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Abstract 

Learning the statistics of the environment is critical for predicting upcoming events. 

However, little is known about how we translate previous knowledge about scene regularities 

to sensory predictions. Here, we ask whether patients with mild cognitive impairment due to 

Alzheimer’s disease (MCI-AD) that are known to have spared implicit but impaired explicit 

recognition memory are able to learn temporal regularities and predict upcoming events. We 

tested the ability of MCI-AD patients and age-matched controls to predict the orientation of a 

test stimulus following exposure to sequences of leftwards or rightwards orientated gratings. 

Our results demonstrate that exposure to temporal sequences without feedback facilitates the 

ability to predict an upcoming stimulus in both MCI-AD patients and controls. Further, we 

show that executive cognitive control may account for individual variability in predictive 

learning. That is, we observed significant positive correlations of performance in attentional 

and working memory tasks with post-training performance in the prediction task. Taken 

together, these results suggest a mediating role of circuits involved in cognitive control (i.e. 

frontal circuits) that may support the ability for predictive learning in MCI-AD. 
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Introduction 

Predicting upcoming events is critical for successful everyday interactions in complex 

environments from avoiding obstacles to forecasting the weather. It is thought that the brain 

achieves this challenge by taking into account information about the structure of the 

environment that is acquired through experience and training (Geisler, 2008; Petrov, Dosher, 

& Lu, 2005). There is accumulating evidence that mere exposure to stimuli that co-occur in 

the environment facilitates our ability to extract spatial and temporal regularities (for reviews 

see: (Aslin & Newport, 2012; Perruchet & Pacton, 2006). In particular, observers report that 

structured combinations are more familiar than random contingencies after exposure to items 

(e.g. shapes, tones or syllables) that co-occur spatially or appear in a temporal sequence 

(Chun, 2000; Fiser & Aslin, 2002a; Saffran, Aslin, & Newport, 1996; Saffran, Johnson, 

Aslin, & Newport, 1999; Turk-Browne, Junge, & Scholl, 2005). This statistical learning has 

been shown to facilitate object recognition (Brady & Chun, 2007; Brady & Oliva, 2008), 

language understanding (Misyak, Christiansen, & Tomblin, 2010), social judgments (Kunda 

& Nisbett, 1986) and inductive reasoning (Kemp & Tenenbaum, 2009). This previous work 

suggests that observers acquire implicit knowledge of the regularities present in a scene, 

despite the fact that they may not be explicitly aware of its specific structure. However, little 

is known about how we translate this implicit knowledge of temporal structures to predictions 

of future events. 

In our previous work (Baker, Dexter, Hardwicke, Goldstone, & Kourtzi, 2014), we 

have shown that exposure to temporal regularities in a scene facilitates observers to learn its 

global structure and use this implicitly acquired knowledge to predict upcoming sensory 

events. Neuroimaging studies have implicated the hippocampus and striatum in learning of 

probabilistic associations (Poldrack et al., 2001; Shohamy & Wagner, 2008) and temporal 

sequences (Gheysen, Van Opstal, Roggeman, Van Waelvelde, & Fias, 2011; L. T. Hsieh, 
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Gruber, Jenkins, & Ranganath, 2014; Rauch et al., 1997; Rose, Haider, Salari, & Buchel, 

2011; Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 2014; Schapiro, Kustner, & 

Turk-Browne, 2012; Schendan, Searl, Melrose, & Stern, 2003).  

Here, we ask whether the ability to acquire knowledge of predictive structures is 

maintained in patients with mild cognitive impairment due to Alzheimer’s disease (MCI-

AD). These patients are of particular interest, as they show explicit memory impairments 

(Hudon et al., 2006; Morris & Cummings, 2005; Petersen et al., 1999) and hippocampal 

dysfunction (Bakker et al., 2012; Celone et al., 2006; Dickerson et al., 2004; Dickerson et al., 

2005), but preserve their functional independence (Albert et al., 2011) and do not to meet the 

clinical criteria for dementia. There is little evidence for learning of temporal structures in 

MCI-AD: while explicit temporal sequence learning is shown to require longer training in 

amnestic MCI-AD compared to age-matched controls, implicit temporal sequence learning is 

shown to be spared (Negash et al., 2007) (Pirogovsky et al., 2013). Interestingly, previous 

work suggests that explicit learning is mediated by medial temporal lobe structures (e.g. 

hippocampus) that show dysfunction in MCI-AD, while implicit learning is mediated by 

striatal areas that are spared in MCI-AD(Knowlton, Mangels, & Squire, 1996; Poldrack et al., 

2001).  

In light of these previous findings, we test the hypothesis that preserved ability for 

implicit learning, despite hippocampal dysfunction, facilitates the ability of MCI-AD patients 

to predict upcoming sensory events after training on structured temporal sequences. We 

further test the hypothesis that preserved ability for learning of predictive structures may 

relate to cognitive capacity as indicated by attentional and working memory skills. To this 

end, we used a predictive learning task (Baker et al., 2014). In particular, we presented 

observers (MCI-AD patients and age-matched controls) with a sequence of leftwards and 

rightwards oriented gratings that was interrupted by a test stimulus (Figure 1). Observers had 
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to maintain attention throughout the temporal sequence as the temporal position of the test 

stimulus was randomly chosen across trials and were asked to indicate whether the test 

stimulus matched their expectation or not. Participants were exposed to the sequences 

without feedback facilitating implicit learning of the sequence structure, but they were asked 

to make an explicit judgment about the identity of the upcoming test stimulus. Thus, this task 

provides an explicit recognition measure of implicitly acquired knowledge, avoiding reaction 

time measurements that may be confounded by differences in speed of processing or response 

time between patients and controls.  Our results demonstrate that the ability to predict the 

orientation of the test stimulus following exposure to structured sequences improved in both 

MCI-AD patients and controls. Further, we show that attentional and working memory skills 

may account for individual differences in task performance in both patients and controls. 

Taken together, these results suggest a mediating role of circuits involved in cognitive control 

(i.e. frontal circuits) in predicting sensory events based on previous knowledge about the 

environment’s statistics.  

Figure 1 

 

Methods 

Participants 

Twenty eight volunteers participated in this study (14 MCI-AD patients: 10 male, 4 female, 

mean age: 69.8 years; 14 age matched controls: 10 male, 4 female, mean age: 67.7 years). 

The two groups did not differ significantly in their age (t(26)=0.133, p=0.896). All 

participants (patients and controls) were naïve to the aim of the study, had normal or 

corrected-to-normal vision (there were no differences in visual acuity between patients and 

controls) and gave written informed consent. This study was approved by the University of 

Birmingham Ethics Committee and the NHS National Research Ethics Committee West 
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Midlands. Patients, diagnosed with MCI-AD by their consultant psychiatrist, were recruited 

from the Birmingham and Solihull Memory Assessment and Advisory Service. Age-matched 

controls were recruited through advertising at the local community (n=11) or were relatives 

of the MCI-AD patients that participated in the study (n=3).  

The diagnosis of MCI due to Alzheimer’s disease was made by an experienced 

consultant psychiatrist (PB) using the National Institute on Aging and Alzheimer’s 

Association workgroup criteria (Albert et al 2011) requiring: a deterioration in cognition 

reported by either the patient or a close informant; objective impairment in one or more 

cognitive domains (including memory, executive function, visuospatial skills, attention and 

language); preservation of independence in daily living activities; absence of dementia and  

an aetiology consistent with Alzheimer’s disease pathophysiological process. Age-matched 

controls were screened using the Addenbrookes Cognitive Examination (ACE-III) (S. Hsieh, 

Schubert, Hoon, Mioshi, & Hodges, 2013). Scores for the controls (mean = 94.71; standard 

error = 0.86) compared to MCI-AD patients (mean = 86.5; standard error = 1.65) were 

considered normal for the age of individual participants, indicating lack of cognitive 

impairment for this group.  

Experimental Design 

All participants (patients, controls) were tested in a set of cognitive tasks (working memory, 

selective and divided attention; see details for cognitive testing below) before starting training 

on the prediction task. Most participants (n= 18; patients=11, controls=7) completed 5 

training sessions on the prediction task (n = 8; patients=3, controls=5 completed 4 sessions; n 

= 2; controls=2 completed 3 sessions) depending on individuals’ availability, with an average 

of 2.29 days between sessions (SD=0.91).  

Prediction Task: Stimuli 
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Stimuli comprised grayscale sinusoidal gratings that were presented at 10.8o visual angle, 

spatial frequency that ranged from 0.85 to 1o across trials, 100% contrast and randomized 

phase. These gratings were rotated +/- 45o from vertical orientation (90o), resulting in 

gratings oriented at either 135o (left) or 45o (right). To avoid adaptation to the stimulus 

properties due to stimulus repetition, we randomized the phase and jittered the grating 

orientation within a range of -2 o to  2o across trials. Stimuli were generated and presented 

using Psychtoolbox-3 (Brainard, 1997; Pelli, 1997). Stimuli were presented on a 21-inch 

CRT monitor (ViewSonic P225f 1280 x1024 pixel, 85 Hz frame rate) at a distance of 45 cm.  

We used these stimuli to generate two sequences, each comprising of 8 gratings that 

were ordered, as shown below (1 refers to the leftwards oriented grating at -10 degrees and 

number 2 refers to the rightwards oriented grating at +10 degrees): 

Sequence A: 2 1 2 1 1 2 1 2  

Sequence B: 1 1 2 1 2 2 1 2  

Each grating orientation was presented four times in each sequence. Each sequence was 

repeated twice, resulting in 16 stimuli per trial. As all gratings were presented at the same 

rate, participants could not use stimulus duration to group elements together or segment the 

sequences. To ensure that the participants did not perform the task simply by memorizing the 

first or last stimuli in the sequence, the orientation of the first stimulus was randomized in 

each trial and the last three stimuli in each sequence were always the same. Finally, as the 

frequency of occurrence was matched for the two grating orientations in the sequence, 

participants were required to learn the order of the elements in the sequence (i.e. temporal 

order associations among pairs or triplets of oriented gratings).  

Prediction Task: Design and Training 

For each trial, participants viewed 16 gratings (each sequence of 8 gratings was repeated 

twice in a trial) presented sequentially on a grey background at the centre of the screen. Each 
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grating was presented for 0.3 s followed by a fixation interval of 0.3 s. Participants were 

asked to respond to a test stimulus that appeared for up to 2000 ms surrounded by a red 

circle. The test stimulus was preceded by a cue (red dot presented for 1 s) and was followed 

by a white fixation dot (200 ms), which appeared as soon as the participant responded. 

Participants were instructed to respond (the maximum response time allowed was 2000 ms), 

indicating whether the test image had the same orientation (left vs. right) as the grating they 

expected to appear in that position in the sequence. The test stimulus appeared only in the 

second repeat of the sequence and its position was randomized across trials. The test stimulus 

could appear in any position in the sequence except the last three positions; stimuli in these 

positions were the same across trials. For each block, 50% of the test stimuli were presented 

at the correct orientation for their position in the sequence. After the participant’s response, 

the remaining gratings in the sequence were presented followed by a black cross (1 s) 

indicating the end of the sequence and the start of a new trial. There was no feedback across 

all sessions. In each training session, participants performed the prediction task for 4 blocks 

of 40 trials each (20 per sequence type) with a minimum two-minute break between blocks.  

Prediction task: Data analysis 

We assessed behavioral performance by accuracy (percent correct) across trials; that is we 

computed whether the test grating was predicted correctly or not (i.e. the participants 

response matched the grating expected based on the presented sequence in each trial).  

Cognitive testing 

ACE-III 

ACE-III is a clinical tool used to assess cognitive functioning, which takes approximately 25 

minutes to administer. The Addenbrookes Cognitive Assessment (ACE) was developed as a 

brief test of cognitive function with the aim of early detection of dementia and differentiation 

into diagnostic subtypes (Mathuranath, Nestor, Berrios, Rakowicz, & Hodges, 2000). The 
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ACE was revised to improve its administration and sensitivity and has been shown to have 

very good psychometric properties (Mioshi, Dawson, Mitchell, Arnold, & Hodges, 2006). 

Due to copyright issues some items required modification resulting in the ACE-III version 

which has been utilized in this study (S. Hsieh et al., 2013) . 

ACE-III has a maximum score of 100 and comprises of five subtests. Attention: the 

date, season, and general knowledge questions are asked (18 points); memory: a list of three 

items and a name and address is recalled (26 points); fluency: the interviewee lists as many 

words in a category as they can within one minute (14 points); language: images of objects 

and animals of varying familiarity are identified and two sentences are written about a recent 

event, (26 points); and visuospatial skills: a wire cube and intersecting shapes are drawn (16 

points).  

Memory: Working memory task 

The working memory task was designed following Luck and Vogel (1997). Coloured dots 

were displayed on a grey background for 500ms, followed by a 1000ms delay.  After the 

delay, the dot display re-appeared and one of the dots was highlighted by a white square. 

Participants reported whether the highlighted dot had remained the same colour on the second 

presentation. An initial display of two dots was used. By using a two down one up staircase 

and a step size of 1 we manipulated the number of dots in the display, resulting in 70.7% 

performance. For example; each time the participant had two responses correct in a row an 

additional dot would be added to the next trial’s display, while for every incorrect answer, 

one dot was removed from the display for the next trial. Working memory thresholds (i.e. 

number of dots in the display) were calculated by averaging the last two-third reversals in 

each staircase. For each trial, each dot was randomly assigned a colour, and one dot was 

randomly chosen as the target. Each dot had a radius of 12 pixels and dots were displayed in 

random locations within a 10 x 10 grid (jittered +/- 10 pixels).  Each block consisted of 10 
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staircase reversals, participants completed 3 blocks, after which we computed the average 

threshold as their working memory score. In this task, a higher score (greater number of items 

in display) denotes better performance. 

Attention: Useful Field of View 

Useful Field of View (UFOV; Visual Awareness Inc.) is a task that assesses three attentional 

processes: processing speed, divided attention and selective attention (Edwards et al., 2006; 

Edwards et al., 2005). The task has been validated by a test-retest reliability of 0.74. Each 

trial started with a fixation bounding box (1s duration), followed by the test stimuli (variable 

duration between 16.7ms and 500ms;; see below), a white noise visual mask to control for 

after images (1s duration), and the response screen (displayed until a response was made). 

Participants responded using the mouse. The first test, ‘processing speed’, required 

participants to identify a centrally presented stimulus. This stimulus (a silhouette of a 2 cm x 

1.5 cm of a car or a truck) was presented on a black background inside a 3cm x 3cm white 

bounding box. Participants were asked to indicate whether the central stimulus comprised a 

car or truck by mouse click. The second task, ‘divided attention’, required participants to 

identify the central stimulus (car vs. truck), and also identify the location of a simultaneously 

presented peripheral stimulus (2 cm x 1.5 cm silhouette of a car). This peripheral stimulus 

was fixed at 11cm from the central stimulus at one of 8 radial locations. The third task 

‘selective attention’ followed the same procedure as ‘divided attention’ but the target stimuli 

were presented in the context of distractors (47 triangles of the same size and luminance as 

the targets). Participants were instructed to ignore the triangles, and indicate whether the 

central stimulus comprised a car or a truck, as we all the location of the peripheral target. 

Using a double staircase method the duration of the display within each task varied between 

16.7ms and 500ms. This allowed us to establish the minimal display duration at which the 

participant could correctly perform each of the three tests 75% of the time. Thus, a lower 
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score (shorter display duration) indicates better performance in these tasks. 

Results 

Performance on the prediction task improved for most participants (11/14 MCI-AD patients, 

11/14 controls) as they gained more exposure to the temporal sequences. MCI-AD patients 

(n=3) who did not improve during training showed mean performance of 40.4% correct at the 

last training session. Healthy controls (n=3) who did not improve during training showed 

mean performance of 48.3% correct at the last training session. To quantify this learning 

effect we compared the mean of the first two training blocks with the last two training blocks 

across participants (Figure 2A), excluding participants that did not improve during training. 

To compare performance between MCI-AD patients and controls before and after training, 

we used a 2 (session: pre- vs. post-test) x 2 (group: MCI-AD controls) mixed design 

ANOVA. Our results showed that both MCI-AD patients and controls improved after training 

in the prediction task. That is, there was a main effect of Session F(1,20)=36.1, p < 0.001) 

and significantly higher performance after than before training for both patients (t(10)=-

3.855, p = 0.003) and controls (t(10) = -4.846, p=0.001). Further, controls showed overall 

higher performance than patients as indicated by a significant main effect of Group (F(1,20) 

= 6.32, p=0.021). In particular, higher performance for controls was significant before 

(t(20)=-2.479, p=0.022) but only marginally after (t(20)=-1.94, p=0.067) training. 

Interestingly, both patients and controls improved similarly after training as indicated by a 

non-significant Session x Group interaction (F(1,20)=0.1, p=0.921). This was confirmed by 

an additional analysis (Figure 2B) that showed no significant difference (t(20)=0.101, 

p=0.921) in behavioral improvement as calculated by subtracting performance in the last two 

training blocks from performance in the first two training blocks.  

To control for possible differences in learning-dependent improvements due to 

differences in the numbers of training sessions across participants, we conducted two 
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additional analyses. First, we considered all participants that had at least four training 

sessions (11 patients and 9 controls), excluding participants (3 patients and 2 controls) who 

did not improve during training. This analysis showed the same pattern of results as in Figure 

2; that is, we observed a significant main effect of Session (F(1,18)=25.0, p<0.001), but no 

significant interaction between Session and Group (F(1,18)=0.752, p=0.397), suggesting 

similar improvement for patients and controls. Second, we conducted the same analyses using 

the data from the third session as the final session for all participants (11 patients and 11 

controls). This analysis showed the same pattern of results as in Figure 2; that is, we observed 

a significant main effect of Session (F(1,20)=18.18, p<0.001), but no significant interaction 

between Session and Group (F(1,20)=1.046, p=0.319). Further comparisons, showed a 

significant difference in performance between the first and the third session (t(25)=-4.35, 

p<0.001), but not between the third and the last session (t(25)=-1.35, p=0.188), suggesting 

that the first three training sessions provide adequate information to capture learning 

improvement in both young and older participants. 

 

Figure 2 

Relating cognitive abilities to learning performance 

We then asked whether cognitive control abilities (i.e. attention, working memory) relate to 

learning improvement in the prediction task. Although MCI-AD patients and controls did not 

differ significantly in processing speed (t(20)=1.306, p=0.206), MCI-AD patients showed 

lower performance in selective attention (t(17) = 2.952, p = 0.009), divided attention (t(20) = 

3.474, p = 0.002) and working memory (t(20) = -2.377, p = 0.028) tasks. This is consistent 

with the assessment of the patients based on ACE-III that tests similar cognitive abilities and 

showed lower scores for MCI-AD patients compared to controls (t(20) = -3.78, p<0.001). 

Interestingly, we observed individual variability in cognitive testing and predictive learning 
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scores in both patients and controls. That is, performance in the prediction task after training 

ranged from 45% to 91.25% correct for MCI-AD patients and from 53.75% to 93.75% 

correct for controls. Performance in selective attention ranged from 156.7ms to 500ms for 

MCI-AD patients and from 30.1ms to 183.3 ms for controls; performance in divided attention 

ranged from 16.7ms to 296.7ms for MCI-AD patients and from 16.7ms to 133.4ms for 

controls; performance in working memory ranged from 1.17 to 5.16 number of dots for MCI-

AD patients and from 2.05 to 5.16 number of dots for controls. 

To further investigate whether individual variability in cognitive abilities relates to 

performance in predictive learning, we correlated scores in these tasks collected before 

training with performance in the prediction task after training (Figure 3).  In particular, we 

observed a significant correlation between working memory scores (r = 0.665, N = 28, 

p<0.001) and divided attention scores (r =- 0.463, p=0.009; N = 26: missing data for 2 

participants due to technical problems) with post-training performance in the prediction task 

across all participants (i.e. patients and controls). Further, scores in the divided attention task 

showed significant correlations with behavioral improvement in the prediction task (that is 

difference in performance between sessions) for both patients (R= -0.468, p=0.05) and 

controls (R=-0.468, p=0.05). We also observed a marginally significant correlation between 

selective attention scores and post-training performance in the prediction task (r = -0.341, 

p=0.056; N = 23: missing data for 5 participants due to technical problems). The negative 

correlations for the divided and selective attention are due to faster display times (i.e. lower 

values) indicating better attentional performance.  

Further, we conducted the same correlations with the data from participants that 

completed at least four sessions. This analysis showed a significant correlation between 

performance in the fourth session and working memory (R=0.377, p=0.05), divided attention 

(R=-0.425, p=0.031), and selective attention (R=-0.408, p=0.05). In addition, the same 
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correlational analyses using the data from the third session as the final session for all 

participants showed significant correlations with working memory (R=0.447, p=0.017), 

selective attention (R=-0.405, p=0.055) and marginally with divided attention (R=-0.367, 

p=0.065). Finally, performance in the fourth (R=0.473, p=0.018) or third (R=0.850, p<0.001) 

session was significantly correlated with performance in the final session, suggesting that 

learning-dependent improvement was not confounded by differences in the numbers of 

training sessions across participants.   

Separate correlations for MCI-AD patients and controls showed similar trends with 

correlations across all participants (Figure 3); however, these correlations need to be 

interpreted cautiously due to the smaller number of participants per group. In particular, for 

controls we observed significant correlations for all tasks (WM: R=0.603, p=0.011; DA: R=-

0.824, p<0.001, SA: R=-0.661, p=0.013). For patients, we observed similar correlations that 

reached significance for working memory (R=0.504, p=0.033) but not for the attentional 

tasks (DA: R=-0.066, p=0.41, SA: R=-0.109, p = 0.35). A Fishers z test did not show any 

significant differences in the correlations between groups for working memory (z=0.34, 

p=0.734), or selective attention (z=-1.61, p=0.107), consistent with similar trends between 

patients and controls. Taken together, these analyses suggest similar patterns of correlations 

for patients and controls, although correlations for patients were weaker possibly due to 

higher variability between participants in this group. 

These results were confirmed by a multiple regression analysis showing that attention 

and working memory explain significantly (F(3,18)=4.19, p = 0.024) 45.6% of the variance 

in performance in the prediction task (R=0.347). Similar analysis conducted separately for 

patients and controls showed significant results for controls (F(3.9)=5.200, p = 0.02) and a 

marginal effect for patients (F(3,11)= 2.366, p = 0.07). Taken together these results suggest 

that participants (MCI-AD patients and controls) with better attentional and working memory 
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skills are more likely to improve in predicting future events following training on temporal 

sequences. 

Figure 3 

Discussion 

Our results demonstrate that exposure to temporal sequences without feedback facilitates the 

ability of MCI-AD patients to predict upcoming events. Both patients and controls showed 

similar improvement after training in the prediction task that correlated with performance in 

working memory and attention tasks, suggesting a role of cognitive control abilities in 

learning to predict sensory events based on previous knowledge of temporal regularities.  

Consistent with our previous behavioral work (Baker et al., 2014), we demonstrate 

that MCI-AD patients accumulate information about temporal regularities through repeated  

exposure to an environment and predict future events. Although we used deterministic 

sequences, we ensured that observers learned the global sequence structure (i.e. temporal 

order statistics across items rather than temporal item positions in the sequence) by matching 

the frequency of occurrence of each item (i.e. grating orientation) in the sequence. Previous 

studies have suggested that learning of regularities may occur implicitly in a range of tasks: 

visuomotor sequence learning (Nissen & Bullemer, 1987), artificial grammar learning 

(Reber, 1967), probabilistic category learning (Knowlton, Squire, & Gluck, 1994), and 

contextual cue learning (Chun & Jiang, 1998). In our study, participants were exposed to the 

sequences without feedback but were asked to make an explicit judgment about the identity 

of the upcoming test stimulus (leftward vs. rightward oriented grating) making them aware of 

the dependencies between the stimuli presented in the sequence. However, our experimental 

design makes it unlikely that the participants memorized specific item positions or the full 

sequences. Further, debriefing the participants showed that it was unlikely that the 

participants explicitly memorized the sequences. In particular, participants could not freely 
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recall the sequences after training or correctly indicate the number of trained sequences.  

Our study tests the role of sequence learning on explicit predictive judgments related 

to visual recognition in MCI-AD patients. Previous work on learning temporal sequences has 

focused on implicit measures of sequence learning, such as familiarity judgments or reaction 

times. For example, the Serial Reaction Time Task (Nissen & Bullemer, 1987); for review 

see (Schwarb & Schumacher, 2012) involves participants learning visuomotor associations 

between spatial locations on a computer screen and response keys; locations on the screen are 

activated following a pre-determined sequence and participants are asked to press the 

corresponding keys. Training results in faster reaction times for trained than random 

sequences. However, using reaction times as a measure of anticipation of upcoming events 

may be problematic with patients and older adults that show generally reduced speed of 

processing and longer response times (Curran, 1997; Simon, Yokomizo, & Bottino, 2012). In 

contrast, using an explicit prediction test, we demonstrate that predictions related to 

identification of objects are facilitated by implicit knowledge of temporal context.  

Our findings are consistent with previous work suggesting that MCI patients are not 

impaired in implicit learning tasks (Negash et al., 2007), while explicit learning may require 

longer training periods for MCI patients (Pirogovsky et al., 2013). This is in accordance with 

studies proposing that explicit learning is mediated by medial temporal lobe structures (e.g. 

hippocampus) that show dysfunction in MCI, while implicit learning is mediated by a fronto-

striatal network that is spared in MCI. Interestingly, our study shows that patients and 

controls with better attentional and working memory skills show better performance after 

training on the prediction task. These skills are thought to implicate frontal circuits (Corbetta 

& Shulman, 2002) that when damaged are shown to impair performance in tasks that involve 

updating strategies for future predictions (Danckert, Stoettinger, Quehl, & Anderson, 2012). 
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Taken together, these findings suggest a mediating role of frontal circuits in MCI-AD that 

may facilitate learning and compensate against hippocampal dysfunction.   

Finally, predicting conversion rate from MCI to Alzheimer’s disease is a key question 

in clinical neuroscience. 14-18% of those aged over 70 years meet the criteria for MCI, and 

patients are likely to develop dementia, in the order of 10-15% per annum (Petersen et al., 

2009). Future work including larger numbers of patients and follow-ups would allow us to 

test whether this prediction task could serve as a diagnostic tool and/or form the basis of a 

rehabilitative training program. Although, in this study we did not test long-term effects of 

training, our previous studies (Baker et al., 2014) have shown that improvement in the 

prediction task lasted for a prolonged period (up to 3 months), suggesting that training 

resulted in consolidated knowledge of the sequence. Future work is needed to investigate 

whether longer-term training may result in stronger and longer-lasting improvement 

following training on the prediction task. Further brain imaging work testing for 

compensatory involvement of frontal circuits consistent with improved cognitive control 

skills after training on the prediction task will advance our understanding about the neural 

mechanisms that may support training of cognitive abilities in MCI against the progression of 

cognitive decline. 
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Figures 

Figure 1: Stimuli and Design. Diagram illustrating the trial design: a first sequence of eight 

gratings was presented, followed by a second sequence that was interrupted by the 

presentation of a cue and test stimulus. The sequence continued after the participants 

indicated their response until all eight gratings were presented indicating the end of the trial. 

Figure 2: Training on prediction task. A. Mean (across participants) percent correct 

performance is shown for the start (mean of first two training blocks of the first session), and 

end (mean of last two training blocks of the last session) blocks of the two sequences.  B. 

Mean improvement for MCI-AD patients and controls calculated by subtracting performance 

at the end from performance at the start of training. Data is shown separately for MCI-AD 

patients. Error bars indicate standard error of the mean. 

Figure 3: Correlating cognitive skills with performance in the prediction task 

A. Divided Attention. Correlation of performance in the divided attention task and the 

prediction task after training for all participants. A lower score (SOA: stimulus onset 

asynchrony; i.e. shorter display duration) indicates better performance in the divided attention 

task, resulting to a negative correlation.  

B. Selective Attention. Correlation of performance in the selective attention task and the 

prediction task after training for all participants. A lower score (SOA: stimulus onset 

asynchrony; i.e. shorter display duration) indicates better performance in the selective 

attention task, resulting to a negative correlation.  

C. Working Memory. Correlation of performance in the working memory task and the 

prediction task after training for all participants. A higher score (larger number of dots in the 

display) indicates better performance in the working memory task, resulting to a positive 

correlation.   
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