and the diffusion of new socio-technical regimes take a prominent place, as well
as discrete choice theory, the primary theoretical framework for introducing
agent diversity.

Keywords Technology transitions · Lotka-Volterra · Replicator dynamics ·
Evolutionary economics · Discrete choice theory

Cambridge Centre for Climate Change Mitigation Research (4CMR), Department of Land
Economy, University of Cambridge, 19 Silver Street, Cambridge, CB3 1EP, United Kingdom
Tel.: +44 1223337126 E-mail: jm801@cam.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/42338959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Socio-technical regime transitions are notoriously complex to model and un-
derstand quantitatively, but such an understanding may be crucial for antici-
pating and informing the planning of sustainability transitions. Socio-technical
systems play important societal functions (Geels 2005, 2002), and these ser-
vices and their demand are in a continuous evolution. Meanwhile, the evo-
lution of technology generates unforeseen opportunities to society that en-
able the creation of activities that did not exist previously, producing a com-
plex interaction between technology, society and the economy, generating eco-
nomic development through Schumpeter’s widely discussed but not well un-
derstood process of ‘Creative Destruction’ (Schumpeter 1934, 1942, 1939; see
also Nelson and Winter 1982). Technological change occurs through a gradual
process of technology substitutions which stems from a continuous stream of
decision-making performed by a myriad of actors involved in the operation
of technology or the consumption of the services it generates (Grübler 1998;
Grübler et al 1999). This spans from the power sector, transport, communica-
tions and information technologies, to heating, cooling and lighting equipment
and so on. In other words, technological change occurs in sectors performing
societal functions where generation technologies or socio-technical regimes are
not unique and competition occurs. Change in such sectors occurs through the
choices of consumers or investors facing various alternatives and incomplete
information, and these decisions are based, in a context of bounded rationality,
on diverse sets of considerations and constraints (Nelson and Winter 1982).

The process of technological change is not currently well described by
any generally accepted theory.1 However, a significant and well known body
of empirical literature exists that consistently describes the process of tech-
nology substitutions through gradual S-shaped curves (e.g. Mansfield 1961;
Fisher and Pry 1971; Wilson 2009; see reviews by Grübler 1998; Grübler et al
1999). As opposed to neoclassical technology vintage theory where capital
vintages have optimal lifetimes and are treated with a reversible equilibrium
theory (i.e. not path-dependent, Boucekkine et al (2004); Johansen (1959);
Solow et al (1966), for a review see Boucekkine et al (2011)), S-shaped curves
suggest to adopt an approach where time and complex dynamics take a promi-
nent role (e.g. the contagion model of Mansfield (1961)). As we show here,
attractive parallels with mathematical theories of population dynamics in bi-
ology, grounded in the understanding of the processes of birth and death of
biological individuals (humans, animals, cells, etc), are more than simple analo-
gies (e.g. Metcalfe 2004; Silverberg 1988).

1 Observing for instance the stark contrast between approaches by Nordhaus
(2010) (exogenous technology trends), Messner and Strubegger (1995) (cost-optimisation),
de Vries et al (2001) (elasticities of substitution), Johansen (1959); Boucekkine et al (2011)
(neoclassical vintage capital theory), Grübler (1998) (empirical technology dynamics),
Safarzynska and van den Bergh (2012) (evolutionary dynamics), Silverberg (1988) (self-
organised systems), Malerba et al (1999) (innovation dynamics within firms), Geels (2002)
(socio-technical regimes).
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The best known such parallel is to use the Lotka-Volterra system of popula-
tion growth equations of competing species in ecosystems for the competition
of technologies in markets (for an explanation and history see Andersen 1994),
or equivalently, the replicator dynamics equation of evolutionary game the-
ory (Hofbauer and Sigmund 1998) applied to social sciences. While this idea
has strong support in the field of evolutionary economics (Saviotti and Mani
1995; Safarzynska and van den Bergh 2010), it also makes intuitive sense to
perceive competing technologies (or even socio-technical systems) in the mar-
ketplace similarly to competing species in ecosystems (or even competing sub-
ecosystems and food chains). The parallel has been brought further with the
development of evolutionary game theory (for a review, see Hodgson and Huang
2012), the pioneers of which were acutely aware of the strong analogy that
could be drawn between the mathematics of the evolution of genotype fre-
quencies and their selection in a population in biology, and the process of
innovation and technology diffusion in economics. In addition to providing
a definition to the concept of bounded rationality, this strand of literature
demonstrates that the parallel, although described with yet insufficient preci-
sion, is more than just intuitive (Metcalfe 2004, 2008). As we show here, the
missing link lies in the realm of technology selection and demography.

The description of technological change or technology evolution follow-
ing parallels with biology currently remains in the conceptual and theoret-
ical domain (for a review, see Safarzynska and van den Bergh 2010) or in
stylised form (e.g. ‘history-friendly models’ of Malerba et al 1999; recombinant
models of Safarzynska and van den Bergh 2012; or the replicator dynamics of
Saviotti and Mani (1995)). They are not quite adapted to actual quantita-
tive applications such as modelling the supply of particular goods or services,
technology mixes or the economic and environmental impacts that these may
have. Meanwhile, Geels (2002), using the multi-level perspective, describes the
diffusion of socio-technical systems as much more complex than simple substi-
tution events represented by a set of coupled differential equations, involving
niches, early uncoordinated innovations and transformations in the social con-
text, seemingly precluding any modelling attempts at all. Despite this, it is
remarkable that diffusion processes have been observed in a myriad of con-
texts to follow a very simple ordering principle,2 logistic curves or the more
general Lotka-Volterra system of equations (Marchetti and Nakicenovic 1978;
Fisher and Pry 1971; Sharif and Kabir 1976; Nakicenovic 1986; Wilson 2009,
2012; Farrell 1993; Lakka et al 2013, and many more), and that such simple
patterns emerge from the underlying complexity.

In order to maintain a quantitative perspective in a computational model,
the analysis can be restricted to the selection and diffusion component. As
opposed to a fully evolutionary theory, this excludes the early erratic inno-
vation process, assuming that new but established technologies permeate the
landscape in dormant niches that could wake up, diffuse and potentially dom-
inate given the right selection environment, for instance with targeted policy.

2 In the sense of complxity science, e.g. Anderson (1972); Arrow et al (1995).

3



From then onwards, the diffusion process, gaining momentum, becomes firmer
and simpler to project quantitatively. Although the quantitative prediction of
technology diffusion is inherently highly uncertain, in parts due to the actual
evolutionary nature of technological change, it is nevertheless a highly worth-
while venture to undertake, particularly for instance in the climate change
mitigation context, in which the description of technological change is crucial
in order to project energy consumption, greenhouse gas emissions and their
related environmental impacts (e.g. in power generation, transport, industry).
As we show elsewhere (Mercure et al 2014), this approach offers a significant
improvement over current optimisation approaches where technological change
has no clear theoretical underpinning.

While concepts of technology diffusion provide insights on the key dy-
namics involved in transitions, they have not been used significantly in the
modelling literature beyond the ex-post empirical description of past data, us-
ing the observed pattern, the logistic curve (Marchetti and Nakicenovic 1978;
Fisher and Pry 1971; Sharif and Kabir 1976; Nakicenovic 1986; Wilson 2009,
2012, and many more). Despite the fact that innovation may be the primary
driver of economic growth (Nelson and Winter 1982; Schumpeter 1934, 1939),
the process of technology diffusion has yet to be even considered in large
scale mainstream models such as those for energy systems modelling and re-
lated energy policy analysis. These predominantly use representative agent
cost-optimisation algorithms (e.g. TIMES/MARKAL, IEA/ETSAP 2012) as
a descriptive mechanism, which has no theoretical or empirical grounding.3

Indeed, this current lack of a representation of empirical dynamics is partly
due to the fact that, while empirical diffusion measurements suggest a sys-
tem for forecasting technology or market evolution, such projections would
rely on measured time scaling parameters, which can be reliably measured
only precisely in cases of older technologies where transitions have already
occurred. Effectively, by the non-linear nature of the problem itself, obtaining
such time scaling parameters for new technologies for which forecasting would
be critically important cannot be reliably done based on the small amounts of
available data.4

I thus ask the question, is it possible to use empirically known technology
dynamics to forecast technology? If so, how can it be parameterised? As ar-
gued above, important scientific gains could be generated if new insight could
be found on how to obtain these parameters through other means than the em-
pirical fitting of diffusion data, requiring to establish a quantitative theory to
understand their nature. These parameters are timescales, and this suggests
that their meaning is associated to the use, the building and the scrapping
of technology in time at the unit level, hinting to the use of demography

3 No evidence points to cost-optimisation behaviour by agents, i.e. firms
(Nelson and Winter 1982) or consumers (Douglas and Isherwood 1979), including at
an aggregate level (Keen 2011), and no theory satisfactorily proves that an ‘average’
representative agent can correctly reproduce the aggregate behaviour of an underlying
diverse set of agents, including neoclassical theory (Keen 2011).

4 E.g. fitting logistic curves requires data that spans at least beyond the inflexion point.
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theory applied to technology. Previous work has shown that the use of the
Lotka-Volterra equation system can be made convenient, even mainstreamed,
with the creation of the ‘Future Technology Transformations’ family of com-
putational models (Mercure 2012), which enables to explore the impact and
dynamics of policy instruments on choices of diverse agents, with real-world
data. This model is based on the theory presented here. It was recently used
to evaluate climate change impacts of combinations of policy instruments in
21 countries covering the World by integrating it to macroeconometric and
climate modelling frameworks (Mercure et al 2014), and currenlty runs un-
der a resolution of 54 countries and 24 technologies (Cambridge Econometrics
2014).

The goal of this paper is thus to derive a parameterisation method from
a detailed theory. I first frame the problem by using an example of empiri-
cal data, and place it in context within its appropriate theoretical framework,
transitions theory (section 2). Second, I derive from first principles compo-
nents of a quantitative theory of technological change, based on survival (or
demographic) analysis explaining the origin of the timescales of change (sec-
tion 3). Third, by invoking theoretical concepts of technology choice mostly
based on discrete choice theory, I combine the components to demonstrate how
a Lotka-Volterra system (or replicator dynamics) can be derived from demog-
raphy theory from first principles (section 4). Finally, I interpret this theory by
demonstrating the origin of the the scaling parameters of the Lotka-Volterra
system, and point to how these can be used in real models of technology that
could potentially replace with reasonable ease incumbent cost-optimisation
models (section 5).

2 Framing the problem and putting it into theoretical context

2.1 The Lotka-Volterra equation for empirical technology transitions

The parallel between technology and biology/ecology can be summarised as
follows. Figure 1 presents the iconic data from Nakicenovic (1986) for the
transition between horse-drawn carriages and petrol cars that occurred in the
1920s. In this data, a transition is observed superimposed onto an exponential
growth in the number of vehicles. Through closer inspection, one observes that
by dividing the numbers of horses and cars by the total number of transport
units, functions reminiscent of logistic curves are observed that cross each
other in around 1915 (using S here for market Shares):

S1(t) =
1

1 + exp
(

α12(t− t0)
) , S2(t) = 1− S1(t) =

1

1 + exp
(

α21(t− t0)
) .

(1)
This is shown to be an accurate assessment by displaying the fractional data as
S/(1− S) on semilog axes, generating linear trends, of which the time scaling
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Fig. 1 Transition from horse-drawn carriages to petrol cars in the 1920s (data originally
from Nakicenovic 1986, graph taken from Grübler et al 1999, reproduced with permission).
(Left) Raw data on a semi-log axis. (Top Right) The data, when expressed as fractions of
the total F , follows very closely logistic curves. (Bottom Right) This demonstrated by a
transformation of the data of the form F/(1−F ) on a semi-log axis, which produces nearly
linear trends.

parameters α are obtained from the slope:

log

(

S1

1− S1

)

= α12(t−t0), log

(

S2

1− S2

)

= α21(t−t0), α12 = −α21, (2)

Taking a time derivative of these expressions, one obtains a pair of differential
equations fully describing the system:

dS1

dt
= α12S1

(

1− S1

)

= α12S1S2,
dS2

dt
= α21S2S1. (3)

This example depicts the interaction occurring within a pair of technologies.
Geels (2005) criticises the analysis of Nakicenovic (1986) by invoking the pres-
ence of two other important transport technologies that have interacted with
and influenced the development of petrol vehicles but have not pervaded the
market, namely electric trams and bicycles. Effectively, in most cases of tech-
nology competition, it is nearly impossible to exclude the existence of a third
interacting component, and a fourth and so on,5

Ṡ1 = α12S1S2 + α13S1S3 + α14S1S4 + ...

Ṡ2 = α21S2S1 + α23S2S3 + α24S2S4 + ...
...

Ṡn = αn1SnS1 + αn2SnS2 + αn3SnS3 + ...



















⇒
dSi

dt
=

n
∑

j=1

αijSiSj , (4)

5 The perverse effect of using quantities relative to the total is that this method can easily
lead to overlooking other competing technologies that only hold small market shares.
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generalising the theory to an arbitrary number n of technologies interacting
in the marketplace, with interaction time constants held in the antisymmetric
matrix αij . It corresponds to the so-called replicator dynamics used in evolu-
tionary game theory (imitation dynamics, Hofbauer and Sigmund 1998, p86)
and evolutionary economics (Safarzynska and van den Bergh 2010), in binary
interaction form. A more common version however is one of comparison of the
fitness of a candidate to the average fitness of the population,

dSi

dt
= Si

∑

j

(

Fi(Sj)−F(Sj)
)

, (5)

The replicator equation is mathematically equivalent to the Lotka-Volterra
system of differential equations for the numbers of individuals in a set of
competing species in an ecosystem when expressed in absolute numbers,

dNi

dt
= ri



Ni −
∑

j

αijNiNj

Ntot



 . (6)

Here, the first term riNi is the birth of individuals with birth rates ri, gen-
erating an exponential growth component, and the second term, negative,
expresses both the interference of a specie with itself, when resources become
scarce and individuals begin to compete, or the interference across species6

competing for the same resources. The new parameter Ntot is the carrying
capacity of the ecosystem, the number of individuals that the system can ac-
commodate. In the technology context, the carrying capacity corresponds to
the total number of units of technology supplying the demand for a service, or
societal function, following a demand led economic assumption. In this anal-
ysis, however, the parameters ri and αij contain lots of information and thus
need unpacking, which we proceed to do below.

2.2 Combining technology demography and choice modelling

This paper presents a model of technological change that explains the pattern
given above, deriving from first principles a replicator dynamics equation for
technologies at the unit level from demography theory,7 and provides meaning
to its parameters (αij) in terms of information that relates to technology and
industry characteristics (e.g. life expectancy, rates of capital investments, etc).
Several independent strands of demography exist, using either a continuous or
a discrete form, (all equivalent, Keyfitz 1977), of which I shall choose the
continuous form. Human demography in the continuous version corresponds
to an age structured form of single specie population dynamics. It provides

6 The relative signs of the elements in αij when permuting i and j determine the nature
of the interaction, i.e. competition or predator-prey.

7 E.g. how long does a car survive for on roads? How many cars of a particular type can
be produced in a year?
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an in-depth view of the process of population evolution through age specific
stochastic birth and death events, using probabilities of giving birth and of
dying for age tranches covering a whole lifetime. This provides demographers
with a finer accuracy for population projections than crude average birth and
death rates. This is also partly equivalent to survival analysis as used in engi-
neering to determine the statistics of failure of devices. A system of competing
species can also be described with an age structure. I create here such a con-
struction for technology dynamics, which, as I will show, explains the form of
the technological change process due to its key property of self-correlation in
time.

In contrast to demography, however, the birth of technology obviously does
not occur through pregnancy, although it is possible to define an equivalent
birth function (or maternity function, see Kot 2001). Technology birth takes
place in an industrial structure through the investment of financiers in pro-
duction capital and labour, using for this the profits on sale of these same
technologies. Sales are the process by which population expansions can take
place: if sales increase, the production capital and labour can be expanded,
but if sales decrease, the production capital and labour must eventually de-
preciate due to lack of investment. In order to explore this I thus proceed in
section 3 with describing mathematically the birth, death and the nature of
competition in a market.

The choice of technology however is a human process, and the human
population is naturally diverse. To model choice by diverse agents, a standard
theory exists which is commonly applied, discrete choice theory (e.g. voter
models, transport mode choice, see Ben-Akiva and Lerman 1985; McFadden
1973). This is also known as logit models, in which the choice probability
commonly takes the form

fi =
eUi

eUi + eUj
, (Binary form) fi =

eUi

∑

k e
Uk

, (Multinomial form), (7)

where Ui is the so-called random (i.e. stochastic) utility associated to each
choice. These models however, if applied as they are to technological change,
fundamentally assume perfect information and technology access by diverse
agents, and, without further dynamics, instantaneous diffusion. It appears ap-
propriate to connect discrete choice theory with the replicator equation of
evolutionary game theory. As we show below, a duality exists between the
binary interaction form of the Lotka-Volterra (eq. 6) and the multi-technology
form of the common replicator equation of evolutionary theory (eq. 5), and fur-
thermore, the multinomial logit approximately emerges when transforming the
Lotka-Volterra system in to this form of the replicator equation (section 4.4).

2.3 The multi-level perspective in transitions theory

This work can be brought into the perspective of transitions theory, the main
qualitative theoretical framework to describe transitions of socio-technical
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regimes. This paper however treats the problem from a multi-technology com-
petition perspective, which can thus be brought into the transitions theory
context.

Starting from the picture of Geels (2002), the process of technology transi-
tions from a multi-technology competition perspective can be thought of as go-
ing through two different phases. This is depicted in figure 2. New technologies
originate from small, erratic, cumulative incremental innovations that gradu-
ally gain coordination as inventors and firms get to grips with understanding
their own market and figuring out what is possible technically. This is shown
with small randomly oriented arrows, with three colours indicating three inno-
vations generating roughly the same service, or societal function. Many trials
and errors generate experience and learning that gradually determine the suc-
cessful direction to take. Once this happens, better defined technologies in a
particular socio-technical context begin to gain momentum of diffusion, and
enter what I will call the demographic phase. At this point, the growth rate
is determined both by: (1) agent choices (in terms of the respective advan-
tages and flaws of competing technologies including the incumbent) within
the socio-technical context and its evolution, (2) the timescales of birth and
death, or technology turnover. In a situation of very clear and favourable con-
sumer preferences and socio-technical evolution, the diffusion becomes limited
by the birth rate of the new technology, and by the death rate of the old tech-
nology being replaced: the timescales of technological change which are the
subject of this paper.

The innovation phase is difficult to model in a forecasting context, as this
would require knowing the unknown, innovations that have not yet been de-
veloped, inventions that have not yet been invented. Therefore, it is difficult to
describe the emergence of new technologies beyond the qualitative picture by
Geels (2002). However, the impacts of innovation on prices is simple to include
using learning curves, if they are known. When technologies enter the demo-
graphic phase, they are well defined with a dominant design, and modelling
their diffusion becomes straightforward, given a model of technology choices
and knowledge of their survival properties, the birth and survival functions
defined below, or equivalently the life expectancy and the rate of reinvestment
into production capital and labour of all competing technologies. This diffu-
sion is thus made uncertain in such a model in parts by the lack of possibility
of emergence of disruptive alternatives.

3 Model components: birth, death and choice of technology

3.1 The death process

The death of technology at the unit level can occur in different ways with
different probabilities. For example, in the transport sector, vehicles can be
retired due to fatal accidents, failures, or by economic decisions of owners due
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Fig. 2 Illustration of the demographic phase of technology transitions, adapted from Geels
(2002). Small arrows represent small incremental erratic innovations, during the innovation
phase, which gradually gain coordination and momentum before diffusion takes place, enter-
ing the demographic phase. One technology is in decline (gray), disappearing at a maximum
rate related to its survival function ℓ(a). One technology initially gains market shares at the
expense of the one declining (blue), but is in time beaten in the race by another (black),
which in turn is overtaken by yet another technology (red). The maximum growth rate is
related to the birth function m(b). The socio-technical context, consumer preferences and
the environment generate selection mechanisms driving market share exchanges between
technologies.

to increasing costs of maintenance with age.8 These processes have different
probabilities of occurring as functions of vehicle age. For a technology of brand-
model i, taking the probability of destruction at age a as pi(a)∆a, and the
number ni(a, t

′)∆t′ of technology units produced between year t′ and t′ +∆t′

(or age interval ∆a),9 the change in this age distribution of technology units
∆n(a, t) at time t during an ageing interval ∆a due to destructions is

∆ni(a, t
′)∆t′ = −pi(a)ni(a, t

′)∆t′∆a. (8)

8 The existence of sunk costs, investments in exchange for which technology is expected
to operate for a certain amount of time, imply the existence of a non-zero life expectancy.
This is particularly true if money is borrowed for the purchase of a unit and repaid during
its operating lifetime.

9 E.g. the number of 2003 Citroen C3 currently 11 years old.
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In the continuous limit (∆a → 0), solving this for a yields

ni(a, t
′)∆t′ = ni(0, t

′)ℓi(a)∆t′, ℓi(a) = exp

(

−

∫ a

0

pi(a
′)da′

)

. (9)

ℓi(a) is the common demographic survival function, while pi(a) is the instan-
taneous force of death (see for instance Keyfitz 1977). This is depicted in fig. 3
(left panel). When used in relation to people, survival functions are derived
from life tables where individuals are traced during their lifetime from birth
until death, which, when applied to technology, is called survival analysis in
engineering. The various processes of technology death can be associated to
components in ℓi(a). Accidents normally have a constant force of death, and
therefore give ℓi(a) a simple exponential form. Meanwhile, scrapping due to
failures tend to occur later during technology life, with increasing values of
p(a). Thus ℓ(a) can be written as

p(a) =
1

τ1
+

a

τ22
+

a2

τ33
+ ..., ℓ(a) = exp

(

−
a

τ1
−

a2

2τ22
−

a3

3τ33
− ...

)

, (10)

each term corresponding to different destruction processes with different timescales
τn. If accidents dominate the destruction process, then ℓi(a) should take pre-
dominantly an exponential form, while if the probability of failures dominates
and increases approximately linearly with age, ℓi(a) takes the form of a gaus-
sian, and so on. The survival of transport vehicles in the USA was shown to
follow approximately a mixture of τ1 and τ2 processes (ORNL 2012, and ref-
erences therein). While ℓi(a) expresses the probability of a technology unit to
remain in use until age a, the negative of its derivative expresses the probability
of destruction at age a. The life expectancy τi is defined as

τi = −

∫ ∞

0

a
dℓi(a)

da
da =

∫ ∞

0

ℓi(a)da, (11)

where the last expression above is obtained from the previous by integration
by parts. In the simple case of death dominated by accidents, τi = τ1 and
units of a particular age tranche decrease in numbers exponentially at a rate
equal to the life expectancy.

Every year t = t′ + a, a certain number of deaths di(t) occur, technology
units that are scrapped in some way or another, while a number ξi(t) of new
units are sold, both changing the total number of units in use,

∆Ni

∆t
= ξi(t)− di(t). (12)

While deaths decrease the number of units of all ages, sales generate units of
age zero. The gradual decease in numbers with ageing is

dni(a, t
′)

dt
∆t′ = ni(0, t

′)
dℓi(a)

da
∆t′, ni(0, t

′) = ξi(t
′), (13)

where for each age tranche between a and ∆a (or production year between t′

and t′ +∆t′), the number of deaths depend on the probability of destruction
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Fig. 3 Schema of the typical technology survival function ℓi(a) (left) and birth function
m(b) (right), which respectively stem from the instantaneous force of death p(a) and a
product of the production capital survival function ℓKi (b) and the productivity PK

i (b). The
area under ℓi(a) corresponds to the life expectancy τi, while the area under mi(b) is the
total expected production from one unit of capital during its lifetime, Φi.

times the number of units of that age remaining, which decreases every year.
The number of units in each age tranche originates from sales that happened
a years ago (in year t′). Thus, in the continuous limit ∆t′ → 0, while the total
number of units at time t depends on the number of units sold in the past that
still remain at time t,

Ni(t) =

∫ t

−∞

ξi(t
′)ℓi(a)dt

′ =

∫ ∞

0

ξi(t− a)ℓi(a)da, (14)

the reduction in the number of units at year t due to deaths is the sum of the
number of units that remain in each age tranche and their probability of being
destroyed precisely in year t,

di(t) = −

∫ ∞

0

ξi(t− a)
dℓi(a)

da
da. (15)

These expressions are the first and second convolutions encountered in this
theory, of past sales with the survival function and the probability of death. If
sales ξi(t) are related in any way to the existing number of units, this produces
a self-correlation of the number of units with itself in past years. I will show
later that this is effectively the case, which restricts how fast the total number
of units can change in the system.10

3.2 The birth process

The number of units of technology that can be built in a time span depends on
the production capital and labour available at that time. However, production

10 Note that in contrast to the birth function that I shall define further, ℓi(a) must be a
strictly decreasing function of age otherwise dead units would come back to life.
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capital also wears out as it ages (when it is not repaired) and has a finite
lifetime, and therefore its own survival function, which we denote ℓKi (b), with
age variable b. The production capital K(b, t′), installed at time t′ of age b,
will begin production after a certain delay of installation b0, and therefore its
age dependent productivity function, PK

i (b), is zero at b = 0 (see fig. 3). The
production decreases statistically with age however, since production capital
gradually break down with ageing following ℓKi (b → ∞) = 0.11 The number
of units of technology produced per year by these production units of age b at
time t during an interval of capital ageing is therefore K(b, t)ℓKi (b)PK

i (b)∆b.

Investment in new units of production capital is carried out using part of
the income from the sale of produced technology units (we assume, of technol-
ogy of the exact same type, we do not mix funds across different industries).
Taking Ri as the fraction of re-investment of profits into production capital,12

the amount of capital of age b at time u scales with sales that occurred b years
earlier, i.e. K(b, t′) = Ri ξi(t

′) = Ri ξi(t − b). The total production capacity
δNi(t) of all vintages can be calculated from the amount of capital that was
built with funds from sales in all previous years. Defining the technology birth
function mi(b) = PK

i (b)ℓKi (b), this is

δNi(t) = Ri

∫ ∞

0

ξi(t− b)mi(b)db, (16)

where the difference between the production capacity and actual sales depends
on the presence of competitors and consumer choices.13 This is the third con-
volution of this theory, which generates, if the number of production units is
related to sales, another autocorrelation in the number of units.

As opposed to ℓi(a), mi(b) it is not a strictly decreasing function, but it
increases initially, as production begins some time after construction, before
decreasing in later years when old production lines get decommissioned. It
must be an integrable function, the area under which Φi =

∫∞

0 mi(b)db con-
verges. As we show in section 4.3, in order to have an increasing production
capacity, we must have RΦi > 1.

The fastest possible rate of growth of sales can be calculated by hypothe-
sising a fictitious situation without competition where households are able to
consume any level of production, therefore with indefinite growth (a fictitious
purely supply-led market14). The production capital is under full employment

11 We consider here repairs as investments in new production capital, in order to correctly
keep track of the amount of depreciation.
12 Ri is in units of production capital purchased per unit of technology sold.
13 Whether the capital is fully used or whether there is spare capacity.
14 It almost never happens that a rate of production growth determined solely by the supply
side persists for a long time. For example in the transport sector, if sales in developed nations
were to increase faster than the population, this would mean that households eventually own
3-4-5 cars and so on, rather unlikely. In this case, the rate of growth of sales is limited by the
rate of growth of the demand, not the rate at which production could hypothetically be scaled
up given its profitability. Supply-led growth however could arise in special circumstances such
as in wartime policies of rapid up-scaling.
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and the total amount of production of technology units is

ξi(t) = Ri

∫ ∞

0

ξi(t− b)ℓKi (b)PK
i (b)db. (17)

Thus, in this monopolistic case sales that occur in the present are completely
determined by sales in the past, where the income on past sales were used
to expand the production capacity, which enables more production and more
sales, and thus more expansion and so on. This is identical to renewal equa-
tions in demography where birth rates in the present depend on what birth
rates have been in the past (Keyfitz 1977; Kot 2001), also called Lotka’s inte-
gral equation (Lotka 1911). This leads to exponential solutions with possible
oscillatory components (Keyfitz 1967) for both ξi(t) and K(t), therefore indef-
initely increasing sales and capital. Obviously, such a monopoly could never
be maintained indefinitely and sales must presumably fall short of production
at some point in time where a competitor interferes with the market with a
more successful product. However, in a situation where an innovation were to
take such a path free of competitors, it would follow the fastest possible rate
t−1
i of growth determined in Appendix A, equal to either:

1. RiPi, the rate of investment in the case where the production capital life-
time is long-lived and only a short or no delay takes place in its construc-
tion,

2. b0, the time delay, in case a long delay takes place in the construction of
the production capital.

3.3 The choice process

As we know from diffusion theory (Rogers 2010), the diversity of agents is
linked to diffusion rates. I thus create a model of decision-making in the context
of diverse agents. For a model of technology diffusion, we require an aggregate
representation of decision-making when agents are diverse, and costs have
variations. Diversity stems from different perceptions from agents when they
take a decision, which may originate from a large set of particular preferences
and constraints that is impossible to enumerate in a model. We require this
diversity to be summarised by distributions. For this, I assume that choice
is made on the basis of a single quantity, a generalised cost x (figure 4 top),
evaluated by agents for each option they see as available to them, and this
value must feature a quantification of all possible aspects that weigh in the
decision-making balance.

To clarify, I postulate here that distributions of perceived costs correspond
to distributions of observed costs. I justify it as follows: agents, I assume, when
considering investing in a unit of technology (e.g. a car), most likely choose
something they have seen chosen before, perhaps by someone they know, such
that they were able to gather information.15 This may be due to their belong-

15 i.e. they most likely do not choose something they know nothing of, and they gather
reliable information predominantly through observations of their peers
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Fig. 4 Illustration of the process of decision-making under diversity of agents between two
technologies. The blue curve represents the distribution of perceived generalised costs for
one technology, and the red curve that of the other. In the left panel, if diversity is very low,
choices can flip very abruptly as average costs cross. This corresponds to the representative
agent case. In the right panel, introducing significant diversity makes choices distributed
and choices change very gradually as costs cross.

ing to a particular social group and social class, and they are most likely to
choose amongst what their peers have previously chosen, which itself is a sub-
set of what the whole market has to offer (e.g. poor rural households perhaps
purchase different types of vehicles to rich suburban families, which itself is dif-
ferent than single middle-class persons, i.e. their peers are a subset of the popu-
lation and their observations are a subset of all observations). This is a key part
of what is known as the anthropology of consumption (Douglas and Isherwood
1979). Thus I assume restricted technology/information access, in other words,
agents do not choose what they do not know, and they do not know, or care
for, all options technically available. Choices of particular social groups endure
through peer observation and visual influence, which has been demonstrated
empirically for for example with vehicle purchases in the USA (McShane et al
2012).

The frequency of events of observations of a particular technology model
(by consumers shopping), sample of an ensemble of such events, corresponds
to the frequency of recent sales of that model (purchases by their peers).
It follows that the probability of choosing a particular model is most likely
proportional to this frequency of observation, and thus these preference dis-
tributions, associated to circumstances, constraints and social group origin of
consumers, difficult to enumerate and unknown to the modeller, are relatively
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stable. These combined frequencies form generalised cost distributions of sales.
Therefore in this perspective, the generalised cost distribution of recent sales
is a representation of the diversity of choices. I shall go further and claim that
we can use the measured diversity of sales and interpret it in terms of the
diversity of agents. In such a perspective, technology sales by type and model
reinforce technology sales of those types and models, consistent with the work
of McShane et al (2012). This is a situation of increasing returns to adoption,
discussed by Arthur (1989), which, combined with diversity, he demonstrates
leads to path dependence and several equilibrium points.

This approach to modelling choice is not new, termed discrete choice the-
ory (Ben-Akiva and Lerman 1985; McFadden 1973), where the generalised cost
being minimised (figure 4) is equivalent to the random utility being maximised
in the more classical version of the theory. In binary logit form, the descrip-
tion of decision-making is represented here using pairwise comparisons of cost
distributions (figure 4, top). When faced with equivalent technology choices,
the fraction of investors or consumers choosing technology i over j can be
approximated by counting the number of instances out of the total where the
generalised cost of technology i falls below every possible other value of the
generalised cost of technology j, and vice-versa. Following standard discrete
choice theory if the distributions are of the Gumbel type (extreme value dis-
tributions), with standard deviations (diversity) σi and σj , then the frequency
where technology i is less costly than technology j follows a logistic distri-

bution (the binary logit in eq. 7), of width parameter σij =
√

σ2
i + σ2

j . The

pairwise comparison generates a choice likelihood of adopting i over j that I
denote Fij , and a likelihood of adopting j over i Fji = 1−Fij . This is derived
exactly and explained further in Appendix B.

Finally, one comment may be added concerning innovation. Technologies
are not static but change as production methods improve, and these improve-
ments occur through re-investment and production. Innovation in the firm
leads to learning-by-doing cost reductions, which influences the choices of
agents (e.g. McDonald and Schrattenholzer 2001; Weiss et al 2012). In par-
ticular, the costs of new technologies typically change faster than those of the
incumbent. Learning curves, of the usual form Ci(t) ∝ (

∫

ξi(t)dt)
−b (cumu-

lated sales) can easily be included in the decision-making process described
here.

4 An age structured model of technology competition

4.1 Deaths replaced by births

I now build a model of technology competition and substitution. Choices of
consumers or investors are taken to mean what choices would be made if all
options were not equally available or known to all agents. This is defined in
terms of preferences in the comparison of each possible pairs of technologies
Fij . Given that despite the first choice of consumers or investors, those may
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not necessarily be available in every individual situations due to the amount of
existing industrial capacity to produce them, consumers or investors may have
to content themselves with their second or third choice. This is important here
since we are dealing with technology diffusion, and that the diffusion process
involves a gradually changing availability of new technologies.

Considering that units of any age are replaced by new ones when they
come to the end of their life and are scrapped,16 following this approach, I
evaluate the number of units removed from one arbitrary technology category
j and added into another category i. For this, I start with the total number
of deaths to be replaced in all vehicle categories and ages, and find how many
of those belong to category j. Out of those destructions in j, I evaluate those
that were chosen by consumers to be replaced by technology i, according to
Fij .

Of these, only a fraction can be produced. The production capacity of a
particular technology may not necessarily be able to supply the demand in
every one of these situations, were the consumers to all simultaneously choose
this technology. Therefore, in a certain number of these situations, the option
will simply not be available, and consumers will have to choose between the
remaining options despite their best preference. The fraction of instances where
this choice will be available with respect to the total number of choices being
made corresponds to the fraction of production capacity of this technology
with respect to the total production capacity.

This can be understood through an analogy involving an ensemble of shops
with a number of competing products on their shelves, and agent only go to
their local shop, and thus each see a different set of options. Given the pro-
duction capacity of each product’s respective industry, most shops will not
be able to stock units of all competing products. The relative frequency of
shops stocking particular technology models corresponds to the relative pro-
duction capacity for those models. When customers have equal preferences for
all products, the relative probability of the average customer choosing partic-
ular products corresponds to the average composition of the product choice in
the ensemble of shops, which itself corresponds to relative production capacity
of each product with respect to the total. Thus the fraction of units of tech-
nology j, chosen to be replaced by technology i, that can actually be replaced
by units of i corresponds to the fraction of the total production capacity that
produces technology i.

I define a flow of units from categories j to i as follows:

∆Nj→i =





Fraction of

prod. capital

belonging to i





i

[

Consumer

preferences

]

ij





Fraction of

deaths

belonging to j





j

[

Number of

deaths

]

tot

(18)

16 i.e. accidents, breakdowns or economic scrapping decisions, following the survival func-
tion. The nature of ownership of these technology units, and whether they change ownership,
is not relevant, which enables to make abstraction of second-hand markets.
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The net flow from both directions between i and j (some agents make
opposite choices), ∆Nij , and the sum of all changes for any technology i, are:

∆Nij = ∆Nj→i −∆Ni→j , ∆Ni =
∑

j

∆Nij . (19)

4.2 The age structured model

Eq. 18 can be written in terms of the production capacity δNi(t) and deaths
dj(t), as defined above:

∆Nj→i =

(

δNi(t)
∑

k δNk(t)

)

Fij

(

dj(t)
∑

k dk(t)

)

(

∑

k

dk(t)

)

∆t. (20)

The production capacities and death numbers at time t can be replaced by
convolutions of past sales (eqns 15 and 16):

∆Nj→i =

(

Ri

∫∞

0 ξi(t− b)mi(b)db
∑

k Rk

∫∞

0
ξk(t− b)mk(b)db

)

Fij

(

∫∞

0 ξj(t− a)
dℓj(a)
da da

∑

k

∫∞

0
ξk(t− a)dℓk(a)da da

)

(

∑

k

∫ ∞

0

ξk(t− a)
dℓk(a)

da
da

)

∆t. (21)

Note the symmetry between the production side and the destruction side of
this equation. There is, effectively, a high similarity between both processes.
The difference however is fundamental: while ℓ(a) is a strictly decreasing nor-
malised function of age and smaller than 1, generating destruction only,Rim(b)
increases, and its integral is greater than 1, generating production. However,
in order not to have an indefinitely increasing production capacity, m(b) also
decreases again at high values of b, maintaining the function integrable17, gen-
erating decreases in the production capacity when sales decrease, reflecting
the gradual depreciation and wearing out of the production capital if no funds
are available to replace them.

Eq. 19 with eq. 21 provide an expression for exchanges of units between
categories (the exchange term). However, the total number, the carrying ca-
pacity, could also be changing, requiring either units that are brought in that
do not replace deaths, or deaths that are not replaced. In the more common
case of a total population Ntot increasing, this is met by technology production
following the relative production capacity:

∆N↑
i =

(

Ri

∫∞

0 ξi(t− b)mi(b)db
∑

k Rk

∫∞

0 ξk(t− b)mk(b)db

)

(

∆Ntot

∆t

)

∆t, (22)

17 The production capital produces a finite amount of goods in its lifetime.
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where choices need not be involved.18 Meanwhile in the second less common
case, the decrease in Ntot is met by the relative rate of deaths,

∆N↓
i =

(

∫∞

0
ξi(t− a)dℓi(a)da da

∑

k

∫∞

0 ξk(t− a)dℓk(a)da da

)

(

∆Ntot

∆t

)

∆t. (23)

Assembling these expressions together, one obtains an expression too large to
write here, summarised by

∆Ni =
∑

j

∆Nij +∆N↑
i or ∆Ni =

∑

j

∆Nij +∆N↓
i . (24)

When terms are replaced in eq 24, the resulting large expression corre-
sponds to the demographic model of technology expressed in terms of the full
sales history. This is the most general model of technology competition that
can be derived from deterministic demography theory.19

This model can also be expressed uniquely in terms of sales, where ξi(t) =
∑

j ∆Nj→i +∆N↑
i :

ξi(t) =
∑

j

(

Ri

∫∞

0
ξi(t− b)mi(b)db

∑

k Rk

∫∞

0
ξk(t− b)mk(b)db

)

Fij

(∫ ∞

0

ξj(t− a)
dℓj(a)

da
da

)

+

(

Ri

∫∞

0
ξi(t− b)mi(b)db

∑

k Rk

∫∞

0
ξk(t− b)mk(b)db

)

(

∆Ntot

∆t

)

(25)

This fully recurrent population growth equation expresses how sales in the
present are constrained by sales in the past within and between categories,
through convolutions, generating self and cross-correlations of the sales. Since
sales are autocorrelated in time, and that the addition of units corresponds to
sales and removals to deaths, it implies that the absolute numbers of units are
self and cross-correlated in time as well. Therefore, changes in the numbers of
units cannot happen faster than is allowed by these correlations, which as we
demonstrate next, are given by the length in time of the functions ℓi(a) and
mi(b).

Going any further requires evaluating all the convolutions, which would
involve full knowledge of sales ξi(t) in addition to survival functions ℓi(a) and
birth functions mi(b). This equation can however be simplified enormously
with the two following approximations.

4.3 Simplification of the model with key approximations

Eq. 24 in its full form, or alternatively eq. 25, appear rather complicated,
unconstrained and un-instructive. However, since they are recurrent, these

18 Adding here a factor Fij can be done but is secondary: even if new units are not chosen
exchanges can occur through the exchange term.
19 Thus improvements could be made using stochastic population growth theory, where
for instance the probability of extinction at low population numbers would be better repre-
sented.
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Fig. 5 Computational experiment illustrating the convolution sales with the birth and
death functions, justifying both approximations of this section.

equations are more constrained in terms of their possible solutions than they
seem. Eq. 24 expresses technological change between technology categories in
terms of respective sales of those technologies. These sales are convolved with
the functions m(b) and dℓ(a)/da. It is well known in signal processing theory
that convolutions of time series with functions of bounded kernels (fig. 5) yield
slightly modified time series that are smoothed with respect to the original,
where high frequency changes have been damped.20 The ‘cutoff’ value at which
frequencies are suppressed, the sharpness limit, corresponds to the width in
time of the kernel.21 This is also the correlation length of the smoothed func-
tion. For symmetrical normalised kernels of similar widths but different shapes,
the convolution of a function leads to very similar results since a similar fre-
quency cutoff occurs, and the same amount of damping occurs. If a kernel
is not normalised, it either amplifies the time series (its integral is greater
than one) or damps it (its integral less than one). If both kernels are not nor-
malised but of similar widths, the convolutions will yield results which are
close to multiples of each other, with proportionality factor the relative area
under the kernels.22 Finally, if the kernels are not symmetrical functions, as is
the case here, a time offset may appear between the two convolved outputs.
This is demonstrated with a computational example shown in figure 5, where
a hypothetical noisy time series (sales) was convolved with hypothetical birth
and death functions. The result is almost independent of the shape of these
functions, except for a proportionality factor, the relative area under the two
kernel functions (the time offset results from the asymmetry in time of the

20 i.e. a ‘low-pass’ filter.
21 In this case both m(b) and dℓ(a)/da; the wider the kernel, the lower the frequency cutoff
and the more smoothing occurs.
22 This results from the convolution theorem.
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kernels). In our case here with the birth and survival functions as kernels, this
relative factor is RiΦi/τi.

Approximation 1: the shape of the death function

The first kernel, dℓi(a)/da, is normalised by definition (expressing an eventual
but certain death), while the life expectancy is defined by eq. 11:

∫ ∞

0

−
dℓj(a)

da
da = 1,

∫ ∞

0

ℓj(a)da = τi. (26)

Since the shape of the kernel does not matter much for the convolutions as
long as its width in time is maintained, for our purpose we can approximate
that,

−
dℓj(a)

da
≃

ℓj(a)

τj
. (27)

This means that from eq. 14, which relates numbers to sales through the
survival function, the convolution for deaths in eq. 15 becomes

∫ ∞

0

ξj(t− a)
dℓj(a)

da
da ≃

1

τj

∫ ∞

0

ξj(t− a)ℓj(a)da =
Nj(t)

τj
, (28)

Approximation 2: similarity between the birth and death functions

The second kernel, the birth function mj(b), has the following property,

Ri

∫ ∞

0

mi(b)db = RiΦi > 1, (29)

which reflects the growth of the production capacity through reinvestment.23

In a case where the width of the second kernel, the birth function mi(b), is
similar to the width of the survival function ℓi(a) (or alternatively the death

function − dℓi(a)
da ), the convolution of sales by dℓi(a)

da or mi(b) will not be very
different, but rather approximately proportional. Conversely, if the widths are
very different, they cannot in any way be proportional or even similar. The
width of the birth function is related to the survival function of the capital
and labour used for production, the production lines, which may have, in some
situations, a similar time scale. Assuming that this is so (i.e. τi ≃ τKi ), and

since − dℓi(a)
da is normalised, then the convolutions with mi(b) and − dℓi(a)

da are
approximately proportional, and the proportionality factor is RiΦi:

Ri

∫ ∞

0

ξi(t− b)mi(b)db ≃ −RiΦi

∫ ∞

0

ξi(t− a)
ℓi(a)

τi
da =

Ni(t)

ti

23 The production of goods using existing capital generates more wealth than just what is
required to maintain itself.
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where ti =
τi

RiΦi
≃

1

RiPi
, (30)

ti is the newly defined fastest possible timescale of growth of the produc-
tion capacity before considering investor choices, consistent with the result of
Appendix A (section 5.1).

Thus with these approximations, I can replace the convolutions in eqns.
21 and 24 by Nj/tj and Ni/τi, which considerably simplifies the system of
coupled equations.

4.4 Derivation of the replicator and Lotka-Volterra equations

Substituting in eqns. 21 each convolution by its associated approximation, I
obtain

∆Nj→i =

(

Ni(t)
ti

∑

k
Nk(t)
tk

)

Fij





Nj(t)
τj

∑

l
Nl(t)
τl





(

∑

m

Nm(t)

τm

)

∆t, (31)

Defining the population weighted average frequencies t
−1

and τ−1,

1

t
=

1

Ntot

∑

k

Nk(t)

tk
and

1

τ
=

1

Ntot

∑

l

Nl(t)

τl
, (32)

the flow becomes

∆Nj→i =

(

t

ti

Ni(t)

Ntot

)

Fij

(

τ

τj

Nj(t)

Ntot

)(

Ntot

τ

)

∆t, (33)

while the term concerning increases in carrying capacity Ntot becomes

∆N↑
i =

(

t

ti

Ni(t)

Ntot

)(

∆Ntot

∆t

)

∆t (34)

Using a new matrix Aij = tτ/tiτj for compact notation,

∆Ni

∆t
=

t

ti

Ni(t)

Ntot

(

∆Ntot

∆t

)

+
∑

j

NiNj

Ntot
(AijFij −AjiFji)

1

τ
. (35)

This is the Lotka-Volterra equation 6 again. The replicator dynamics equa-
tion 4 can be obtained using the chain derivative:

dNi

dt
= Ntot

dSi

dt
+ Si

dNtot

dt
, (36)

which, if the ti do not differ significantly from the t, reduces to

∆Si =
∑

j

1

τ
SiSj (AijFij −AjiFji)∆t, Aij =

tτ

tiτj
. (37)
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This replicator dynamics equation, in the binary form (imitation dynamics),
has an antisymmetric exchange matrix αij = AijFji −AjiFji.

I have thus described the rate of uptake, αij = AijFji−AjiFji, completely
in terms of technology, market properties and choice of agents. These values
can thus be compared to real diffusion timescales or used to parameterise dif-
fusion dynamics in technology models in cases where such data is not available.
Note that diffusion timescales are not related to the properties of individual
technologies but, rather, to the properties of pairs of technologies plus investor
choices. This shows that diffusion timescales measured from historical time se-
ries are, in actuality, abstractions of many underlying processes that include
decision-making, and should be understood to refer only to the decision con-
text where they apply; they cannot be expected to represent other contexts
where other choices might have been made.24

As a final note, I ask, can this theory be put into a form that uses a
multinomial logit instead, leading perhaps to a different form of the replicator
equation? Appendix C presents in a demonstration that this is indeed ap-
proximately the case, where by grouping the binary logit terms, the classical
multinomial logit is obtained. This naturally leads to a replicator equation of
the classical form used in evolutionary theory,

∆Si = Si

(

Fi(S)−F(S)
)

∆t, (38)

which is expressed in terms of the difference between the fitness Fi, in the
evolutionary theory sense, of technology i, to the average fitness F . This,
however, is an approximation of the more accurate and practically usable
binary system. The binary system is, effectively, probably the only way to
correctly incorporate restricted access to technology and information, which
introduces a differentiation between options as seen by the agent, as opposed
to a comparison with the ‘average’ alternative.

5 How to use this theory: Interpretation of the Lotka-Volterra

scaling parameters

5.1 Constraints and applicability of the Lotka-Volterra model

The Lotka-Volterra model is a special case of the general model derived here
from demography theory. This section summarises the constraints under which
this applies:

1. The birth and death functions have similar approximate widths in time,
2. The area under the birth function for technology i, Φi, times the reinvest-

ment fraction Ri, must be greater than one for a technology to be able to
replicate itself.

24 Given, say, a different set of possibilities available to investors.
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One then finds that, according to eq. 30, RiΦi determines the growth time
constant in terms of the lifetime: ti = τi/RiΦi, where

1

ti
=

Ri

τi

∫ ∞

0

mi(b)db, (39)

the integral determining the total expected production by one unit of capital
over its lifetime. Furthermore, since the productivity constant, after a possible
delay of installation, is independent of age, then it can be further approximated
to 1/ti = RiPiτ

K
i /τi ≃ RiPi. Thus we unsurprisingly find again that the rate

of reinvestment RiPi determines the magnitude of the fastest possible rate
of growth of the production capacity t−1

i (see section 3.2 and Appendix A).
Thus in order for the industry to grow, such that ti < τi, one must have that
RiΦi > 1, Φi representing the expected cumulative production of one installed
unit of production capital during its lifetime.

From this, strict constraints can be determined that provide insight over
which systems can be modelled using the Lotka-Volterra set of equations
(LVEs) at the technology unit level:25 Furthermore, this model is also a deter-
ministic one that does not include the process of generation of new technologies
directly. The following are the factors that limit its predictive power:

1. If the lifetime of the production capital and that of the technology units it
produces is very different, the LVEs are not appropriate when used at the
unit level.26

2. The producing firms must have an intended propensity towards expan-
sion, and must reinvest enough profits to expand their production capac-
ity, which will only decline if sales decline due to a lack of interest by
investors/consumers (i.e. Ri roughly constant). In a case where a firm has
made a decision not to maintain a technology under production despite
that it is profitable, the Lotka-Volterra model breaks down.

3. In evaluating the evolution of the market shares of firms for a particular
market, the technology unit used in the Lotka-Volterra equation is crucial.
This must be service producing technologies at the unit level (e.g. ovens,
power plants, vehicles of different engine types, lighting devices, etc), not
the service itself (e.g. a piece of bread, a kWh, a transport service, light)
or long-lived infrastructure (e.g. houses or buildings, roads, airports, sets
of transmission lines, bridges) likely to be maintained for lengths of time
beyond foreseeable future.27

4. Innovation is not included directly in the demography/diffusion model,
which does not predict the generation of new technologies, which could
disrupt the diffusion of the other existing ones (e.g. the diffusion of fusion

25 LVE systems can be applied at other levels, e.g. firms. This may provide ways to deal
with cases excluded here, requiring further research.
26 E.g. the mobile phone industry, in which phones have very short lifetimes, or infrastruc-
ture industries where the capital, e.g. houses, roads and bridges, have much longer lifetimes
than the firms building them, potentially maintained forever.
27 This model does not apply at the firm level, as was done in Atkeson and Kehoe (2007).
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power). However, some aspects of innovation can, and should be, included
through learning-by-doing cost reductions, which can easily be included in
the decision model as described above (although the rates are uncertain).
This approach narrows down possibilities for existing technologies for the
near future (e.g. during several life expectancies), which is itself quite ro-
bust, since it is well established that the formation of dominant designs is
itself a lengthy process (e.g. the diffusion of fusion power). This limitation
affects the realistic modelling time horizon.

5. Finally, this theory requires to be fully validated with historical data be-
yond existing empirical work, outside the scope of the present paper.

5.2 How to use this theory in real models

Summarising this theory, for real models, both the industrial dynamics Aij

and the decision-making Fij processes must be parameterised and used in the
replicator equation for market shares Si,

∆Si =
∑

j

SiSj (AijFij −AjiFji)
∆t

τ
, (40)

requiring of course starting share values obtained from real-world data, and
an absolute time scaling constant τ , the average life expectancy (see below).

Industrial dynamics Aij

Using the theory given above to parameterise a computational model of tech-
nology diffusion boils down to determining two parameters per technology: ti
and τi,

τi =

∫ ∞

0

ℓi(a)da, ti =
τi

RiΦi
≃

1

RiPi
, Aij =

τt

τitj
, (41)

with τi the life expectancy from the survival function, and ti the fastest possible
growth rate in terms of the re-investment rate Ri (in units re-invested per unit

sold) and the productivity Pi (in units produced per year), and τ−1, t
−1

are
share weighted averages of the inverse of the time constants,

1

t
=
∑

i

Si(t)

ti
and

1

τ
=
∑

i

Si(t)

τi
. (42)

Then this is put into the changeover timescale matrix for every possible pair
of technologies Aij .

Further simplifications are possible however. Since these timescales ti and
τi only ever appear as ratios with their averages t and τ , the common scaling
factors cancel out.28 Therefore, for instance, it is not the absolute value of ti

28 Note however that knowledge of the absolute value of τ , the absolute time scaling factor,
appears on its own in the equation and is thus necessary.
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that determines the rate of technology uptake, but its ratio with the average,
in other words, how much faster is a technology able to fill gaps in the market
in comparison to other technologies.

Furthermore, for technologies with long times of construction, for similar
fractions of profit re-invested into production between technologies Ri, the
productivity Pi scales with the inverse of the time of construction, the time
a firm has to wait before allocating its production capacity to new projects,
and thus t/ti = Pi/P (e.g. power sector), equal to the ratio of the time of
construction with the average, other parameters cancelling out. If times of
construction are the same, however, but Ri vary, then the Pi cancel out and
the ratio Ri/R must be used. Or it can also be that ti simply cancels out with
t altogether and the τi broadly determine timescales of changeover (e.g. the
car industry).

Technology choice Fij

Fij must be evaluated using a binary logit. This can be parameterised using
measured cost distributions of sales, in which the diversity of past choices is
represented. In the common case where small amounts of information on agents
is available beyond cost distributions, the simplest approach is to parameterise
the Gumbel or other type of distributions on the cost data, obtaining in this
way a mean cost Ci and a standard deviation σi for every technology. Note
that the shape of the distribution does not matter significantly in practice. The
simple form of the binary logit can then be used for each technology category:

Fij =
1

1 + e∆Cij/σij
, ∆Cij = Ci − Cj , σij =

√

σ2
i + σ2

j . (43)

6 Conclusion

This work demonstrates that the origin of the empirical observation of the ap-
plicability of the Lotka-Volterra or replicator dynamics models of competition
dynamics to technology diffusion can be derived from demographic principles
applied to technology. I have created an age structured model of technology
demography, using life expectancies and birth rates which, given the right con-
ditions, using an approximation, falls back onto the form of the well known
empirical Lotka-Volterra and replicator dynamics models of competition. This
procedure explains on the way the nature of the scaling parameters of the
Lotka-Volterra equation, the timescales of technology diffusion, in terms of
survival properties of technology and industrial dynamics stemming from in-
vestment.

The calculation presented however generates more insight than the simple
correspondence of the Lotka-Volterra system to demography. While every pre-
vious quantitative use of the Lotka-Volterra system for modelling technology
diffusion has remained empirical and without clear explanation of its param-
eterisation, the calculation presented here explains why the Lotka-Volterra
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actually describes well systems of competing technologies at all. It moreover
clarifies under which conditions it applies. Meanwhile, this paper gives mean-
ing of the timescales of technology population dynamics measured empirically.

By clarifying the meaning of the scaling constants of the Lotka-Volterra
model, this theory enables its use with a method for its parameterisation with-
out prior empirical measurement, the latter difficult to achieve in cases where
only small amounts of data are available. This tends to occur precisely in the
cases of interest, namely when exploring the diffusion potential of new tech-
nologies under different assumptions over the market and policy environment.
This theory thus enables to build models of technology forecasting based on
S-shaped diffusion curves and to parameterise them using known properties
of the technologies and those of their respective production industries. This
method, as used for instance in earlier work (Mercure 2012; Mercure et al
2014), can in principle replace the optimisation algorithms in mainstream
models which have little theoretical foundation. This opens many possibili-
ties for modelling future technology pathways, for instance for analysing the
impacts of policy supporting the diffusion of low carbon technology.
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Appendix A : Growth under full employment

In a situation where an innovation was to follow a path free of competitors and
grow as fast as its industry can produce it, it would follow the fastest possible
rate t−1

i of exponential growth determined by:

1 =

∫ ∞

0

Rie
−b/tiℓKi (b)PK

i (b)db. (44)

This is a transcendental equation that can only be solved numerically. As
demonstrated by Lotka (1911) (see Kot 2001, for a clearer derivation), it has
only one real solution, all others being complex of the form u± iv which give
rise to oscillatory behaviour in the real part. The non-oscillatory real solution,
an exponential, can be approximated if simple forms are taken for ℓ(b) and
P (b) (see fig. 3, right):

27



0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

λb0

C
ase 1

Case 2 Case 3

λb0

RiPib0

e−λb0

ℓKi (b) ≃ e−b/τK
i , P (b) =

{

0, b < b0
Pi, b ≥ b0

⇒
λb0

(RiPib0)
= e−λb0 withλ =

1

ti
+

1

τKi
,

where b0 is the time between investment and construction, Pi is a production
rate and therefore (RiPi)

−1 is the rate of expansion of production capacity
(in inverse years), and τKi is the timescale of capital depreciation, its life ex-
pectancy (and therefore we always have τKi >> b0). To first order, one can
find which is the dominant of these timescales in particular situations, using
limits for the dimensionless parameter RiPib0 (which determines the slope of
the linear left hand side of the equation, see graph).

Case 1: (RiPib0) is small ⇒ λb0 is small

We perform a Taylor expansion around λb0 = 0,

λ = RiPi

(

1− b0λ−
b20λ

2

2
+ ...

)

⇒ ti ≃

[

1

(RiPi)−1 + b0
−

1

τKi

]−1

(45)

Since RiPi cannot be a very small quantity, it is most likely that b0 <<
(RiPi)

−1, for instance with small technologies that are ready to use as they
come out of the factory (e.g. vehicles). And since RiPi >> 1/τKi , then ti ≃
(RiPi)

−1. In this case the rate of production is constrained by the rate of re-
investment into production capacity, which depends on the rate of production
of technology units but not on the time of construction of production capacity.
For large systems (e.g. power plants, wind turbines, infrastructure), the time
of construction may be long (i.e. several years), constraining money flows used
for firm expansions. For small modular technologies (e.g. electronics), the time
of production is short and other timescales dominate the time ‘bottleneck’.

Case 2: (RiPib0) is of order 1 ⇒ λb0 ≃ 1
We perform a Taylor expansion around λb0 = 1,

λ = RiPie
−1 (1− (b0λ− 1)− ...) ⇒ ti ≃

[

1

(eRiPi)−1 + b0
−

1

τKi

]−1

(46)
If b0 << R−1

i P−1
i then t = eRiPi and the limiting timescale is again the

re-investment rate. However, if b0 >> R−1
i P−1

i then t = b0 and the rate of
growth is limited by the rate of completion of capital installation. For example,
for technologies with complex production capital structures with a long time
of for installation with no income constrains the rate of return, the dominant
bottleneck timescale is b0, a situation where a firm must wait for expansion
projects to come to completion and income to be brought in before launching
itself into further expansions.
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Case 3: (RiPib0) is large ⇒ λb0 is large

No Taylor expansion is possible. However if RiPie
−λb0 → 1/τKi , then

1

ti
= RiPie

−λb0 −
1

τKi
≃→ 0 (47)

and the timescale of expansion diverges. This corresponds to a case where a
firm struggles with its cash flows to maintain its production capacity. Beyond
this the timescale can also become negative, where a firm scales down its
activities.

Thus in many cases one of the three timescales dominates, the bottleneck
timescale. In other cases, if two timescales are similar, ti must be calculated
numerically using eq. 44.

These three cases however only occur if consumers are ready to buy all
that this particular industry is able to produce, and consequently its growth
is limited by its ability to expand. If, however, the demand grows more slowly
than these maximal rates, then the demand constrains the rate of growth,
a demand-led case. Furthermore, if consumers have a choice of products and
competition occurs, then the rate of growth is further constrained and a model
of competition must be derived, as done in section 4.

Appendix B : A binary logit choice model

A model of choice is constructed here using a pairwise comparison, which will
be performed for all possible pairs in order to rank exhaustively consumer pref-
erences, the latter being distributed. I use for this generalised cost distribution
of sales obtained from recent sales data. This calculation is the basis of discrete
choice theory adapted to the purposes of this work, and more information can
be obtained in Ben-Akiva and Lerman (1985) and Domencich and McFadden
(1975).

I assume two distributions for the relative numbers of situations where
agents, stating their individual preference between technologies i and j, face
different situations and state different choices. By counting how many agents
prefer which technology in each pair, one can determine what the probabilities
of preferences between these two technologies are for future situations where
choices are to be made (e.g. 70% of agents choose i and 30% j). It does not
mean however that when the time comes to invest or purchase, these are
the choices that would be made, since depending on the state of diffusion of
these technologies, they might not necessarily be available to every agent. By
going through an exhaustive list of pairwise preferences, final choices can be
determined.

I denote these (normalised) distributions f(C,Ci, σi)dC = fi(C − Ci)dC
and f(C,Cj , σj)dC = fj(C−Cj)dC, where Ci, Cj are the means and σi, σj are
the standard deviations for technologies i and j. These distributions can be of
any kind, but they require to have a single well defined maximum and variance
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(e.g. they cannot have two maxima29). I can then evaluate the probability
of choosing i over j using the following. First, I calculate the probability of
choosing i in all cases where j has an arbitrary cost C. The central assumption
here is that the fraction of agents for whom the generalised cost of j is C and
for whom the cost for i is lower than C will choose technology i over j if given
a choice, and this fraction is equal to the cumulative probability distribution
Fi(C −Ci). But this situation occurs a fraction fj(C −Cj) of the time, giving
a total probability

P (Ci < C|Cj = C) = Fi(C − Ci)fj(C − Cj)dC, (48)

while the converse is

P (Cj < C|Ci = C) = Fj(C − Cj)fi(C − Ci)dC. (49)

In order to evaluate how often the cost of technology i is lower than that of
technology j, and the converse, a sum over all possible values of C must be
taken. For simplicity, I use as variables C′ = C − Cj and C′′ = C − Ci, with
the mean cost difference ∆C = Ci − Cj :

Fij(∆C) = P (Ci < Cj) =

∫ +∞

−∞

Fi(C
′ −∆C)fj(C

′)dC′,

Fji(∆C) = 1− Fij = P (Cj < Ci) =

∫ +∞

−∞

Fj(C
′′ +∆C)fi(C

′′)dC′′. (50)

This appears difficult without further knowledge of the distribution type, how-
ever it is possible to take a derivative with respect to ∆C, which makes the
integral a convolution of the two distributions

dFij

d∆C
= −

∫ +∞

−∞

fi(C
′ −∆C)fj(C

′)dC′ = −fij(∆C) (51)

=

∫ −∞

∞

fi(C
′′)fj(C

′′ +∆C)dC′′ = −fji(−∆C) =
dFji

d∆C
. (52)

This convolution yields a new distribution fij(∆C)d∆C of which the standard

deviation is σij =
√

σ2
i + σ2

j . This is the probability distribution of technol-

ogy switching in terms of ∆C. The convolution having been computed, this
distribution can be integrated again as a function of ∆C to yield a cumulative
probability distribution that the cost of technology i is less than that of j (and
conversely):

Fij(∆C) =

∫ +∞

−∞

fij(∆C)d∆C = 1−

∫ +∞

−∞

fji(∆C)d∆C = 1− Fji(∆C).

(53)

29 In which case we would need to subdivide such a technology category into two.
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Thus given a choice between technologies i and j, the fraction Fij of agents
tends to choose technology i and the fraction Fji chooses j, these fractions
being functions of the generalised cost difference, and this cumulative choice

function has a width that follows the sum of the squares σij =
√

σ2
i + σ2

j .

Note that this calculation is independent of probability distribution type; how-
ever Fij(∆C) should have roughly the shape of a ‘smooth’ step function, its
‘smoothness’ determined roughly by the widths of both cost distributions.

In discrete choice theory, the Gumbel distribution is often used, fi =

e−e−(C−Ci)/σi
, and the result of the convolution of two Gumbel distributions is

a logistic distribution of the average cost difference ∆Cij relative to the root
mean square width σij :

fi = e−e−(C−Ci)/σi
, Fij =

∫ ∞

−∞

(fi ∗ fj) d∆C =
1

1 + e∆Cij/σij
. (54)

Appendix C : From the binary to the multinomial logit in the

replicator equation

The derivation of the binary logit in Appendix B gives a relationship between
the cost probability distributions and the cumulative distribution of choice
between two options fi and fj (with parameters Ci, σi and Cj , σj), as a con-
volution, consistent with Domencich and McFadden (1975). The probability
of cost of option i being less than the cost of option j is

P (Ci < Cj) =
dFij

d∆Cij
= −

∫ +∞

−∞

fi(C
′ −∆Cij)fj(C

′)dC′ = fi ∗ fj, (55)

the star denoting a convolution. The binary form of the replicator dynamics
equation requires summing the result of binary choices, however distributions
can be first grouped and afterwards convolved:

∑

j

AijFijSj =

∫ ∞

−∞



fi ∗
∑

j

AijSjfj



 d∆Cij . (56)

In this picture, each cost distribution of possible alternatives fj is weighted
by the factor AijSj which involves shares and changeover timescales. This
weighted sum of distributions results in a composite distribution with new
mean and standard deviation parameters C and σ.30, which cannot be ex-
pressed analytically in any simpler form. The convolution corresponds roughly
to the probability that the cost of option i is less than the cost of the ‘average’
alternative (with average cost C) weighted by the frequency of occurrence of
these choices, P (C < C|Ci = C).

30 C is the weighted average, while σ2 is the weighted sum of the square of the standard
deviations.
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As an approximation, I replace this ‘average’ probability distribution with
that of an arbitrary cost value C being lower than the minimum of all available
alternatives simultaneously. This corresponds to the product of the individual
distributions,

P (C < min[C1, C2, C3...Cn]) = P (C < C1)P (C < C2)...P (C < Cn).

When the weighting of these choices is equal, if each of these probability func-
tions are Gumbel, then the result of this is also a Gumbel distribution, of cost
parameter proportional to ln

∑

j e
−Cj/σj , a classic result of discrete choice the-

ory when deriving the multinomial logit (Ben-Akiva and Lerman 1985, p. 105).
Equal weighting in the multinomial logit corresponds to perfect access to infor-
mation and technology options by all agents. In the theory presented here, each
agent has access to a different set of choices, which, when correctly weighted,
is

P (C < C1)
Ai1S1P (C < C2)

Ai2S2 ...P (C < Cn)
AinSn ,

P (C < min[C1, C2, C3...Cn]|Ci = C) = Fi(Ci − C)
∏

j

P (C < Cj)
AijSj . (57)

The weighted (representative alternative) cost parameter is instead

Ĉ = σ̂ ln
∑

j

AijSje
−Cj
σj . (58)

This unequal weighting of alternatives is generally overlooked in discrete choice
theory, but crucial when exploring the diffusion of technology since part of the
dynamics stem from restricted access to options in early states of diffusion.
Following Appendix B, the convolution becomes

∫ ∞

−∞

(

fi ∗ f̂
)

d∆Ci =
1

1 + e
Aii

Ci
σi

−ln(
∑

j AijSje
−Cj/σj )

=
Aiie

−Ci/σi

∑

j AijSje−Cj/σj
.

(59)
This is the multinomial logit weighted by AijSj , i.e. adjusted for restricted
access to alternatives. I now define the fitness in the evolutionary theory sense,

Fi =
t
ti
e−Ci/σi

∑

j
t
tj
Sje−Cj/σj

−
τ
τi
e−Ci/σi

∑

j
τ
τj
Sje−Cj/σj

(60)

This is the fitness of a technology to capture the market, a growth minus a
survival term.31 The average fitness is then

F =
∑

j

SjFj = 1− 1 = 0. (61)

31 Producing faster (smaller ti) increases competitiveness and therefore the fitness, while
surviving for longer (larger τi) decreases vulnerability to changes and thus also improves
the fitness.
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Thus the replicator dynamics equation (eq. 37) can in fact be written as

∆Si = Si

(

Fi −F
)

∆t. (62)

This is the classical replicator dynamics equation in general evolutionary the-
ory (e.g. Hofbauer and Sigmund 1998), where the ability of a proponent option
or biological specie to capture market or space is proportional to the difference
of its fitness to the average fitness.

This transformation however has required an approximation which is a
simplification of the distribution of alternatives. This is a useful simplification
for the sake of exposition, but leads to a less accurate form of the replicator
equation and associated market response. This is due to leaving out, at eq. 57,
some of the details of the restricted access to technology and information, as
well as the complexity emerging from interactions.32 The binary form essen-
tially maintains the information as to which options are seen by which agent
in aggregate. It is however heavier computationally since it involves pairwise
comparisons, which scales as n2/2− n for the binary form, compared to n for
the multinomial form (n the number of options).
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