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ABSTRACT 

Schizophrenia is a neuropsychiatric disorder affecting 1% of the world’s population. Due to a 

broad range of symptoms and disease heterogeneity, current therapeutic approaches to treat 

schizophrenia fail to address all symptomatic manifestations of the disease. Therefore, 

disease models that reproduce core pathological features of schizophrenia are needed for the 

elucidation of pathological disease mechanisms. Here, we employ a comprehensive global 

label-free liquid chromatography-mass spectrometry proteomic (LC-MS
E
) and metabonomic 

(LC-MS) profiling analysis combined with targeted proteomics (selected reaction monitoring 

and multiplex-immunoassay) of serum and brain tissues to investigate a chronic 

phencyclidine (PCP) rat model, in which glutamatergic hypofunction is induced through non-

competitive NMDAR-receptor antagonism. Using multiplex immunoassay, we identified 

alterations in the levels of several cytokines (IL-5, IL-2, IL-1β) and fibroblast-growth factor-

2. Extensive proteomic and metabonomic brain tissue profiling revealed a more prominent 

effect of chronic PCP treatment on both the hippocampal proteome and metabonome 

compared to the frontal cortex. Bioinformatic pathway analysis confirmed prominent 

abnormalities in NMDA-receptor associated pathways in both brain regions, as well as 

alterations in other neurotransmitter systems such as kainate, AMPA and GABAergic 

signalling in the hippocampus and in proteins associated with neurodegeneration. We further 

identified abundance changes in the level of the superoxide dismutase enzyme (SODC) in 

both the frontal cortex and hippocampus, which indicate alterations in oxidative stress and 

substantiates the apoptotic pathway alterations. The present study could lead to an increased 

understanding of how perturbed glutamate receptor signalling affects other relevant 

biological pathways in schizophrenia and therefore support drug discovery efforts for 

improved treatment of patients suffering from this debilitating psychiatric disorder. 
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Introduction 

The potent N-methyl-D-aspartate (NMDA) antagonist phencyclidine (PCP) is one of the most 

extensively studied animal models of psychiatric disorders. PCP is a psychotomimetic (i.e. 

able to elicit positive symptoms),
1
 which is also able to induce negative

1a, 2
 and cognitive

3
 

symptoms which are core features of schizophrenia and other psychiatric disorders, in both 

humans and rodents.
4
 In addition, it can exacerbate these symptoms in schizophrenia 

patients.
5
 Thus, studies of PCP feature prominently in pharmaceutical drug discovery efforts 

since most current treatments of schizophrenia are predominately tailored to treat positive 

symptoms, while negative and cognitive symptoms tend to be more resistant to antipsychotic 

treatment. Mechanistically, PCP shows an affinity to a variety of receptors [sigma, dopamine 

D(2) and 5-HT(2) receptors
6
] but principally acts at the NMDA receptor (NMDAR), where it 

binds with high affinity to a specific site within the pore of the ion channel, leading to a 

NMDAR hypofunction. However, PCP is also an antagonist for the dopamine (D2) receptor, 

inducing abnormalities of dopaminergic transmission in different brain regions in primates
7
 

and rodents.
8
 Thereby, PCP models both glutamate and dopamine dysfunction, which 

represent the key neurotransmitter systems implicated in the pathophysiology of 

schizophrenia.
9
 However, other neurotransmitter systems, such as 

serotonin/norepinephrine,
8a, 10

 gamma-aminobutyric acid (GABA),
9, 11

 acetylcholine
12

 and 

opioid pathways are also affected by PCP treatment, albeit to a lesser extent.
13

 

Rodent PCP models are currently among the most commonly used in schizophrenia drug 

discovery. Previous studies have characterized these models mainly at the behavioural level, 

with the finding of shared behavioural abnormalities of hyperlocomotion, stereotypy,
14

 

decreased voluntary sucrose consumption,
15

 impaired information processing with cognitive 

functions of memory
16

 and attention and impaired social interaction.
14, 17

 The behavioural 

readouts are thought to correspond to the positive, negative and cognitive symptoms as seen 
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in human schizophrenia. Fewer studies have been performed at the physiological and 

molecular level, although these have implicated abnormalities of neurotransmitter release and 

levels,
7a, 8a, 16, 18

 dendritic branching, and dendritic spine number, synaptic loss,
19

 along with 

hypofrontality.
20

 To date, the molecular mechanisms by which PCP exerts diverse 

neurochemical, behavioural and clinical effects are still a matter of debate. The first 

proteomic studies of an acute PCP rat model revealed abnormalities in protein 

phosphorylation patterns in the frontal cortex
21

 and energy metabolism and signal 

transduction in the hippocampus.
22

 Less has been done to investigate chronic PCP (cPCP) 

effects in the brain, although it has been noted that repeated substance abuse of PCP by 

humans induces more persistent schizophrenia symptomatology, including psychosis, 

hallucinations, delusions, formal thought disorder and cognitive dysfunction and social 

withdrawal.
1a, 23

 One extensive proteomic and metabonomic study which investigated the 

molecular effects in the frontal cortex of a cPCP rat model, led to the identification of subtle 

abnormalities in proteins involved in calcium signalling and energy metabolism.
24

 

Here, we attempt to gain further insights into the effects of cPCP treatment using a 

combination of metabonomic and proteomic profiling of rat brain tissue. Since only subtle 

molecular changes have been found in the frontal cortex of cPCP treated rats,
24

 this study 

now analyses hippocampal tissue from cPCP treated rats to investigate how this brain region 

is affected, particularly considering its role in cognition and memory, social behaviour and 

the (negative) symptom domains. The molecular characterisation will help to improve the 

understanding of pathophysiological mechanisms associated with psychosis and 

schizophrenia and support drug discovery and development efforts. 

  

Page 4 of 38

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

5 

Material and Methods 

Animals 

Adult male Sprague–Dawley rats (Charles River, Margate, UK) were housed in groups of 

four under standard laboratory conditions with food (Harlan UK, Bicester, UK) and water 

available ad libitum. All experiments were conducted during the light cycle and were in full 

compliance with the Home Office Guidance (UK Animals Scientific Procedures Act 1986) 

and ethical policies of the Home Office. After a 10-day adaptation period, rats were given a 

daily subcutaneous dose of vehicle (0.9% sterile saline) or PCP hydrochloride (5mg/kg) for 

15 consecutive days. All animals were killed by decapitation 30min after the last injection 

and brain tissues dissected. Behavioural readouts were recorded as described and PCP 

injection induced the standard increase in locomotor activity and stereotypic movement.
24

 

Serum profiling 

Serum preparation, multiplex immunoassays and statistical analysis were performed as 

described previously.
22, 25

 Blood was collected from rats into S-Monovette 7.5 mL serum 

tubes (Sarstedt; Numbrecht, Germany) and left for 1.5h at room temperature for clotting. The 

blood was centrifuged at 300 g for 15 min at 4°C. Resulting supernatants (serum samples) 

were stored in Low Binding Eppendorf tubes (Hamburg, Germany) at -80°C. Serum samples 

were analyzed using the RodentMAP, Rat MetabolicMAP and Rat KidneyMAP platforms 

comprising multiplexed immunoassays of 89 analytes in a Clinical Laboratory Improved 

Amendments (CLIA)-certified laboratory at Myriad-RBM (Austin, TX, USA).
25

 

Immunoassays were calibrated using duplicate standard curves for each analyte and raw 

intensity measurements converted to protein concentrations using proprietary software. 

Multiplexed calibrators (eight levels per analyte) and controls (three levels per analyte) were 

used to monitor key performance parameters, such as lower limit of quantification, precision, 

cross-reactivity, linearity, spike-recovery, dynamic range, matrix interference, freeze-thaw 
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stability and short-term sample stability (http://www.myriadrbm.com/technology/data-

quality/). Data analyses were performed using the statistical software package R 

(http://www.r-project.org) and the levels of analytes were determined. Analyses were 

conducted under blinded conditions with respect to sample identities and samples were 

analyzed in random order to avoid any sequential biases. For data analysis, all missing 

values, zeros and negative values were replaced by the half of the minimum positive value, 

assuming this to be the detection limit. Analytes with more than 30% missing values were 

removed. 66 analytes remained for relative quantification. Furthermore, approximately 10% 

of the data were filtered out based on relative standard deviation (RSD).
26

 Row-wise 

normalization to each median reading was employed to adjust for differences among samples 

and data were log-transformed and pareto-scaled (mean-centered and divided by the square 

root of standard deviation of each variable) to make features more comparable. Significance 

Analysis of Microarray (SAM) was performed using the Siggenes R package.
27

 SAM is a 

well-established statistical method for identification of differentially expressed genes in 

microarray data analysis and is frequently employed for analysis of high-throughput Omics-

datasets. It is designed to address the false discovery rate (FDR) when running multiple tests 

and high-dimensional data. SAM assigns a significance score to each variable based on 

change relative to the standard deviation of repeated measurements. For a variable with 

scores greater than an adjustable threshold, its relative difference is compared to the 

distribution estimated by random permutation of the class labels. For each threshold, a certain 

proportion of the variables in the permutation set will be identified as significantly different 

by chance. This proportion is used to calculate the FDR.
28
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Global metabolic profiling 

Metabonomic profiling was performed as described previously.
29

 In brief, approximately 

10mg frontal cortex and 30-50mg hippocampus tissues were weighed out into 2mL bead 

beater tubes and homogenized with 1.45mL of pre-chilled methanol/water (1:1) and 100µL of 

1-mm zirconium beads, using a Precellys bead beater. Homogenisation (6,5000 Hz speed) 

cycles were 40s, followed by cooling on dry ice, and a further 40s homogenisation and 

cooling on dry ice. The mixtures were then centrifuged at 10,000g for 10min at 4
o
C. 

Supernatants (aqueous extracts) were collected and transferred to clean Eppendorf tubes. 

Aqueous extracts were dried in a vacuum concentrator (Savant) for at least 180min at 45
o
C. 

Extracts were resuspended in 120µL of methanol/water (1:1), followed by brief vortexing and 

sonication, and transferred into 96-well plates for analysis. Quality control (QC) samples 

were prepared by combining an aliquot (10µL) from each study sample to produce a 

representative sample – this was used for column conditioning and data quality assessment as 

described by Want et al.
29

 

UPLC-MS analysis was performed using a Waters XEVO G2 Q-TOF mass spectrometer 

coupled online to an Acquity UPLC-MS system (Waters Corporation, Milford, MA). 

Separation was performed at 0.4mL/min and 50°C, using a 2.1 x 100mm (1.7µm) HSS T3 

Acquity column. The injection volume was 5µL and the sample temperature was 4
o
C. The 

mobile phases were 0.1% (vol/vol) formic acid in water (A) and 0.1% (vol/vol) formic acid in 

methanol (B). The gradient was (99.9% A for 2 min, to 75% A in 4 min; to 20% A in 6 min, 

to 10% A in 2 min, to 0.1% A in 7 min, 0.1% A for 2 min, to 99.9%A in 4 min). Acquisition 

was performed in both positive ion mode (1.0kV ESI +) and negative ion mode (1.0kV ESI-). 

Source conditions were: source temperature: 120°C, desolvation temperature: 350°C, cone 

gas flow: 25 L/h, desolvation gas flow: 900 L/h. QC samples were injected ten times at the 
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start of the analytical batch in order to condition the column, then after every ten samples 

throughout the run to assess instrument stability. 

Data were processed using the freeware XCMS
30

 using standard parameters. The output 

consisted of a matrix of metabolite feature m/z, retention time and intensity (peak area) 

values. These “metabolite feature” tables were imported into SIMCA-P for multivariate 

analysis (e.g. PCA) to check data quality and sample outliers. All missing and zero values 

(0.02% of the data) were replaced by the half of the minimum positive value found within the 

data. The assumption of this approach is that most of the missing values are caused by low 

abundance metabolites. Since zero values may cause problems for data normalization (i.e. 

log), they were replaced with this value. Data were filtered to identify and remove variables 

that were unlikely to be of use when modelling the data. 10% of data points showing little 

variance across experimental conditions were filtered based on relative standard deviation.
31

 

This filtering procedure is highly recommended for chemometric data, which often contains a 

large amount of noise. Row-wise normalization to sample median was employed to adjust for 

differences among samples and data was log transformed and pareto-scaled (mean-centered 

and divided by the square root of standard deviation of each variable) to make features more 

comparable. P-Values were determined using SAM and corrected to control for multiple 

hypothesis testing.
28

 Ratios were calculated for each molecule as the mean intensity values of 

cPCP-treated rats divided by those of controls. 

 

Proteomic Sample Preparation 

Total lysis sample preparation was performed as previously described using a fractionation 

buffer containing 7M urea, 2M thiourea, 4 % CHAPS, 2 % ASB14, 70mM dithiotreitol 

(DTT) and protease inhibitor at a 5:1 (v/w) ratio.
25, 32

 Samples were sonicated (10s, 2 cycles) 

and vortexed at 4°C for 30 min. Samples were then centrifuged at 17,000 g at 4°C. Protein 
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concentrations of the lysates were determined using a Bradford assay (Bio-Rad; Hemel 

Hempstead, UK). Approximately 100 µg sample was precipitated using acetone. After 

dissolving the precipitate in 50mM ammonium bicarbonate, reduction of sulfhydryl groups 

were performed with 5mM DTT at 60°C for 30min and alkylation was carried out using 

10mM iodacetamide at 37°C for 30 min in the dark and proteins were subsequently digested 

using trypsin at a 1:50 (w/v) ratio for 17h at 37°C. Reactions were stopped by addition of 

8.8 M HCl in a 1:60 (w/w) ratio. Quality control (QC) samples were prepared to monitor 

machine and preparation performance. For this, an equal amount of each sample was pooled 

into one sample after the sonication step and then split into multiple aliquots. Each QC 

sample underwent all experimental steps in parallel with the test samples. 

 

Label-free LC−MS
E
 analysis of frontal cortex and hippocampus tissue 

Individual digested brain tissue samples were analyzed in duplicates (0.6 µg protein per 

duplicate) using a splitless nanoACQUITY -ultra-performance liquid chromatography 

(UPLC) (10 kpsi nanoAcquity; Waters Corporation, Milford, MA) for reverse-phase 

chromatographic peptide separation coupled online to a Waters Q-TOF Premier mass 

spectrometer. Data were acquired in expression mode (MS
E
). The system was comprised of a 

C18 trapping column (180 µm × 20 mm; 5 µm particle size) and a C18 BEH nanocolumn (75 

µm × 200 mm; 1.7 mm particle size). The buffers were as follows: (A) H2O + 0.1% formic 

acid and (B) acetonitrile + 0.1% formic acid. Initial buffer concentrations were 3% B (97% 

A) followed by 3−30% B (90 min), 30−90% B (25 min), 90−97% B (5 min), constant 97% B 

(10 min), and 97− 3% B (1 min). Every 30 s approximately 500 fmol/µL Glu Fibrinopeptide 

B was infused via a lock spray for external lock mass correction. The mass spectrometer was 

operated in V mode, and analyses were carried out using positive nanoESI ion mode. 

Collision energy was 5 eV for low-energy scans and ramped from 17 to 40 eV for high-
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energy scans (cycle time 1.3 s). The low collision energy (MS) generated information about 

intact precursor ions, and the high collision energy (MS
E
) provides information about the 

corresponding peptide fragments. Fragment ions are matched to corresponding precursor 

peptide ions based on retention time, mass accuracy and other physiochemical properties.
33

 

Data processing was done by using the ProteinLynx Global Server (PLGS) v.2.4 (Waters 

Corporation; Milford, MA, U.S.A.) and Rosetta Elucidator v.3.3 (Rosetta Biosoftware; 

Seattle, WA, U.S.A.) for time and mass/charge alignment of mass spectrometer data as 

described previously. Aligned peaks were extracted and abundance measurements obtained 

by integration of time, m/z and intensity volumes, with normalization to the total ion current. 

The procedure, quality assessment and data processing were performed as described 

previously.
22

 PLGS2.4 using the Swiss-Prot rodent reference proteome (Uniprot release 

March 2013) was used for protein identification searches. In order to control the false 

discovery rate (FDR), data were searched against a decoy database, which was the 

randomised version of the database mentioned above to conserve amino acid frequencies. 

The FDR was set at the default maximum rate of 4%, as applied before.
34

 The search 

parameters were (i) enzyme = trypsin, (ii) fixed modification = carbamidomethylation of 

cysteines, (iii) variable modifications = oxidation of methionine and phosphorylation at 

serine, threonine or tyrosine residues, (iv) initial mass accuracy tolerances = 10 ppm for 

precursor ions and 20 ppm for product ions, and (v) one missed cleavage allowed. In 

addition, the following criteria were used for protein identification: (i) ≥ 3 fragment ions per 

peptide, (ii) ≥ 7 fragment ions per protein, and (iii) ≥ 1 peptide per protein. Raw data and 

PLGS search results were imported into the Rosetta Elucidator software (build 

3.3.0.1.SP3.19, Rosetta Biosoftware; Seattle, WA, USA). Elucidator performed the retention 

time (RT) alignment, feature identification and extraction for all samples using the Rosetta 

PeakTeller algorithm. Dynamic background subtraction, smoothing in RT and m/z 
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dimensions and isotopic regions creation for peak-matching across all runs were calculated 

using an RT correction of 4 min at the maximum. A single data file was randomly chosen as 

the master, and all other sample files were aligned to the master in form of a dynamic RT 

shift. This procedure allowed the improved identification of peptides and proteins in each 

sample by taking the available data of all samples into account. Features were normalized 

based on total ion current (TIC). Only features detected in both replicates and in >80 % of 

samples were included in further analyses. Protein abundance changes were determined using 

the MSstats2.15 package
35

 (version 2.3.4) based on linear mixed-effects models under default 

settings, following log2 transformation and quantile normalization. The model regards 

features mapped to the same protein as replicate measurements of protein abundance. The 

model is then used for pairwise comparisons of protein abundances across groups. The tests 

are performed by deriving model-based estimates for the protein in each group by maximum 

likelihood. The difference of the estimates is then considered relative to its estimated 

variation and compared to the student’s t-distribution. Proteins with less than 2 peptides (of 

which at least one had to be unique) were excluded. The p-values were adjusted to control for 

the false discovery rate (FDR) at a cut-off of 0.05 following the Benjamini-Hochberg 

procedure.
28

 

 

Label-based selected reaction monitoring (SRM) mass spectrometry 

Digested frontal cortex and hippocampus proteomes were analysed using targeted SRM mass 

spectrometry on a Xevo TQ-S mass spectrometer (Waters Corporation; Milford, CT, USA) 

coupled to a nanoAcquity UPLC system (Waters Corporation) as described previously.
32b, 36

 

The system was comprised of a C18 trapping column (180µmx20mm, 5µm particle size) and 

a C18 BEH nano-column (75µmx200mm, 1.7mm particle size). The buffers used for 

separation were (A) 0.1% formic acid and (B) 0.1% formic acid in acetonitrile and the 
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following 48 min gradient was applied: 97/3% (A/B) to 60/40% in 30 min; 60/40% to 

15/85% in 2 min; 5 min at 15/85%; returning to the initial condition in 1min. The flow rate 

was 0.3µL/min and the column temperature was 35°C.  

Multiplex SRM assays were developed using a high-throughput strategy.
37

 All 

peptides containing amino acids prone to undergo modifications (e.g., Met, Trp, Asn and 

Gln), potential ragged ends, or those with lysine/arginine followed by proline or bearing 

NXT/NXS glycosylation motifs were avoided and only selected when no other options were 

available.
38

 Criteria for selecting tryptic peptides were based on peptide count, uniqueness 

and quality of transitions. Transitions were selected based on software internal predictions, 

discovery proteomics data and spectral data [NIST spectral libraries
39

] and calculated using 

Skyline version 1.2.0.3425.
40

 Quantitative SRM measurements comparing cPCP treated rats 

and controls were performed in scheduled SRM acquisition mode. Heavy isotope labelled 

peptide versions (JPT Peptide Technologies GmbH, Berlin, Germany) were spiked in the 

peptide mixture for accurate quantification and identification. All SRM functions had a 2min 

window of the predicted retention time and scan times were 20ms. For each peptide, at least 

three transitions were monitored for the heavy and light versions. The final transitions, 

collision energies and retention time windows used for each peptide can be found in the 

supplementary information (Table S1a, Table S1b). Samples were run randomized and 

blocked
41

 in triplicates, and blanks and quality control peptide injections (yeast alcohol 

dehydrogenase; Table S1c) were run alternating after each biological replicate. Resulting 

SRM data were analyzed using Skyline and statistical analysis, testing for differential 

abundance among cPCP treated rats and control animals, was conducted using MSstats.
42

 

Data pre-processing consisted of a log2 transformation to stabilise the variance. Quantile 

normalization was performed based on reference transitions to equalize the median peak 

intensities of reference transitions from all proteins across all MS runs and adjust the bias to 
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both reference and endogenous signals. Protein level quantification and testing for differential 

abundance among chronic PCP treated rats and control animals were carried out using the 

linear mixed-effects model implemented in the R-package MSstats 2.3.4, which employs a 

“restricted” scope of conclusions (default settings).
43

 In the restricted scope model, the 

individual samples being modelled are the population of interest. This approach also took into 

account the measurement error of transitions across runs (technical variation), to enable 

accurate quantification of protein abundance changes across the samples. Furthermore, the 

model accounts for the shared run membership of the endogenous and reference transition 

pairs and normalizes each endogenous transition with respect to its reference. The p-values 

were adjusted to control the false discovery rate at a cut-off of 0.05 according to Benjamini 

and Hochberg 
28

. 

 

Protein set enrichment analysis 

Protein set enrichment analysis was carried out as described previously.
44

 Therefore, 

significantly changed proteins were partitioned into three bins, according to their ratio: 

ratio<1.0; ratio >1.0 and ratio both >1, <1. The R package database org.mouse.eg.db version 

2.8.0 was used for gene ontology (GO) term annotation and significant over-representation of 

an annotated GO term in each bin was determined by the GOstats package (Falcon and 

Gentleman, 2007). P-values for the GO category
45

 “biological pathway” (BP) were calculated 

by a conditional hypergeometric test, using the entire detected proteome as a background. 

One-way hierarchical clustering using “Euclidean distance” as distance function and the 

“Average Linkage Clustering” method available in the Genesis software,
46

 was performed on 

all significantly enriched GO terms. 
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Results 

Serum Profiling 

We measured serum levels of 89 analytes in rats following cPCP or vehicle treatment using 

multiplex immunoassays. This was carried out to elucidate how the effects of cPCP treatment 

are manifested in the peripheral circulation and to identify possible surrogate biomarkers for 

schizophrenia. In total, 64 analytes were robustly measured with less than 30% missing 

values. The list of all measured analytes can be found in Table S2. Following data quality 

assessment, normalization and scaling, the analysis of the multiplex immunoassays resulted 

in the identification of five significantly altered analytes in cPCP rat serum (p<0.05) (Table 

1). These were predominantly interleukins (IL-5, IL-2, IL-1β) as well as fibroblast growth 

factor-2 (FGF-2) and the macrophage inflammatory protein 1a (MIP-1α). 

Label-free LC-MS
E 

proteomic profiling of frontal cortex and hippocampus tissue 

Total lysis fractions were prepared from frontal cortex and hippocampus tissue of cPCP and 

vehicle-treated rats and analysed by label-free LC-MS
E
. This resulted in identification of 555 

proteins in the frontal cortex and 937 proteins in the hippocampus. Of these, 79 proteins 

(14 %) were significantly changed due to cPCP treatment in the frontal cortex and 501 

proteins (53 %) were altered in the hippocampus (Figure 1, Tables S3a and S3b). We 

detected protein level alterations of 22 enzymes in the frontal cortex of which 10 (45 %) 

catalyze a metabolic reaction, and of 139 enzymes in the hippocampus of which 94 (68 %) 

catalyze a metabolic reaction. The most prominent proteomic alterations (FC > ± 1.2, 

p*<0.05) in both regions can be found in Table 2. 

Global metabolic profiling of frontal cortex and hippocampus tissue via UPLC-MS 

We employed UPLC-MS for global metabolic profiling analysis of brain tissue. We 

identified 1057 metabolite features/peaks after filtering based on relative standard deviation 

across both models and regions. We were not able to detect any significant changed features 
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in the frontal cortex of the cPCP rat model (p*<0.05) but we found 426 significant changed 

features (p*<0.05) in the hippocampus. The metabonomic profiling findings were consistent 

with the proteomic profiling results, showing a greater effect of PCP in the hippocampus 

(Figure 1). For metabolite peak identification, the top 10 significant hits for the brain regions 

were selected and database identification performed using the HMDB and the Pubchem 

database (Table S4a and S4b). The identifications are preliminary as databank searches 

alone don’t allow for adequate identification. Tandem MS/MS analysis for metabolite 

identification were not performed.  

 

Label-free LC-MS
E 

proteomic profiling based pathway analysis 

Pathway analysis was performed using the total of all changed proteins in the frontal cortex 

and the hippocampus (p*<0.05) regardless of the magnitude of change. Recent studies have 

shown that even slight variations in the expression of multiple proteins can result in pathway 

alterations that might underlie complex disorders. Pathway analysis in combination with 

quantitative mass spectrometry can help to identify functional links or causality of complex 

physiological crosstalk in an in-vivo context. The method provides unbiased insights 

pinpointing pathways underlying physiological changes. 

Using Ingenuity Pathway Analysis we identified a decrease in neurodevelopment 

associated biological functions in the frontal cortex. The hippocampus was associated with a 

decreased activation of the biological processes “plasticity of synapse”, “exocytosis of 

vesicles”, “behaviour” and “spatial memory”, and an increased activation of “movement of 

rodents”, “paralysis” and “conditioning” (Figure 3A). This matches the reported behavioural 

readouts associated with the cPCP animal model in the literature.
47

 

GO-enrichment analysis of the proteomic changes revealed that numerous molecular 

pathways are affected through the cPCP treatment (Figure 2C), indicating that changes in 
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one pathway ultimately lead to changes in the whole system. The most robust enriched 

biological functions across both brain regions were associated with small GTPases and Rho 

signalling proteins. 

We further investigated which pathways appear to be affected by examining the interactome 

of the altered proteins. This overcomes the limitations to be restricted to the range of 

detectable proteins in the QTOF study, where certain protein classes (e.g. low abundant 

proteins, membrane proteins etc.) are frequently not identified and consequently associated 

pathways will not appear to be enriched. Therefore, we created cytoscape networks based on 

significantly changed proteins and their interactors using experimentally defined interaction 

databases for each comparison. GO-term cluster analysis using the reactome pathway 

information was performed to derive frontal cortex and hippocampus protein networks and an 

overlap of significant functions was created to identify the most robust pathway signatures 

across both regions (Figure 2B). The protein changes appeared to reflect changes in 

postsynaptic NMDAR activation events, including “Ras activation upon Ca
2+

-influx through 

NMDAR” and “CREB phosphorylation through the activation of Ras or CaMKII” as well as 

two other pathways downstream of the NMDAR. Furthermore the apoptosis-related 

biological functions of “activation of BAD and BH-3 only proteins” seem to be affected in 

the frontal cortex. In the case of the hippocampus, a diverse set of other clusters of associated 

biological functions were found to be enriched in the interactome. This involved AMPA 

receptor (AMPAR) signalling, kainate receptor signalling, ERK signalling and the TCA 

cycle.  

Selected reaction monitoring validation 

We used selective reaction monitoring assays to validate the findings of the proteomic 

profiling analysis and in order to follow up implications of the bioinformatic pathway 

changes. Therefore we included key proteins of glutamatergic signalling and proteins already 
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known to be affected by PCP treatment
22, 24

 or in schizophrenia. This led to validation of 

opposite changes in superoxide dismutase and alpha-actinin 1 (ACTN1) in frontal cortex and 

hippocampus. Furthermore we validated changes in protein DJ1 (PARK7), the astrocytic 

phosphoprotein 15 (PEA15) and found alterations, although with opposing directional 

change, in disks large homolog 4 (DLG4), NADH-ubiquinone oxidoreductase 75 kDa subunit 

(NDUS1) and neurochondrin (NCDN) (Table 3). 
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Discussion 

Currently there is only limited understanding of the molecular pathology underlying 

schizophrenia. The study of animal models used in drug discovery efforts of schizophrenia 

can help to decipher the molecular neurobiology of this complex disorder and identify novel 

targets for improved treatment. However, limited progress has been made in developing 

novel pharmaco-therapies, partly due to the scarcity of well-characterized animal models. In 

this study, we investigated the molecular changes associated with cPCP treatment in rats 

using a combination of quantitative Omics-based technologies. This combined approach will 

help to increase confidence in the validity of the model at the molecular level and thus aid 

drug discovery studies. 

This is the largest study of the PCP rat model carried out to date using a combination 

of Omics technologies to analyze distinct brain regions which have been implicated in 

schizophrenia. Alongside, we carried out a molecular profiling of blood serum to increase our 

understanding of the associated systemic effects as recent studies have shown that non-

competitive NMDAR antagonists modulate immune-regulatory function.48 The serum 

profiling led to identification of changes in fibroblast growth factor-2 (FGF-2) and four 

cytokines/chemokines (IL-2, IL-5, IL-1β, MIP-1α). These surrogate markers can be 

translated to the clinic, where the use of blood serum or plasma can be used for translational 

studies. After PCP treatment, a general trend towards an anti-inflammatory state was 

observed with decreased cell-mediated immune responses observed via decreased levels of 

MIP-1α [chemoattractant of inflammatory cells], IL-6 [T cell maturation] and IL-5 

[immunoglobulin secretion and eosinophil activation]. However, an early immune response 

was also observed through increased levels of IL-1β. When compared to one of our previous 

studies using the same multiplex immunoassay to investigate serum analyte alterations after 

acute PCP (5mg/kg) treatment
22

, no overlapping alterations in analyte levels were identified. 
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In contrast to chronic treatment, acute PCP treatment appears to have a stronger effect on 

endocrine function, as shown by changes in the levels of several hormones. 

Cytokine abnormalities have been frequently associated with schizophrenia
49

 and 

antipsychotic treatment.
50

 It has been reported that interleukin IL-2 levels can be correlated 

with the negative symptoms and cognitive performance.
51

 IL-1β has been associated with 

first episode psychosis,
49

 paranoid schizophrenia
52

 and a meta-analysis of 23 studies, 

comprising of 762 patients showed that antipsychotic treatment significantly reduced plasma 

levels of IL-1β in schizophrenia-spectrum disorders.
50

 MIP-1α has been associated with 

different psychiatric disorders, implying a general involvement of chemokine systems with 

psychiatric diseases.
53

 In line with this, elevated levels of serum IL-5 have been associated 

with an increased likelihood to develop MDD.
54

 

This study is the first to describe a robust decrease of FGF-2 in PCP-treated rats. FGF-2 

has been implicated in the pathophysiology of schizophrenia and the mechanism of action of 

antipsychotic treatment response.
55

 Furthermore, it has also been implicated in depression
56

 

and as a marker of antidepressant effects.
57

 Based on the psychotomimetic and antidepressant 

effect of NMDAR-antagonists, especially ketamine, perturbations of FGF-2 regulation might 

be relevant for both disorders. Future work needs to clarify if these peripheral changes 

contribute to the specific effect of PCP. With respect to the brain pathology, it is likely that 

FGF-2 levels in serum resemble levels in the brain since this growth factor can cross the 

blood-brain barrier.
58

 FGF-2 has been implicated in neurogenesis and gliogenesis during 

development as well as in adulthood
59

 via its role as a neurotrophic factor. This is consistent 

with our findings of a strong PCP effect on the hippocampal proteome and metabonome, with 

respect to the number of molecular changes. A growing number of studies have shown that 

pre- and postnatal exposure to inflammatory stimuli can modulate the number of proliferating 
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and differentiating neural progenitors in the hippocampus and this may have an effect on 

behaviours relevant to psychiatric disorders.
60

 

In general, the brain tissue profiling identified changes in a wide range of proteins 

induced by cPCP treatment. Individually, protein changes were subtle indicating homeostatic 

disequilibrium. Therefore we employed several pathway analyses incorporating all changes 

to reveal which signalling networks and cellular mechanism are dysregulated. In table 2 we 

also pinpoint proteins with larger fold-changes, which might represent the key drivers for the 

identified pathway alterations.  

Many of these proteins were associated with the post-synaptic density and 

downstream signal transduction pathways of the NMDAR, the primary target of PCP. 

Bioinformatic pathway analysis of these proteomic alterations revealed an association with 

events downstream of NMDA-receptor activation, CREB phosphorylation and Ca
2+

-influx in 

both brain regions, which demonstrates the validity of the experimental procedures and 

provides proof-of-concept of the analytical and bioinformatics approach. To confirm the 

effects on the postsynaptic density, we validated the alterations in the postsynaptic density 

protein 95 (DLG4) and actinin 1 (ACTN1) via SRM. ACTN1 interacts with the postsynaptic 

density network and may play a role in NMDAR and AMPAR localization and modulation of 

these receptors via effects on Ca
2+

-flux.
61

 

A noteworthy finding of the present study was the greater number of PCP induced 

proteomic and metabonomic effects in the hippocampus compared to the changes seen in the 

frontal cortex. This could open up new avenues of research considering that most previous 

studies on the PCP mechanism of action and schizophrenia pathology have focused on 

elucidating potential abnormalities in the frontal cortex.
62

 Indeed, hippocampal deficits are an 

established feature of schizophrenia
63

 as shown by a range of approaches, such as in-vivo 

(neuropsychology, structural and functional imaging), post-mortem (histology, gene 
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expression and neurochemistry) and animal model
64

 studies. Our previous study investigating 

the effects of acute PCP treatment has indicated that the hippocampus is more affected than 

the frontal cortex.
22

 Many of the findings of the proteomic shotgun analysis of acute PCP 

treatment are consistent with findings in this study (Table 3).
22

 Fifteen of the 17 significantly 

changed proteins in the hippocampus of the acute PCP model overlapped with the findings of 

this study. The stronger effects induced by chronic treatment might be secondary to 

neurodegenerative pathologies. Neurodegeneration has been associated with PCP treatment in 

humans and animal models
65

. Consistent with the proteomic analysis of frontal cortex of a 

similar cPCP rat model,
24

 we also only detected subtle changes in the frontal cortex. In 

comparison to this study, we detected overlapping pathways in oxidative stress (DJ-1 and 

SODC1 proteins) and mitochondrial related proteins (GOT2 and PKLR), and calcium 

signalling. For instance, neurogranin, one of the strongest alterations which we found in the 

frontal cortex, regulates calmodulin affinity for Ca
2+

. 

In this investigation, we also identified proteomic correlates for behavioural functions 

based on hippocampus proteomic abnormalities, such as decreased activation of “behaviour” 

and “spatial memory” derived from the cPCP-induced hippocampus proteome alterations as 

well as increased activation of the biological functions “movement”, “paralysis” and 

“conditioning”. In the case of the frontal cortex the study was unable to identify any 

associations of the proteomic alterations with behavioural readouts. The hippocampal 

alterations were further associated with decreased plasticity of synapse and neurotransmitter 

release at the proteome level and lipid metabolism at the metabonome level. The 

hippocampal pathology in schizophrenia appears to be linked with at least some of the 

cognitive deficits, given the central mnemonic roles of this brain region.
66

 These key changes 

most likely reflect alterations in the precise organisation and functioning of neural circuits 

which connect it with other structures, notably the prefrontal cortex. 
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Post-mortem studies have provided increasing evidence for glutamatergic 

neurotransmission abnormalities in schizophrenia. Such studies have found hippocampal 

changes including reduced expression of one or more subunits for all three ionotropic 

glutamate receptors (NMDAR, AMPAR, and kainite receptor). In addition, recently 

described susceptibility genes for schizophrenia all act upon glutamatergic synaptic 

transmission, which may be part of the core pathophysiology.
67

 We identified PCP-induced 

alterations in proteins involved in AMPAR trafficking in the hippocampus, which is one of 

the key mechanisms of synaptic plasticity. Studies have shown that NMDAR channel 

opening and the subsequent rise in postsynaptic calcium concentrations during repetitive 

synaptic activity, leads to regulated trafficking of postsynaptic AMPARs into and out of 

excitatory synapses. Targeting AMPAR signalling might therefore, represent a novel target in 

schizophrenia research. 

This study also detected changes in Ca
2+

, opioid, kainate and ERK signalling, which 

have previously been associated with NMDAR hypofunction.
32b, 68

 For instance, repeated 

administration of PCP reduces sigma-1 receptors in the hippocampus.
13

 Interestingly, effects 

on neurotransmitter metabolism were identified in the hippocampus, as shown by IPA and 

cytoscape pathway analysis. The most robust protein findings were associated with GABA-

receptor pathways. A compromised GABAergic system has been hypothesized to be involved 

in schizophrenia. Notably, NMDAR hypofunction has been proposed to promote deficits in 

GABAergic signalling
69

 and PCP administration during neurodevelopment affects the 

functionality of GABA interneurons in later life.
70

 One action of NMDA antagonists is to 

reduce the excitation of fast-spiking GABA interneurons, resulting in disinhibition of 

pyramidal cells. Overactive pyramidal cells, notably those in the hippocampus, can induce a 

hyperdopaminergic state that produces psychosis.
69a
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Finally, we identified alterations in the protein level of the superoxide dismutase 

enzyme (SODC) in both the frontal cortex and hippocampus, which is part of the reactive 

oxygen species (ROS) defence system. Oxidative stress damages many cell structures such as 

protein, lipids and DNA
71

. Impairments in energy metabolism are common traits of 

psychiatric disorders and were previously identified by functional assays, gene and protein 

expression studies as well as linkage analysis in schizophrenia patients.
72

 PCP administration 

to rats results in reduced rates of oxygen uptake into mitochondria isolated from brain tissue
73

 

and a meta-analysis of 44 studies identified a total antioxidant status in serum and plasma as a 

state marker for first-episode psychosis.
74

 For these reasons, molecules that possess 

antioxidant and anti-inflammatory properties may be useful as potential novel treatments in 

the first stages of schizophrenia.
75

 

This comprehensive proteomic and metabonomic study of the cPCP rat model 

provides novel molecular evidence showing that different neurotransmitter systems are 

affected through PCP treatment and that these effects occur primarily in the hippocampus. 

Importantly we were able to find potential molecular correlates which may be linked to the 

behavioural readouts in this model. Further studies are warranted to investigate this 

possibility as this could lead to identification of novel therapeutic targets involved in 

regulation of psychiatric symptoms. Furthermore, understanding the changes in glutamate 

neurotransmission in schizophrenia may facilitate the discovery of novel targets for 

pharmacological interventions, which are especially needed for the cognitive and negative 

symptoms in schizophrenia. 
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TABLES. 

Table 1: Analysis of protein levels in serum of PCP-treated (n=8) and saline-treated rats 

(n=8) using multiplexed immunoassays. P-Values were determined using SAM.
27

 FC = Fold 

change. CT = vehicle-treated rats 

Table 2: Most robust differentially expressed proteins identified in the frontal cortex and 

hippocampus of chronic PCP-treated rats compared to vehicle-treated rats using label-free 

LC-MS
E
 (ratio of <0.80 or >1.20, p*<0.05). PC = peptide count 

Table 3: Significantly changed proteins identified via label-based LC-SRM in the frontal 

cortex and hippocampus of cPCP-treated rats compared to vehicle-treated rats. Grey bars 

show consistency between SRM and LC-MS
E
 analysis. 
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TABLE 1 

Analyte name 

UniProt 

ID 

Gene 

name 

Ratio 

cPCP/CT p p* 

Interleukin-5 (IL-5) Q08125 Il5 -1.73 <0.001 <0.001 

Fibroblast Growth Factor-basic (FGF-2) P13109 Fgf-2 -1.35 <0.001 <0.001 

Interleukin-2 (IL-2) P17108 Il2 -1.60 0.0018 0.0397 

Macrophage Inflammatory Protein-1α (MIP-1alpha) P50229 Ccl3 -1.35 0.0029 0.0472 

Interleukin-1beta (IL-1beta) Q63264 Il1b 1.10 0.0104 0.1332 
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TABLE 2:  

Uniprot Entry Gene name Protein names PC Ratio P* Biological functions 

Frontal Cortex       

NEUG Q04940 Nrgn Neurogranin (Ng) 5 0.80 2.9E-06 Regulates calmodulin affinity for Ca
2+

. Involved in synaptic plasticity and spatial learning 

KIF15 Q7TSP2 Kif15 Kinesin-like protein KIF15 2 0.82 1.3E-05 Plus-end directed kinesin-like motor enzyme involved in mitotic spindle assembly 

SNAB P85969 Napb Beta-soluble NSF attachment protein 2 0.83 2.2E-03 Required for vesicular transport between endoplasmic reticulum and Golgi apparatus 

PGCB P55068 Bcan Brevican core protein 2 1.28 2.6E-03 May play a role in the adult nervous system during postnatal development 

CLC11 O88200 Clec11a C-type lectin domain family 11 member A 2 1.31 2.0E-06 Acts synergistically with other cytokines, including IL-3, GCSF, GMCSF and FLT3 ligand.  

M3K9 Q3U1V8 Map3k9 Mitogen-activated protein kinase kinase kinase 9 2 1.20 3.4E-02 Serine/threonine kinase in MAP kinase signal transduction pathway 

Hippocampus       

AP2M1 P84092 Ap2m1 AP-2 complex subunit mu 9 1.18 <E-16 Functions in protein transport via transport vesicles in different membrane traffic pathways 

BIEA P46844 Blvra Biliverdin reductase A (EC 1.3.1.24) 2 1.58 <E-16 Reduces biliverdin IX alpha to bilirubin 

CP239 P56656 Cyp2c39 Cytochrome P450 2C39 (EC 1.14.14.1) 3 0.75 <E-16 Cytochrome P450 2C39 

GP128 Q8BM96 Gpr128 Probable G-protein coupled receptor 128 2 0.77 <E-16 Orphan receptor 

H2A2A Q6GSS7 Hist2h2aa1 Histone H2A type 2-A 3 1.52 <E-16 DNA packaging 

H2AX P27661 H2afx Histone H2AX 4 1.37 <E-16 DNA packaging 

IDUA P48441 Idua Alpha-L-iduronidase (EC 3.2.1.76) 3 1.31 <E-16 Hydrolysis of unsulfated alpha-L-iduronosidic linkages in dermatan 27ulphate. 

PLIN3 Q9DBG5 Plin3 Perilipin-3 2 1.38 <E-16 Required transport of mannose 6-phosphate receptors from endosomes to trans-Golgi network  

SLX4I Q9D7Y9 Slx4ip Protein SLX4IP 2 0.40 <E-16 Subunit of different structure-specific endonucleases 

PGTA Q08602 Rabggta Geranylgeranyl transferase type-2 subunit alpha  2 1.26 1.0E-14 Catalyzes the transfer of geranylgeranyl moiety to Rab proteins. 

ANR26 Q811D2 Ankrd26 Ankyrin repeat domain-containing protein 26 2 0.71 3.9E-14 Unknown biological function 

STAG2 O35638 Stag2 Cohesin subunit SA-2 3 1.38 1.2E-13 Component of cohesin complex (DNA replication) 

MEP1A P28825 Mep1a Meprin A subunit alpha (EC 3.4.24.18) 3 1.29 2.9E-13 Hydrolysis of protein/peptide substrates preferentially on carboxyl side of hydrophobic residues 

H2A1F Q64598 Hist1h2af Histone H2A type 1-F 3 1.32 1.8E-12 Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin 

TRAF5 P70191 Traf5 TNF receptor-associated factor 5 2 1.24 1.6E-10 Links members of the tumor necrosis factor receptor family to different signaling pathways 

CC183 A2AJB1 Ccdc183 Coiled-coil domain-containing protein 183 2 0.79 8.4E-10 Unknown biological function 

PCLI1 Q3UBG2 Pid1 PTB-containing, cubilin and LRP1-interacting protein 2 0.78 8.9E-10 Increases proliferation of preadipocytes without affecting adipocytic differentiation 

FMN1 Q05860 Fmn1 Formin-1 2 0.8 1.1E-09 Plays a role in the formation of adherens junction and the polymerization of linear actin cables 

VGLU1 Q62634 Slc17a7 Vesicular glutamate transporter 1 4 1.21 1.4E-09 Mediates glutamate uptake into synaptic vesicles in excitatory neural cells. 

CCD67 Q7M6Y5 Ccdc67 Deuterosome protein 1 2 0.79 2.0E-08 Key structural component of the deuterosome (de novo centriole amplification) 

FOXK1 P42128 Foxk1 Forkhead box protein K1 2 0.65 6.1E-08 Transcriptional regulator that binds to the upstream enhancer region 

PA1B2 O35264 Pafah1b2 PAF-AH subunit beta 3 0.80 8.9E-08 Inactivates the platelet-activating factor 

RENI2 P00796 Ren2 Renin-2 2 1.32 8.9E-08 Endopeptidase, generates angiotensin I from angiotensinogen in the plasma 

ACBP P11030 Dbi Acyl-CoA-binding protein 3 1.21 9.0E-08 Acts as a neuropeptide to modulate the action of the GABA receptor 

UGPA Q91ZJ5 Ugp2 UTP--glucose-1-phosphate uridylyltransferase 3 1.51 1.4E-07 Central role as a glucosyl donor in cellular metabolic pathways 

DDX28 Q9CWT6 Ddx28 Probable ATP-dependent RNA helicase DDX28 2 1.23 7.2E-06 Involved in RNA processing or transport 

TRM11 Q9CWH5 Trmt11 tRNA (guanine(10)-N2)-methyltransferase homolog 2 1.23 3.5E-05 Mediates guanosine nucleotide methylation at position 10 

GBRG2 P18508 Gabrg2 Gamma-aminobutyric acid receptor subunit gamma-2 2 1.22 6.5E-05 GABA receptor, mediates neuronal inhibition 

TPM4 P09495 Tpm4 Tropomyosin alpha-4 chain 2 1.64 1.1E-04 Implicated in stabilizing cytoskeleton actin filaments, binds calcium 

TMOD2 P70566 Tmod2 Tropomodulin-2  2 1.24 7.0E-03 Blocks the elongation and depolymerization of the actin filaments at the pointed end 

CBX8 Q9QXV1 Cbx8 Chromobox protein homolog 8 2 0.77 1.1E-02 In complex that maintains transcriptionally repressive state of many genes 
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TABLE 3 

 

Abbreviations: UP-ID= Uniprot-ID, FC = frontal cortex, LC-MS
E
= QTOF profiling, SZ = significantly changed in human post-mortem brain 

36
, cPCP FC = significantly changed in frontal cortex tissue cPCP-treated rats 

24
, 

aPCP = significantly changed in hippocampus tissue aPCP-treated rats
22

, TPP = transitions per proteotypic peptide, �, upregulated, �, downregulated. *,**, and *** p*≤0.05,0.01, and 0.001, respectively. n.s. = not 

significant, n.d. = not detected 

 

 
  

 

  

Frontal Cortex 
10 cPCP vs 7 CT  

Hippocampus 
9 cPCP vs 7 CT 

Biological Pathway/Function SZ 

cPCP 

FC 

aPCP 

HC Uniprot-ID 

 Gene 

name TPP 

Ratio 

PCP/Ctrl p p* LC-MS
E
   TPP 

Ratio 

PCP/Ctrl p p* LC-MS
E
 

Alpha-actinin-1    Q9Z1P2 Actn1 4|4 0.59 � 3.51E-06 2.63E-05 (*)� 

 

2|4 1.48 � 3.87E-03 1.45E-02  *� 

Aspartate aminotransferase, mito (EC 2.6.1.1) X X  P00507 Got2 6|7 1.24 � 2.15E-10 3.23E-09 n.s. 

 

5|7 1.01 

 

7.01E-01 7.87E-01 n.s. 

Astrocytic phosphoprotein PEA-15    Q5U318 Pea15 8 0.61 � 3.05E-04 1.20E-03 n.d. 

 

8 1.18 � 3.59E-04 1.79E-03  *� 

Catechol O-methyltransferase (EC 2.1.1.6) X   P22734 Comt 4 0.71 � 1.01E-02 2.53E-02 n.d. 

 

3 0.58 � 1.14E-05 9.25E-05 n.d. 

Cofilin-1  X  P45592 Cfl1 7|6 0.85 � 1.51E-05 9.07E-05 n.s. 

 

5|3 1.05 

 

1.02E-01 1.91E-01 (*)� 

Coronin-1A    Q91ZN1 Coro1a 5|4 1.51 � 1.61E-11 4.82E-10 n.d. 

 

5|2 1.03 6.88E-01 7.87E-01 n.s 

Disks large homolog 4 X   P31016 Dlg4 4|3 0.94 2.92E-01 4.87E-01 n.d. 3|3 0.71 � 1.18E-09 3.55E-08 ***� 

Hypoxanthine-guanine phosphoribosyltransferase    P27605 Hprt1 4|5 0.95 

 

3.74E-01 5.49E-01 n.d. 

 

6|4 1.02 

 

6.00E-01 7.51E-01 n.d. 

NADH-ubiquinone oxidoreductase 75 kDa subunit, mito.  X  Q66HF1 Ndufs1 6|3 0.59 � 2.53E-06 2.53E-05 n.s. 

 

4|5 1.15 � 1.03E-02 2.83E-02 ***� 

Neurochondrin X  X O35095 Ncdn 3|3 1.09 

 

3.93E-01 5.49E-01 n.d. 

 

4|4 0.94 � 1.04E-02 2.83E-02 **� 

Profilin-1    P62963 Pfn1 5|4 0.98 

 

6.62E-01 8.28E-01 n.s. 

 

4|4 0.99 

 

6.00E-01 7.51E-01 n.d. 

Prohibitin  X  P67779 Phb 4|6|5 1.00 

 

9.70E-01 9.73E-01 n.s. 

 

4|5|5 0.99 

 

7.35E-01 7.87E-01 n.d. 

Protein DJ-1 (EC 3.4.-.-)  X X O88767 Park7 3 0.47 � 1.82E-04 9.12E-04 *� 

 

4 1.04 

 

5.49E-02 1.18E-01 n.d. 

Protein Slc25a12    F1LX07 Slc25a12 3|4 1.00 9.73E-01 9.73E-01 n.s. 

 

3|3 1.09 3.81E-01 5.72E-01 n.d. 

Ras-related protein Rab-35    Q5U316 Rab35 4|5 0.81 � 3.21E-04 1.20E-03 n.s. 3|4 1.12 1.54E-01 2.71E-01 n.d. 

Septin-5 X   Q9IJM9 Sept5 5|8 0.80 � 7.54E-03 2.06E-02 n.s. 4|10 1.46 � 2.12E-07 3.18E-06 *� 

Superoxide dismutase [Cu-Zn] (EC 1.15.1.1)  X  P07632 Sod1 8|5 0.86 � 1.28E-03 3.83E-03 ***� 

 

4|5 1.10 � 1.23E-05 9.25E-05 *� 

Vesicular glutamate transporter 1 (VGluT1) X X  Q62634 Slc17a7 8 1.01 

 

8.01E-01 9.00E-01 n.d. 

 

6 0.96 

 

8.49E-02 1.70E-01 ***� 
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FIGURES 

Figure 1: Overview of the proteomic and metabonomic profiling results. Volcano plots of 

group comparisons showing the adjusted significance values versus fold change distributions. 

Horizontal grey lines indicate the adjusted p value threshold of 0.05, vertical grey dotted lines 

indicate a fold-change threshold of 10 % (proteomics) and 50% (metabonomics, shown for 

positive ion mode). Green dots represent down regulated proteins/metabolites, red dots 

represent up regulated proteins/metabolites. Grey/black dots represent proteins/metabolites 

not meeting the threshold. (Neg.) = negative ion mode. (Pos.) = positive ion mode. Full 

information can be found in the supplementary information. 

Figure 2: Computational Pathway analysis of the cPCP-induced proteomic alterations in 

frontal cortex and hippocampus brain tissue. A) Ingenuity Pathway Analysis (IPA) showing 

significantly decreased and increased biological functions in cPCP rat brain regions. 

Functions (p<0.05) are shown with an activation score (z-score) >1 (increased activation) or 

<-1 (decreased activation). B) Functional enrichment analysis of significantly changed 

proteins in frontal cortex and hippocampus of the cPCP rat. Proteins were split into fold-

change bins for separate analyses. Colour coded z-score transformed p-values indicate the 

significance of the enrichment for each bin as indicated. C) Cytoscape generated interaction 

clusters based on the altered proteins (p<0.05) in the frontal cortex and hippocampus. Protein 

interaction networks were created using the IMEx databases and ClueGO was applied to 

identify clusters within. Overlapping GO-terms amongst the clusters are indicated by grey 

shading. Circles represent different GO-terms within the cluster. 
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Figure 1. Overview of the proteomic and metabonomic profiling results. Volcano plots of group comparisons 
showing the adjusted significance values versus fold change distributions. Horizontal grey lines indicate the 

adjusted p value threshold of 0.05, vertical grey dotted lines indicate a fold-change threshold of 10 % 

(proteomics) and 50% (metabonomics, shown for positive ion mode). Green dots represent down regulated 
proteins/metabolites, red dots represent up regulated protein/metabolites. Grey/black dots represent 

proteins/metabolites not meeting the threshold. (Neg.) = negative ion mode. (Pos.) = positive ion mode. 
Full information can be found in the supplementary information.  
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Computational Pathway analysis of the cPCP-induced proteomic alterations in frontal cortex and 
hippocampus brain tissue. A) Ingenuity Pathway Analysis (IPA) showing significantly decreased (black bars, 
minus sign) and increased (white bars, plus sign) biological functions in cPCP rat brain regions. Functions 

(p<0.05) are shown with an activation score (z-score) >1 (increased activation) or <-1 (decreased 
activation). B) Cytoscape generated interaction clusters based on the altered proteins (p<0.05) in the 

frontal cortex and hippocampus. Protein interaction networks were created using the IMEx databases and 
ClueGO was applied to identify clusters within. Overlapping GO-terms amongst the clusters are indicated by 
grey shading. Circles represent different GO-terms within the cluster. C) Functional enrichment analysis of 
significantly changed proteins in frontal cortex and hippocampus of the cPCP rat. Proteins were split into 

fold-change bins for separate analyses. Colour coded z-score transformed p-values indicate the significance 
of the enrichment for each bin as indicated.  
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