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Abstract

We study F-saturation games, �rst introduced by Füredi, Reimer and Seress [4] in 1991, and

named as such by West [5]. The main question is to determine the length of the game whilst

avoiding various classes of graph, playing on a large complete graph. We show lower bounds

on the length of path-avoiding games, and more precise results for short paths. We show sharp

results for the tree avoiding game and the star avoiding game.

1. Introduction

For F a family of graphs, we say a graph G is F-free if G contains no member of F as a

subgraph. We say G ⊂ H is an F-saturated subgraph of H if G is a maximal F-free subgraph
of H. For a discussion of saturated graphs see for example Bollobás [2]. Take a graph H,

|H| = n, and let F be a family of graphs. Following the de�nition of the triangle free game

of Füredi, Reimer and Seress [4], and building on the notation of West [5], we de�ne the

F-saturation game as follows.

We have two players, Prolonger and Shortener, who we take to be male and female respectively.

We de�ne a graph process Gi. We initially set G0 = En, the empty graph on n vertices. The

process ends at time t∗ if Gt∗ is an F-saturated subgraph of H. Otherwise, at time 2t ,

Prolonger chooses an edge uv ∈ H\G2t and G2t∪uv is F-free, and G2t+1 = G2t∪uv. Similarly,

at time 2t + 1 Shortener chooses an edge from H\G2t+1 to add, such that the graph process

remains F-free. Prolonger's goal is to maximise t∗, whilst Shortener wishes to minimise t∗.

Our results will not depend on which of the two players moves �rst, and so we refer to this

game as G(H;F). We say the value of t∗ under optimal play by both Prolonger and Shortener
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is the score or game saturation number of G(H;F), denoted by satG(H;F). When only one

graph is excluded, we write G(H;F ) := G(H; {F}).

Füredi, Reimer and Seress [4] concentrate on the game G(Kn,K3). They exhibit a strategy

for Prolonger which demonstrates that satG(Kn,K3) ≥ (12 + o(1))n log2 n. They attribute to

Erd®s a lost proof that Shortener has a strategy showing satG(Kn,K3) ≤ n2

5 . Bíró, Horn and

Wildstrom [1] show that satG(Kn,K3) ≤ 26n2

121 + o(n2).

Motivated by these results, we study the case where F is the path on k vertices Pk, F is the

class of all trees on k vertices or F is the star K1,k.

2. Our results

As is standard, for any k ∈ N we denote a path on k vertices by Pk. To illustrate the di�culties

encountered by Prolonger, we �rst study a variant where on his turn, he is permitted to

decline to pick any edge, and set G2t+1 = G2t. Since Shortener is still required to add edges,

this graph process will still become F-saturated and thus have a score as de�ned for the F-
saturation game. We will refer to this game as G−P . Since we have given Prolonger additional

options, it is clear that any strategy he might use in G is valid in G−P , and so we have that

satG−P
(H;F) ≥ satG(H;F)

Theorem 1. For all n ≥ k, we have 1
4n(k − 2) ≤ satG−P

(Kn;Pk) ≤ 1
2n(k − 1).

Returning to G(Kn, Pk), we have results only for small values of k. Whilst these results are

quite precise, they are predicated on a complete categorisation of the connected Pk-saturated

graphs. Obtaining results of this precision for larger k thus seems challenging.

Theorem 2. For all n > 0, we have 4
5n−

14
5 ≤ satG(Kn, P4) ≤ 4

5n+ 1.

Theorem 3. For all n > 0, we have n− 1 ≤ satG(Kn, P5) ≤ n+ 2.

For larger classes of graphs, we have substantially precise bounds for all k. We de�ne Tk to

be the family of all trees on k vertices.

Theorem 4. For all n, k ∈ N, we write n = a(k − 1) + b for a ∈ N and 0 ≤ b < k − 1. Then:

If b 6= 1 : satG(Kn, Tk) = a

(
k − 1

2

)
+

(
b

2

)
If b = 1 : a

(
k − 1

2

)
− (k − 3) ≤ satG(Kn, Tk) ≤ a

(
k − 1

2

)
In fact, the primary constraint of Tk saturation is to exclude a K1,k−1. If only this graph is

excluded, we have a precise bound:
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Theorem 5. For n ≥ 3k2 − 3k − 4, we have the following bounds:

1

2
kn ≥ satG(Kn,K1,k+1) ≥

1

2
(kn− 2(k − 1)) .

3. Avoiding Pk in G−P

Proof of Theorem 1. The upper bound is the saturation result of Erd®s and Gallai [3]. To
obtain the lower bound, we exhibit a strategy for Prolonger that guarantees the required
length of game. We say a graph is everywhere traceable if for every vertex v in the graph
there is a Hamiltonian path starting at v. Hence if a graph is Hamiltonian it is everywhere
traceable. We will show that the following strategy for Prolonger guarantees that the score
will be large enough:

i) If there is a component C which is not everywhere traceable, he �nds a Hamiltonian path
P in C and adds the edge which augments P to a Hamiltonian cycle;

ii) Otherwise he does not add an edge on his turn.

To prove this, we �rst show the following auxilliary claim.

Claim 6. After his move, every connected component is everywhere traceable.

Proof. We induct on the number of edges in the graph. Hence we may assume that after his
previous move, all the components were everywhere traceable. As the base case, note that the
empty graph and an isolated edge are everywhere traceable, so regardless of who moves �rst,
he will choose to add no edges and leave the graph satisfying the claim.

After Shortener's move, Prolonger is faced with a graph G. If her move did not alter the
component structure of the graph process, then every component is still everywhere traceable
and he will add no edges, satisfying the claim. Her move altered at most 2 components by
connecting them, which produces a single component C which is not everywhere traceable.
Since C was formed by joining two everywhere traceable components by an edge, we know
that C contains a Hamiltonian path P . Since after her move the graph is Pk-free, we know
that |P | = |C| < k.

Since by assumption C is not everywhere traceable, we have that |C| > 2 and that the
endpoints u, v of P are not adjacent as C is not Hamiltonian. Since |C| < k, any path using
the edge uv in G∪uv is contained in V (C), and so has length less than k. So G∪uv is Pk-free,
and Prolonger may add this edge. The component C∪uv is Hamiltonian and thus everywhere
traceable. Hence after his move, Prolonger leaves every connected component everywhere
traceable.

Hence in Gt∗ , the total number of vertices in any two components is ≥ k, as otherwise these
two components could be joined by an edge. Since all components are Hamiltonian, every
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component is of size less than k and so will be complete. Hence the sum of degrees of any two
disconnected vertices is at least k − 2. Hence taking δ the minimum degree of Gt∗ , we have:

2satG−P
≥ min(k − 2− δ, δ)(n− δ − 1) + δ(δ + 1)

which is minimised by taking δ =
⌊
k−1
2

⌋
, which implies that satG−P

≥ 1
4n(k−2) as required.

In fact, the notion of ensuring that all components remain everywhere traceable almost allows

for an optimal strategy for Prolonger in G(Kn;Pk). The only point at which Prolonger could

not guarantee to leave every component everywhere traceable is when when the graph consists

of a disjoint union of cliques with at most one isolated vertex. If Prolonger plays on such a

graph, his move necessarily leaves a component which has the form of two cliques C1 and C2

joined by a single edge with |V (C1)| > 1. Such a component is not everywhere traceable, as

the endpoint of Prolonger's edge in C1, u, cuts the component into two non-empty pieces.

Shortener could then join another clique C3 to u.

Suppose that |V (C1 ∪ C2 ∪ C3)| ≥ n. Then no additional edges can be added within the

component, as any additional edge within this component causes it to have a hamiltonian

path. Let the longest path within the component from u be on l vertices. Then joining l to a

vertex prevents a path of length n−l from being formed from this vertex onKn−(C1∪C2∪C3).

By use of this trick, Shortener can form a large connected component containing an induced

subdivision of a star, centered on u, such that removing u disconnects all of the arms of the

star in the component. Hence at the end of the game the component is the union of many

cliques intersecting only at u. The sum of the size of any two cliques is then at most k. As a

corollary, the average degree of the component is at most k
2 , which prevents us from achieving

a score of ∼ nk
2 , and might force the score as low as ∼ nk

4 if components of this form are

spanning.

4. The game G(Kn, P4)

We now turn to a detailed examination of the game G(Kn, P4) and Theorem 2. Let us begin

with the following characterisation of P4-saturated graphs, which is easily shown by induction:

Observation 7. A P4-saturated graph is either a vertex-disjoint union of triangles, stars with

at least four vertices and edges, or is a vertex-disjoint union of triangles and an isolated vertex

(cf. Figure 1).

This straightforward lemma leads to reasonably good bounds on the score, as we can exactly

track which components could form.
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Figure 1: Maximal components of a P4-saturated graph

Proof of Theorem 2. The upper bound is demonstrated by considering the following strategy
for Shortener. She will:

i) extend a K1,2 to a K1,3 if possible, otherwise

ii) draw an isolated edge if possible, otherwise

iii) extend a star by attaching the central vertex to an isolated vertex if possible, otherwise

iv) extend a K1,2 to a K3.

Claim 8. After Prolonger's move, there is at most one K1,2 component. Shortener will not

complete the K1,2 to a K3, unless this makes the graph P4-saturated. After Shortener's move,

there is at most one K1,2 component. If there is a K1,2 component, Prolonger will extend it to

a K3 and make the graph P4-saturated.

Proof. We proceed by induction.

1. Suppose that Gi has a K1,2 component after Prolonger's move.

1) If there is an isolated vertex in Gi, Shortener will extend the K1,2 to a K1,3. Hence
there is no K1,2 component in Gi+1, and there can be at most one after Prolonger's next
move to Gi+2.

2) If there is no isolated vertex in Gi, Shortener will extend the K1,2 to a K3. Two
components of size > 1 cannot be joined without creating a P4. Hence no further
components can be joined or extended, and the graph is P4-saturated.

2. Suppose that Gi has no K1,2 component after Prolonger's move.

1) If Shortener creates a K1,2 component, then Gi contained exactly one isolated vertex.
Hence all components are now of size > 1, so Prolonger can only complete the K1,2 to
a K3.

2) Otherwise there are no K1,2 components in Gi+1, and Prolonger can produce at most
one K1,2 in Gi+2.

This �nishes the proof.
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By Claim 8, until t∗, Shortener has ensured that the graph is a vertex disjoint union of stars.
Let there be λ components in Gt∗ . Since there is at most 1 triangle, the score is bounded above
by n+ 1−λ, with n−λ moves producing non-trivial components (i.e. creating isolated edges)
or extending stars. To prevent her from making a new non-trivial component by case (ii) of
her strategy, Prolonger must make a K1,2, which occurs at most once for each component of
Gt∗ . Hence at most λ of Shortener's moves fail to make a non-trivial component. Hence there
are at least 1

2(n− λ)− λ components. So λ ≥ 1
5n, and the score is at most 4

5n+ 1.

The lower bound is demonstrated by considering the following strategy for Prolonger. He will:

i) complete a triangle component if possible, otherwise

ii) complete a K1,2 component if possible, otherwise

iii) extend a star component if possible, otherwise

iv) draw an isolated edge.

Note that Prolonger is forced to play an isolated edge only as the �rst move or after Shortener
completes a triangle. We say that a move uses k new vertices if the number of isolated vertices
is reduced by k as a result of that move. Note that at the end of the game either there are no
isolated vertices or there is exactly one and the remaining vertices are covered by triangles,
which entails n− 1 > 4

5n−
14
5 edges have been produced. Hence we can assume that over the

course of the game n vertices are used.

We �rst claim that if Prolonger creates a K1,2 component in Gi, at most 2 isolated vertices
are used between Gi and Gi+2. If Shortener plays elsewhere, Prolonger will extend the K1,2

to a K3. If Shortener extends the K1,2 to a K3, Prolonger can make an arbitrary move. If
Shortener extends the K1,2 to a K1,3 then Prolonger can extend that to a K1,4. In all cases
at most two new vertices are used.

Note that if Prolonger can create a K1,2 component when creating Gi but does not, then he
must extend a K1,2 into a K3. Hence at most 2 new vertices are used between Gi−2 and Gi.

If Prolonger cannot create a K3 or K1,2 component then either there are no isolated edges
in Gi−1, or there are no isolated vertices in Gi−1. Hence Shortener uses at most one isolated
vertex from Gi−2 or Gi−1 is P4-saturated. Prolonger uses 2 new vertices only if he adds an
isolated edge to form Gi, which requires that Shortener completed a triangle into Gi−1 and
used no new vertices. Hence either 1 new vertex is used to end the game or at most 2 new
vertices are used between Gi−2 and Gi.

Note that with this strategy of Prolonger when Gi is created from Gi−2 we never use 4 new
vertices. Furthermore, we use 3 new vertices only if in Gi−2 there was no K1,2 component
and in Gi there is. As a consequence, no two consecutive pairs of moves by Shortener and
then Prolonger both use 3 new vertices. If Prolonger moves �rst, then his �rst move consumes
two new vertices. If Shortener makes the last move last then her move may consume two new
vertices. If there are an odd number of pairs of moves by Shortener and then Prolonger we may
have 1 more pair using 3 new vertices than 2. It is plainly seen that these three possibilities
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all consume more vertices than 5
4 of the number of moves, and so reduce the �nal score from

5
4n. So we have:

5

4
(satG(P4;Kn)− 1− 1− 2) ≥ n− 2− 2− 3

Where the terms correspond to losing 2 free vertices to 1 move and 3 free vertices to 2 moves
respectively. Hence satG(P4;Kn) ≥ 4

5n−
14
5 , which completes the proof of the lower bound.

5. The game G(Kn, P5)

We now turn to a detailed examination of the game G(Kn, P5) and Theorem 3. Denote a

double star with k pendant edges at one end of the central edge and l at the other by Dk,l.

Denote a triangle with k pendant edges at one vertex by Tk (cf. Figure 2). As in the case

of the P4-saturation game, we start by characterising the P5-saturated graphs, which is easily

shown by induction:

Observation 9. A P5-saturated graph is either a vertex-disjoint union of copies of K4, T≥0,
Dk,l and at most one isolated edge, or is a vertex-disjoint union of one isolated vertex and

copies of K4.

k

Tk

k l

Dk,l

Figure 2: Tk and Dk,l

Proof of Theorem 3. The upper bound is demonstrated by considering the following strategy
for Shortener. She will:

i) extend a P4 to a D1,2 or extend a K1,3 to a D1,2 or extend a T1 to a T2 if possible,
otherwise

ii) extend an isolated edge to a K1,2 if possible, otherwise

iii) extend a component of 5 or more vertices by attaching to it an isolated vertex if possible,
otherwise

iv) draw an isolated edge if possible, otherwise

v) play arbitrarily.
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Claim 10. Given this strategy by Shortener, in any graph Gt, there is either at most one

component of size four and at most one isolated edge or, there are no components of size four

and at most two isolated edges.

Proof. We proceed inductively; clearly the condition holds after Prolonger's �rst move. Sup-
pose it holds after Prolonger moves to Gi. We split into cases according to the existence of
isolated vertices.

Suppose �rst that there are no isolated vertices in Gi. Then the only way to create new 4-
vertex components is to join two isolated edges to create a P4. But inductively if Gi contains
a 4-vertex component then there is at most one isolated edge, so Shortener cannot make a
new 4-vertex component. Otherwise there are ≤ 2 isolated edges, so at most one 4-vertex
component can be produced. Hence the condition of the lemma is satis�ed both in Gi+1 and
Gi+2, and hence after Prolonger's next move.

Suppose alternatively there is an isolated vertex in Gi. We claim that either there is at most
either a single P4, K1,3 or T1 and at most one isolated edge, or there are no components of
size 4 and at most 2 isolated edges.

If there is a P4, K1,3 or T1 in Gi then Shortener will extend it. If there are two isolated edges in
Gi then Shortener will extend one of them to a K1,2. If Gi contains no P4, K1,3, T1 or isolated
edge then Shortener will unify a ≥ 5-vertex component with an isolated vertex; otherwise
Shortener will not produce a component of size 4. So in Gi+1 either there is no component of
size 4, and there is at most one isolated edge, or there is one of P4, K1,3 or T1, no isolated
edges and no isolated vertices.

In the former case, in Gi+2 Prolonger can create at most one new 4-vertex component, or
at most one isolated edge; in the latter case, Prolonger can create in Gi+2 no new 4-vertex
components and no isolated edges. So the condition is satis�ed both in Gi+1 and Gi+2, and
thus also after Prolonger's next move.

Hence the claim holds after every move by Prolonger or Shortener.

By Claim 10, there is at most one K4. By Lemma 9 the number of edges does not exceed the
number of vertices in any other component. Hence the game score is at most n+ 2, showing
the claimed upper bound.

Before outlining the argument for the lower bound, we de�ne some additional notation. Let us
call a component trivial if it consists of an isolated vertex. Let us call a non-trivial component
standalone if it can not be connected to another non-trivial component without completing a
P5. Note that if a component is not standalone it must have a vertex which is not the endpoint
of an induced P3. From Lemma 9, the only P5 free components which have a vertex which is
not the endpoint of an induced P3 are stars. Hence any other component may only be joined
to an isolated vertex, as otherwise a P5 will neccessarily appear.

The lower bound is demonstrated by considering the following strategy for Prolonger. He will:

(i) complete a triangle in a D1,2 component to make it a T2 or in a K1,3 component to make
it a T1, or, if not possible
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(ii) complete a triangle in a component without a triangle, or, if not possible

(iii) connect two isolated edges to form a P4, or, if not possible

(iv) complete a K1,2 component, or, if not possible

(v) draw an isolated edge, or, if not possible

(vi) play arbitrarily.

Claim 11. Given this strategy for Prolonger, the set of star components after his move may

be: empty; or one isolated edge; or one K1,2. After Shortener's move, the set of non-trivial

stars components may be: empty, K1,2, K1,3, K1,2 and an isolated edge, two isolated edges, or

one isolated edge.

Proof. We induct on the number of moves. The result holds trivially for G0 and G1. If the
condition holds after Prolonger's move, it can easily be checked that Shortener's move can
only produce sets of stars as stated in the lemma. After Shortener's move, Prolonger will:

(i) complete a K3 from a K1,2 component, or produce a T1 in the K1,3 component, both of
which are standalone;

(ii) if not possible, he will complete a P4 from two isolated edges, which is standalone;

(iii) if not possible, he will complete a K1,2 component from one isolated edge;

(iv) if not possible, he will draw an isolated edge;

(v) otherwise, he will play arbitrarily but his move will not extend a star into a larger star
(otherwise he could have completed a triangle in it), so his edge will be a part of a
standalone component.

In all cases the set of non-trivial star components after Prolonger's move is as described in the
claim.

Claim 12. Given this strategy for Prolonger, in Gt∗ all standalone components will contain a

triangle. The set of non-trivial star components will consist of an isolated vertex or an isolated

edge.

Proof. We claim by induction that after Prolonger's move, the components of size greater
than one without a triangle will be empty or consist of one component which will be either
an isolated edge, K1,2 or P4. Clearly this holds for G0 and G1. Suppose it holds for after
Prolonger's move to Gi. By claim 11 there is at most one star component in Gi, so if Shortener
connects two components one of them is an isolated vertex. So in Gi+1 the set of non-trivial
components without a triangle will be empty, a K2, a K1,2 or P4 or be one of the preceding
and an isolated edge or be a K1,3 or a D1,2. In each case, to form Gi+2 Prolonger will:
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(i) complete a triangle in them to create a T2 component or a T1 component or a K3

component or

(ii) connect two isolated edges to form a P4 component or

(iii) connect an isolated edge to an isolated vertex to form a K1,2 component or

(iv) create an isolated edge or

(v) else there is at most one non-trivial component without a triangle which can only be an
isolated edge and he can play arbitrarily

so the set of non-trivial components without a triangle in Gi+2 consists of an isolated edge, a
K1,2 or a P4.

Hence Shortener cannot create Dk,l components with both k, l ≥ 2. By Lemma 11 there is at
most one star component in Gi, so the component would have to be formed via a D1,2 or a
K1,3 component, which are immediately completed into a T2 or T1 component by Prolonger.
Hence at the end of the game the non-trivial components without a triangle will be an isolated
vertex or an isolated edge, since the other components cannot be a Dk,l with k, l ≥ 2 in Gi

and thus contain a triangle by Lemma 10.

So by Lemma 12 all components in Gt∗ will contain a triangle except for at most one isolated
edge or isolated vertex. Hence the number of edges in these components is greater or equal to
the number of vertices. Hence satG(Kn, P5) ≥ n− 1.

6. Game of avoiding all trees on k vertices

Recall that Tk is de�ned to be the family of all trees on k vertices. Consider the game

G(Kn, Tk). Clearly, the condition that G is Tk-free is equivalent to requireing that all con-

nected components of G have less than k vertices. Hence being Tk-saturated implies that all

components will be cliques of size at most k − 1 with any two components having total size

at least k.

Proof of Theorem 4. Suppose G is Tk-saturated. Then e(G) is a convex quadratic function of
the clique sizes, and so is maximised when all but one clique is of size k−1. The upper bounds
follow immediately.

To demonstrate the lower bounds, suppose that Prolonger chooses two components with the
greatest total number of vertices such that this number is at most k − 1 and connects them
by an edge.

Claim 13. After Prolonger's move, yielding Gi, either (1) there exists at most one connected

component Ci ⊆ Gi with 1 < |V (Ci)| < k − 1, or (2) there is an isolated edge, a connected

component of size k − 2 and connected components of size k − 1.
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Proof. The conditions of (1) hold in G0 = En and G1 = K2∪(n−2)K1. We proceed inductively,
and split the analysis of Shortener's move into two cases:

a) Shortener connects two isolated vertices to make an isolated edge.

b) Shortener does not form an isolated edge, so either no components are changed in size or
Ci is joined to an isolated vertex u.

If Shortener has formed an isolated edge uv, then if |Ci| ≤ k − 3, Prolonger joins it to uv to
satisfy the conditions of (1), with V (Ci+2) = V (Ci) ∪ {u, v}. If instead there is an isolated
vertex v and |Ci| = k−2, then Prolonger joins it to v to satisfy the conditions of (1). Otherwise
no component can be extended and the conditions of (2) are satis�ed for the rest of the game.

Suppose Shortener has not formed an isolated edge. Then she must have added an edge uv
which either extended Ci or left the component structure unchanged. If there was a set Ci, we
say Ci+1 = Ci ∪ (uv) if either u or v were vertices in Ci, otherwise we take Ci+1 = Ci. Note
that in either case |V (Ci+1)| ≤ |V (Ci)|+ 1 ≤ k − 1.

If there are no isolated vertices then no component can be extended and the conditions of (1)
are satis�ed for the rest of the game. If there is an isolated vertex w and Ci+1 exists, with
|Ci+1| ≤ k− 2, Prolonger joins Ci+1 to w satisfying the conditions of (1). If there is no set Ci

or |Ci+1| = k − 1, then if if there are two isolated vertices Prolonger joins them to form Ci+2

satisfying the conditions of (1). If not, then no component can be extended and the conditions
of (1) are satis�ed for the rest of the game.

Hence if n 6≡ 1 mod (k − 1) the conditions of (2) cannot hold, and since G is Tk-saturated
at the end of the game there cannot be a component of size ≤ k − 2 and an isolated vertex.

Hence there are
⌊

n
k−1

⌋
Kk−1's and one further clique, which saturates the upper bound.

If n ≡ 1 mod (k− 1) and k ≥ 3, then the conditions of (2) could hold, in which case precisely
k−2 edges are lost from removing a vertex from a Kk−1 and 1 is gained from an isolated edge.
Hence the bound is k − 3 below the upper bound.

7. Forbidding the graph K1,k+1

Instead of forbidding the family of all trees Tk+2, we consider merely forbidding the graph

K1,k+1. Trivially this corresponds to requiring that in the graph process, ∆(Gt) ≤ k. From

this, we immediately see that in a K1,k+1-saturated graph G we have that {v ∈ G : d(v) < k}
must form a clique in G, as otherwise we could add an edge without producing a K1,k+1.

Hence we have that the score satG(Kn,K1,k+1) ≥
⌊
1
2nk −

(
k−1
2

)2⌋
. This lower bound can be

improved somewhat.

Proof of Theorem 5. The upper bound follows trivially from the fact that ∆(G) ≤ k in any
K1,k+1-saturated graph G. Let Prolonger have the following strategy: Given a graph Gi by
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Shortener, she adds the least edge in Ḡi, where the edges uv of Ḡi are ordered lexicographically
by the minimum degree of u and v and then by the maximal degree. Note �rst that he will
attempt to add edges between vertices of degree δ(Gi). If Prolonger is unable to �nd such
an edge, then the vertices of degree δ(Gi) must form a clique, and hence there are at most
δ(Gi)+1 ≤ k+1 of them. These �nal ≤ k+1 vertices may require their degrees to be increased
by adding edges to vertices of degree greater than δ(Gi).
Consider the graph process given that Prolonger is following this strategy. Let ti be least such
that δ(Gti) ≥ i and Shortener has just played. Let gi =

∑
v max(dGti (v) − (i + 1), 0), if ti

exists, and gi = 0 otherwise. Suppose that ti exists and that in Gti there are λi vertices of
degree > i. Then after at most

⌊
1
2(n− k − 1− λi)

⌋
moves by Prolonger there are ≤ k + 1

vertices of degree i, and after at most another k + 1 moves by Prolonger there are no vertices
of degree i, unless the game has ended. So we know that the ti+1 exists unless the game ends,
which requires that at least n− k vertices have degree k. So if:

k(n− k) ≥ (i+ 1)(n− (k + 1)) + (gi − λi) + (n− k − 1− λi) + 3(k + 1)

Then even if every vertex used by Shortener and all of the k+ 1 last minimum degree vertices
have to be paired with a higher degree vertex by Prolonger, there will not be n − (k + 1)
vertices of degree k, and so the game will not have ended before Prolonger has increased the
degree of each degree i vertex. In this case ti+1 exists and:

gi+1 ≤ (gi − λi) + (n− k − 1− λi) + 3(k + 1).

Note that λi ≥ gi/(k − i), as any vertex contributes at most k − i to gi. De�ne:

f0 = 0, fi+1 = fi + (n+ 2k + 2)− 2fi/(k − i).

We have that gi+1 is decreasing in λi and for all i ≤ k − 2, fi+1 is increasing in fi. Hence:

gi ≤ gi−1 + (n+ 2k + 2)− 2λi−1 ≤ fi

for all i ≤ k − 2. So if fi ≤ (k − i)(n − k), then we have that gi−1 is small enough that ti
exists, and so the minimum degree at the end of the game will be at least i. By induction, we
have that fi = i(n+ 2k+ 2) k−i

k−1 . Hence to show that ti exists for all i ≤ k− 2 it su�ces that:

i(n+ 2k + 2)
k − i
k − 1

≤ (k − i)(n− k)⇔ i ≤ (k − 1)
n− k

n+ 2k + 2

holds for each i ≤ k − 2. So for n ≥ 3k2 − 3k − 4, we have ti exists for all i ≤ k − 2,
and so the minimum degree of the saturated graph is at least k − 2. Hence we have that
satG(Kn,K1,k+1) ≥ 1

2 (kn− 2(k − 1)) as required.

8. Concluding Remarks

There remain many interesting open problems, mainly the resolution of the triangle saturation

game. Given a graph G which is not a tree, providing e�ective bounds on the G(Kn, G) would

12



be highly desirable. In our results, we show that a careful analysis of the maximal components

is of substantive use, and that the supply of low degree vertices controls the ability of both

players to enforce conditions on the game. However, our results are strongly predicated on

�nding explicit strategies; analyses of the F-saturation game which were not of this form would

be remarkable.
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