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The utility of indentation testing for characterizing a wide range of mechanical 

properties of brittle materials is highlighted in light of recent articles questioning its 

validity, specifically in relation to the measurement of toughness.  Contrary to 

assertion by some critics, indentation fracture theory is fundamentally founded in 

Griffith–Irwin fracture mechanics, based on model crack systems evolving within 

inhomogeneous but well-documented elastic and elastic–plastic contact stress fields.  

Notwithstanding some numerical uncertainty in associated stress intensity factor 

relations, the technique remains an unrivalled quick, convenient and economical 

means for comparative, site-specific toughness evaluation.  Most importantly, 

indentation patterns are unique fingerprints of mechanical behavior and thereby 

afford a powerful functional tool for exploring the richness of material diversity.  At 

the same time, it is cautioned that unconditional usage without due attention to the 
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conformation of the indentation patterns can lead to overstated toughness values.  

Limitations of an alternative, more engineering approach to fracture evaluation, 

that of propagating a pre-crack through a 'standard' machined specimen, are also 

outlined.  Misconceptions in the critical literature concerning the fundamental 

nature of crack equilibrium and stability within contact and other inhomogeneous 

stress fields are discussed.   

 
 
*  Corresponding author:  brianlawn@gmail.com  



 3 

I. Introduction 

 

Since Hertz,1 indentation testing has assumed a preeminent place as an exploratory and 

characterization research tool for the mechanical evaluation of ceramics and other brittle 

materials, particularly in the context of fracture.  It has served as a model system for 

analyzing contact-induced cracks and other strength-degrading damage in a wide array of 

practical engineering applications—bearings, semiconductor devices and panels, 

windscreens and laminates, small devices and microelectromechanical systems, scratch-

resistant films and high-temperature coatings, layer structures and composites, teeth and 

bone, implants and other biomaterials, and even the fashioning of ancient tools.  The 

history of crack evolution in inhomogeneous but generally well-documented contact 

stress fields, surveyed in several articles extending back almost half a century,2-8 is firmly 

rooted in fundamental fracture mechanics principles.  The methodology includes testing 

with 'blunt' (sphere, cylinder) and 'sharp' (Vickers, Knoop, Berkovich, cube corner) 

indenters.  It is demonstrably the simplest, most economical and versatile of all 

mechanical testing protocols.  It provides a powerful basis for investigating many 

materials topic areas, of which the following are just some examples:   

 

(i)  Simple, rapid method of toughness measurement  

(ii)   Critical contact force analyses, soundly based in Griffith energy-balance concept  

(iii)   Elucidation of intrinsic mechanisms of brittle crack initiation and propagation 

(iv) In situ monitoring, affording rare insight into flaw evolution processes 

(v)   Evaluation of local and macroscopic residual stresses 

(vi)   Quantification of environmental effects and crack kinetics 

(vii)   Role of plasticity (quasiplasticity) in ceramics, quantification of brittleness 

(viii) Large range of indentation loads, providing a bridge between short and long 

cracks 
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(ix) Probing crack evolution at the microstructural level 

(x) Nanoindentation, automation of hardness and modulus evaluation 

(xi) Indentation creep, viscoelastic properties 

(xii) Phase transformations at ultra-high pressures 

(xiii) Point-to-point property mapping 

(xiv) Insight into strength degradation in relation to microcontact flaws 

(xv)   Contact fatigue mechanisms 

(xvi)   Framework for theories of wear and erosion 

(xvii) Nanomechanics, simulation of contacts and property evaluation in small-scale 

samples and devices  

(xviii) Mechanical properties of thin films, coatings and layer structures  

(xix) Properties of grain boundaries and interfaces in composites 

(xx) Rigorous fracture mechanics analysis of edge chipping  

(xxi) Biomechanics, fracture in shells, implants, teeth, bone  

(xxii) Site-specific evaluation of local in-service damage in engineering components 

 

 An article by Quinn & Bradt 9 has openly questioned the veracity of the 

indentation methodology, specifically as a measure of toughness or any like crack 

resistance parameter, and advocates discontinued usage.  Others have sounded a similar 

call.10-12  The core of the claim is that indentation is limited by uncertainty in numerical 

coefficients and exponents in representative toughness equations.  It is implied that 

contact stress fields are too complex and insufficiently well defined for accurate solutions 

to fracture evolution, and that the physics of the underlying fracture processes are not 

rigorously modeled.  There is the assertion that toughness is defined by a critical 

condition where cracks begin to undergo catastrophic propagation and, by association, 

that crack resistance is fundamentally different in unstable and stable propagation states.  

It is also argued that different materials behave in widely different ways, with attendant 
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variations in crack pattern, implying a lack of universality in the indentation 

methodology.  The disapproval is underpinned by a quest to measure a single engineering 

toughness parameter, KIC, using reliable and traceable 'standard' test specimens with pre-

cracks in machined specimens.9,10  The danger is that the value of indentation testing as a 

broad-based diagnostic materials characterization tool be derailed by questionable 

concerns about numerical accuracy.  

 We submit that the above perceived issues are misleading in at least three major 

aspects.   First, it is widely overlooked that all these issues are in fact clearly outlined and 

discussed in depth in the original studies, especially in the article by Anstis et al.13  

Indentation, as with all testing methods, has its caveats and limitations, often neglected 

by the casual user, leading to overstated claims concerning toughness properties.  But this 

in no way detracts from the general usefulness of the methodology.  Second, the assertion 

regarding the lack of rigor in the indentation fracture analyses is incorrect.  Elastic and 

elastic–plastic contact fields beneath blunt and sharp indenters are in fact well defined 

and documented in classic texts and articles,14-16 and analyses of the evolution of cracks 

within these fields are based on rigorous Griffith–Irwin equilibrium fracture mechanics, 

in accord with the first law of thermodynamics (Panel A).6,17  Third, specification of a 

single toughness number from a standardized pre-crack test is restrictive.  For instance, it 

precludes measurement at the microstructural scale where crack initiation and growth are 

determined.  Further, many brittle materials exhibit toughness properties that are 

dependent on crack length and history (R-curves), where a unique toughness value is 

meaningless.  Proper characterization of mechanical properties demands test protocols 

that address the questions at issue, not just provide a number.   

 The present article is presented as a case for usage of indentation as an 

indispensable tool for exploring material behavior, and for providing a firm basis for 

modeling a range of practical properties.  In many instances indentation is the most 

practical way to explore material behavior at the microstructural level.  It is often the only 
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way to probe small-scale specimens and components, e.g. modern microelectronic and 

micromechanical systems, where 'bulk' properties may no longer apply.  We maintain 

that the variations in indentation responses alluded to above provide uniquely visual and 

quantitative 'fingerprints' of a rich material diversity, over a wide range of crack 

dimensions.  Select examples are given in Figs. 1 and 2.  Accordingly, we critique the 

methodologies used to measure toughness and other material properties, both by 

indentation and from 'standard' specimens, and argue that any limitations of indentation 

testing are greatly outweighed by its countless virtues.  We point out several 

misconceptions and misleading assertions in some of the detracting articles, primarily the 

rejection of fundamental mechanics principles in favor of empirical fracture criteria.  

 

Figures 1 and 2 here 
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Panel A.  Fundamental basis of fracture mechanics 

 

 Modern fracture mechanics begins with the energy-balance concept of Griffith, with 

subsequent expression in terms of stress intensity factor terminology by Irwin.6,17-19  The Griffith 

energy balance condition for fracture is anchored in the first law of thermodynamics.  According 

to Griffith, a crack in equilibrium is on the verge of extension when G = R, where G is 

mechanical energy  release rate and R is crack resistance.  In ideally brittle materials, R is twice 

the reversible surface energy.  In terms of Irwin stress intensity factor terminology, equilibrium is 

stated as KI = KIC, with subscript I denoting mode I.  Again in ideal brittle materials, KIC identifies 

with a single-valued toughness T.  These two terminologies are equivalent, linked by relations of 

the form G = KI
2/E, R = T2/E, with E Young's modulus.   

 Equilibrium can be unstable or stable, depending on whether G or K increases or 

decreases with crack length c, i.e. by the sign of dK/dc.6,20  The empirical pre-Griffith notion of 

fracture as attainment of some critical stress, either applied externally or operative at a crack 

tip,10,21 is oversimplistic and restrictive.  Kinetic states, manifested as a crack velocity function 

v(G) or v(K) in the domain G < R, K < T, ensue when moisture or some other reactive 

environment diminishes the effective crack resistance, leading to subcritical crack extension at a 

specific rate.22  

 For non-ideal brittle materials, toughness can be a function of crack length and history, 

so-called R-curve behavior.6  This applies to ceramics with large-grain, heterogeneous 

microstructures, especially those with weak internal interfaces and  inbuilt local residual stresses.  

In that case the crack extension condition is generalized to G = R0 + RS, KI = T0 + TS, where R0 

and T0 are short-crack crack resistance quantities and RS and TS are crack shielding quantities 

from microstructural sources (bridging, phase transformation, microcracking, etc).  
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II. Brief History 

 

(1) Blunt indenters 

 Cracks from concentrated loading beneath hard spherical indenters are the longest 

studied examples of fracture in inhomogeneous stress fields.1,2,23,33  The prototypical case 

is the growth of a cone crack within the Hertzian elastic stress field from contact at load 

P on a flat surface with a sphere of radius r (Fig. 1a).  The Hertzian stress field solutions 

are explicit and exact for elastically isotropic solids.1  Interest in the Hertzian fracture 

problem was aroused over a century ago by Auerbach, who observed experimentally that 

the critical load for cone pop-in satisfies PC ∝ r (Auerbach's law).33  Such a relation is at 

odds with PC ∝ r2 derived from the notion that fracture should initiate from a critical flaw 

when the maximum tensile stress outside the Hertzian contact equals the bulk strength.  

This seemingly paradoxical discrepancy highlighted the inadequacy of simplistic critical 

stress criteria for predicting the onset of fracture in non-uniform stress fields.  Subsequent 

analysis of crack growth within the Hertzian field using Griffith–Irwin mechanics 

showed that a shallow ring crack first forms from a surface flaw and then grows stably 

downward within a rapidly diminishing tensile field before popping into a full cone at the 

critical load.2,7  That analysis produces a rigorous validation of Auerbach's law  

 

 PC = ArR = ArT2/E        (1) 

 

with A a dimensionless constant, R crack resistance, T toughness and E Young's modulus.  

On loading beyond the critical point, the fully developed cone crack first arrests and then 

propagates stably at P > PC according to the relation of the form 23,34 

 

 P/c3/2 = B(RE)1/2 = BT        (2) 
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with c a characteristic crack size and B another dimensionless constant.  Note the 

appearance of toughness terms in eqns. 1 and 2, foreshadowing later relations for sharp 

indenters.  

 Despite a wealth of compelling evidence supporting the formal Griffith–Irwin 

derivation of eqn. 1, the simplistic notion that unstable fracture always occurs at some 

maximum stress has proved hard to shake.  Evaluations of the maximum tensile stresses 

at cone crack initiation at the circumference of the Hertzian contact can be more than an 

order of magnitude greater than independently measured flexural strengths.25,35  

Moreover, these maximum tensile stresses increase as the sphere size diminishes, i.e. 

there is an intrinsic size effect.  Original attempts to account for this size effect invoked 

flaw statistics, using an argument that smaller indenters sample a smaller surface area and 

therefore stand a reduced chance of locating a critical flaw, with corresponding increase 

in stress level.  While that explanation may apply to pristine surfaces with widely 

dispersed ultra-small (submicrometer) flaws,36 where stress gradients are minimal, its 

unconditional use was discredited almost half a century ago by cone-crack tests on glass 

surfaces with controlled flaw populations.35  Nevertheless, recent studies have chosen to 

revert to such empirical explanations, without attempt to identify the underlying 

mechanics of ring–cone cracking,12 thereby ignoring a long history of formal indentation 

theory.  

 

(2) Sharp indenters 

 As indicated above, Hertzian cone fracture is an important forerunner to more 

widely adopted sharp indenter tests with fixed-profile Vickers, cube-corner and 

Berkovich geometries (Fig. 2a).8  A major advantage of sharp indenters is that they 

enable straightforward measurement of radially extending cracks on the specimen 

surface.  Sharp indenters are favored because of their simplicity, economy and versatility 

in  routine laboratory testing.  The stress field is elastic–plastic,37 with cracks initiating 
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within and propagating from a near-hemispherical plastic zone immediately beneath the 

contact.  The critical load to initiate radial cracks has the form 8,38,39 

 

 PC = CH (H/E)2(T/H)4         (3) 

 

where H is hardness and C is another dimensionless coefficient.  The use of sharp 

indenters to measure toughness was foreshadowed by Palmqvist 40 and Evans & Charles 
41 and subsequently developed more rigorously using an 'expanding cavity' model for the 

elastic–plastic field.39  A formal solution for the size of well-developed radial crack traces 

at P > PC is given by Anstis et al.13  

 

  P/c3/2 = (1/ξ)(H/E)1/2T        (4) 

 

This last equation is the most extensively used of indentation toughness relations, and is 

the one that has evoked the bulk of the criticism.  It has several variants,42-45 principally 

in the value of coefficient ξ but also in the H/E exponent.  Another variant employs direct 

measurement of crack-opening displacements.46  In addition to radial–median cracks, 

shallow Palmqvist, subsurface lateral and (incomplete) cone or ring cracks add to the 

fracture multiplicity (Fig. 2a).  Potential complications from non-ideal crack geometries 

and interactions are subsumed into the coefficient ξ.47   

 A feature of eqn. 4 is that it can cover a wide range of contact loads, over 4 orders 

of magnitude in well-behaved materials, providing a bridge between short-crack and 

long-crack behavior.6,17  The range can be extended downward at the low-load end by 

using indenters with greater acuity, including cube-corners.48-52  This takes us into the 

domain of nanoindentation, with all the benefits of automation 53 and property mapping.54  

Small-scale indentation is unique in the way it facilitates elucidation of crack interactions 

with microstructural features, such as grain boundaries, interfaces, and second 
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phases.31,55,56  It is also being extended to viscoelastic materials, including biological 

tissue.57  Such information has aided enormously in the design and synthesis of more 

fracture resistant materials.  
 

III. Indentations as Fingerprints—Exploring Material Diversity 

 

 It has been argued that different materials have a spectrum of mechanical 

behaviors, and that consequent variations in indentation response conspire against an all-

encompassing closed-form toughness equation.9  The challenges presented by this 

diversity in behavior, not only between different classes of brittle solids but also within a 

given class, are part of what gives materials science its charm.  Generally, materials have 

to be selected and tailored individually for specific applications, and testing protocols 

need to be chosen to reflect each application.  This diversity is nowhere better revealed 

than in indentation damage patterns, such as those in Figs. 1 and 2.  Indentations are 

valuable 'fingerprints', elucidating a rich tapestry of material behavior.8,58   

 Consider blunt indenters first.  A near-axisymmetric surface ring crack can 

immediately confirm that a material is isotropic, as in silica glass (Fig. 1b),2,23 or 

anisotropic with preferred cleavage planes, as in monocrystalline diamond (Fig. 1c).59  

However, the classic Hertzian fracture analysis, predicated on a fully elastic contact field, 

is satisfied only in a select range of highly brittle solids.  Softer and more heterogeneous 

ceramics, those with R-curve behavior (Panel A), may deform irreversibly beneath the 

indenter before fracture occurs:  compare the (half-) surface traces in a fine-grain silicon 

nitride with its coarse-grain counterpart (Fig. 1d).25  The residual impression in the latter 

case is due to local shear-driven breakdown of weak internal interfaces within the 

microstructure (quasiplasticity).  The condition for exceeding the yield stress is PY ∝ r2 

which, in relation to the Auerbach condition PC ∝ r for cone crack initiation, means that 

plasticity is favored by small spheres,60 a size effect again incommensurate with a critical 
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stress condition for fracture.  In cyclic loading, such microstructural breakdown in 

heterogeneous ceramics can cumulate rapidly, resulting in severe contact fatigue (Fig. 

1e).25,26,61-63  In aqueous environments the deformation can be augmented by deep 

penetrating inner cone cracks, driven by hydraulic pumping.64  Finally, the test is readily 

extendable to brittle layer structures,7,65,66 including teeth 67-70 and other biological 

structures, with consequent revelation of undersurface cracking modes (Fig. 1f).   

 Likewise with patterns from sharp indenters.  The quintessential brittle materials, 

such as normal silicate glasses, exhibit well-defined cross-shaped radial crack patterns 

over a wide range of loads (Fig. 2b).71  Some materials depart from this ideal:  

'anomalous' glasses and porous ceramics which deform by densification rather than 

shear;46,72,73  coarse-grain ceramics;13  phase-transforming ceramics;74,75  viscoelastic 

materials.76  But even there indentation patterns provide valuable visual clues to the 

mechanical complexion.  There is also an intrinsic indentation size effect, whereby radial 

cracks are suppressed below a threshold load (Fig. 2c).  This size effect is a manifestation 

of the different load dependence of the crack dimension c in eqn. 2, P/c3/2 = constant, 

relative to the hardness dimension a, P/a2 = constant.28,77-79  The threshold load 

diminishes as the acuity of the indenter tip becomes greater.49,79  Even in the subthreshold 

region, strength-degrading flaws can evolve from shear bands within the plastic zone.80-85  

In materials like silicon, the deformation occurs in part from crystallographic slip 86,87 and 

part from phase transformation (Fig. 2d).30,79,88-92  These elements of flaw character and 

evolution are not readily ascertained by any other experimental approach.  Indentations 

can be conducted at elevated temperatures, enabling one to track the changing 

competition between slip and cleavage, i.e. brittle-to-ductile transitions.93  Indentations 

can also be used to probe the properties of internal interfaces in thin films, coatings and 

composites (Fig. 2e).31,55,56,94-97  Finally, they can be used to evaluate residual stresses,98-

102 as well as provide a vivid demonstration of the intensity of these stresses from 

observation of spontaneously ejected material after load release (Fig. 2f).32,103   
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IV. Indentation Toughness 

 

(1) Critique 

 The chief objection to the indentation methodology, specifically by Quinn & 

Bradt 9 but also by others,10-12 centers around the first listed item in the Introduction, i.e. 

measurement of toughness.  Most criticism is directed toward the use of eqn. 4 in 

conjunction with Vickers indenters, although other variants of this equation are swept up 

by the broad brush of disapproval.  The objectivity is belied by the rhetoric and 

misconceptions.9  It is argued that the indentation fracture mechanics relations in Sect. II 

do not have applicable fracture mechanics solutions and are instead products of 

dimensional analyses modified by experimentally derived calibration factors, with 

'occasional vague allusions to a theoretical basis'.  It is also argued that these calibration 

factors render the technique suspect in any absolute toughness evaluation.  Based on 

these claims, they unilaterally advocate usage of indentation testing be discontinued.  An 

unfortunate consequence is that this kind of critique spills beyond toughness and casts a 

pall on all the other applied research areas enumerated in the Introduction.   

 

(2) Dimensionality of indentation relations—a certain universality 

 We assert that the suggestion that the indentation relations in Sect. II do not have 

a strong foundation in applicable fracture mechanics is baseless.  These relations are 

derived rigorously from first principles, for model crack geometries in well-defined 

contact fields, with all the important material variables, toughness primarily, expressed in 

explicit form.  They are not, as claimed,9 derived simply from dimensional analysis.  At 

the same time, there is a commonality in the dimensionality of these relations that speaks 

to a certain universality in soundly-based fracture mechanics solutions:   

 

(i)  Auerbach's law and JKR.  The condition for cone crack initiation in eqn. 1 is 
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expressed as a proportionality between the critical load quantity PC/r and crack resistance 

R.  An identical proportionality is observed in the celebrated JKR relation obtained by 

Johnson, Kendall & Roberts in their analysis of pulloff force for adherent spheres,104 with 

the 'crack resistance' R replaced by an interfacial adhesion energy.  This identical form is 

attributable to the fact that both Hertzian contact configurations essentially involve stable 

precursor crack growth prior to criticality, in the latter case as the inward running of a 

crack along the adhesion interface.  These relations can only be accounted for using 

rigorous energy-balance principles.  

(ii)  Contact far-field solutions.  A key feature of the indentation fracture mechanics 

relations for fully propagating cracks in both blunt and sharp contact fields is 

proportionality of the quantity P/c3/2 to toughness T in eqns. 2 and 4.  The dimensionality 

is consistent with solutions for center-loaded cracks propagating with circular, penny-like 

fronts in the far field.6,105  This constancy of P/c3/2 is in fact remarkably well satisfied in 

experimental data for glasses over a large range of loads and indenter geometries, blunt 

(flattened spheres) and sharp (cones and pyramids with different apical angles).16,34  It is 

also confirmed in data using pyramidal indenters in several fine-grain ceramics102,106-108, 

including data for smaller, less well-developed (Palmqvist) cracks.109  This resilience in 

data behavior is testament to the broad reach of a sound fracture mechanics approach.  It 

is true that the presence of macroscopic residual stresses in a body can cause deviations 

from constancy in P/c3/2, but even there such deviations can be usefully employed to 

quantify the magnitude of such stresses.98,102,110-112 

 

 An interesting adjunct to indentation fracture is edge chipping, when point-

contacts are placed at a distance h close to an orthogonal side wall.  A critical spallation 

load P is attained only after a contact-initiated crack propagates stably to a critical depth.  

A basic Griffith–Irwin analysis of the critical condition yields a proportionality between 

the quantity P/h3/2 and toughness T, i.e. of the same form as eqns. 2 and 4.113  Prior to this 
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analysis, P(h) data were simply subjected to statistical regression procedures without any 

consideration of stability in the crack growth, resulting in empirical power laws with no 

physically or dimensionally correct relation to toughness.   

 

(3) Assumptions and accuracy—use and misuse 

 Notwithstanding the fundamental underpinning in the indentation formulations, 

eqn. 4 in particular, there are caveats as to accuracy and applicability that should be 

considered in any usage.  Where the analysis is most vulnerable is in the dimensionless 

coefficients in the toughness relations, especially the quantity ξ in eqn. 4.9,11  The 

indentation stress fields are highly inhomogeneous, and there are acknowledged 

assumptions in the modeling of inelastic components, so that absolute values deriving 

from the fracture mechanics analyses are indeed subject to numerical uncertainty, even 

for materials with well-behaved crack patterns.  It is for this reason that the coefficient ξ 

in the original study was calibrated against independently measured toughness values for 

select ceramics with single-value toughness.13  In that study the absolute numerical 

accuracy was estimated at 30% to 40% over a wide range of materials, and considerably 

better for comparative measurements within a given material class.  (If these bounds are 

taken into account, the perceived disparity between toughness values for a selected 

'standard reference material' measured by indentation and an independent method 

vanishes.9)  In this context it must be reiterated that indentation testing was never 

proposed by the original authors as a standard for toughness measurement.  It has always 

been advocated as an exploratory test—an incomparably quick, convenient and versatile 

method for probing fracture susceptibility, especially in a point-to-point capacity and in 

small-scale specimens, provided due recognition is given to the limits of accuracy.   

 Other objections to the indentation toughness methodology have been cited, 

especially in Vickers tests where radial crack patterns depart from the ideal.9-12  These 

include:  the tendency for cracks to become disrupted in coarse-grain ceramics;  
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departures from ideal penny-like crack geometries;  softer ceramics where crack 

extension is not well developed (c < 2a);  the existence of densification or dilatation in 

the contact deformation of anomalous glasses, phase-transforming ceramics (zirconia) 

and porous materials; complications from multiple crack formation (lateral cracking); and 

the presence of residual stresses.  Another criticism cites the need for exacting 

microscopic examination to locate crack tips in non-reflecting specimen surfaces and to 

test in inert environments.  These are legitimate issues, but all are acknowledged in the 

original paper by Anstis et al.13 and in subsequent review articles.5,7,8  There are further 

questions concerning the use of the expanding cavity model for the elastic–plastic field, 

but this model has been validated experimentally and theoretically for wide ranges of 

indenter shapes, materials, and crack sizes.5,7,8,16,34,106,107,114  

 In summary, failure to exercise due diligence when using eqn. 4 for Vickers 

indentation toughness tests can certainly lead to suspect toughness numbers.  The very 

simplicity of the indentation technique can lead to misuse by the unwary user.  In 

anomalous glasses for instance, the crack patterns tend to be relatively complex, with 

stunted radial arms.46,72  Unconditional measurements can then lead to overstated values.  

This despite the fact that long-crack toughnesses of anomalous glasses are comparable to 

their normal glass counterparts.115  Exaggerated toughness values have been reported 

from Vickers indentations, in some cases with barely visible or even no radial cracks at 

all.116-118  The use of Vickers indentation testing in bone tissue has aroused similar 

controversy.119-121  In that instance the application of any analysis based on elastic–plastic 

theory, indentation or otherwise, is problematic because bone exhibits pronounced time 

dependence and anisotropy in its deformation, important elements missing from the 

modeling leading to eqns. 3 and 4.57  It is interesting that some of the co-authors critical 

of Vickers toughness evaluation11 have employed this very same technique to map out 

toughness variations in tooth tissue.67   

 The same cautionary warnings extend to automated nanoindentation testing, 
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where due allowance needs to be made for potential artifacts from instrument calibration, 

thermal drift, pile-up or sink-in, surface roughness, tip rounding, tip adhesion, and so on.8  

Nanoindentation is more than a black box, and misuse can lead to serious errors in 

property evaluation.58  As with all measurement techniques, it is a case of user beware.   

 

(4) Crack equilibrium and stability 

 A common thread in the indentation fracture mechanics is stability in various 

initiation and propagation phases of crack evolution.  The existence of stable equilibrium 

states in brittle fracture is in fact the norm.20  Indentation cracks, such as those illustrated 

in Figs. 1 and 2, simply comprise the most widely documented examples.  Crack stability 

is arguably the least well appreciated element of fracture mechanics.  It is suggested by 

some that indentation tests pertain to an 'arrest' stress intensity factor KIA, which differs 

from KIC measured at the point of unstable failure.9,10  This mindset contends that arrested 

cracks satisfy some alternative fracture condition, implying that cracks in stable and 

unstable equilibrium are fundamentally different in nature.  That is tantamount to 

rejecting the Griffith energy-balance concept of fracture (Panel A), which makes no 

physical distinction between equilibrium crack states.  The contention that toughness KIC 

is specifically a measure of resistance to catastrophic fast fracture is highly restrictive.  

Perhaps all this is an unfortunate outcome of engineering stress intensity factor 

terminology, with subscript C interpreted as signifying only instability instead of a more 

broadly based equilibrium state.   

 

V. Limitations of Pre-crack Test Specimens 

 

 If not indentation, what then the alternative?  Some advocate the use of 

engineered test specimens with machined pre-cracks as standards for toughness 

measurement.9  Such tests may be useful to a materials processor or manufacturer who 
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seeks some form of reliable number to quantify the virtue (or otherwise) of a specific 

material.  However, those specimens require accurate and costly machining with 

reproducibly sharp pre-cracks to avoid erroneously high values.11,12  Specimens involving 

crack propagation from a sawn notch are particularly suspect.  Quoting independently 

obtained toughness numbers from standardized pre-crack tests alone can provide little or 

no insight as to how a given material is likely to respond to many practical stress states, 

especially in intense, inhomogeneous stress fields and in small-scale bodies.    

 And if, as argued,9 the 'arrest' KA for stable cracks is indeed fundamentally 

different to 'critical' KC for unstable cracks, then how can data from pre-crack tests 

provide any information on any of the applications (other than the first) listed in the 

Introduction?  With regard to the example of anomalous versus normal glasses cited in 

Sect. IV(3), it is unclear how pre-crack toughness data could predict the different fracture 

behavior of these two material classes in concentrated fields.  Nor is it apparent how pre-

crack data might be used to predict strength degradation from microcontacts, or to 

quantify wear and scratch resistance in service environments, phenomena governed by 

behavior of small-scale stable cracks.3,7,8,122  Long-crack toughness numbers are unlikely 

to shed any insight into the way flaws evolve at the microstructural level,123,124 or on the 

interactive role of local residual stresses from highly concentrated loads.71,123  Such 

numbers are also unlikely to be useful for materials used in the nanomechanical domain, 

where responses can undergo marked changes due to size effects and differences in 

microstructure.125  Long-crack specimens are totally ill-equipped to explore point-by-

point property variations in a given material component, or distributions of any residual 

stresses in such a component.  It is not the test protocols that are at issue here, but the 

limited information that can be obtained from them.  

 Toughness is a nebulous quantity.  Any measurement, in either pre-crack or 

indentation tests, is sensitive to material fabrication (heat treatment, grain size, additives 

and impurities, second-phase particles, porosity), presence of residual stresses (local and 
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macroscopic) and exposure to moisture (slow crack growth).  In heterogeneous structural 

materials it depends on crack size and history, in which case long-crack measurement of 

KI at instability corresponds to some location along an R-curve.6  Toughness per se does 

not rank highly up the ladder of fundamental material properties.  Its measurement is best 

made under conditions that closely represent specific applications, especially in those 

applications subject to inhomogeneous contact stress states.   

 

VI. Conclusion 

 

 This article has sought to make the case that any perceived limitations of the 

indentation technique are greatly outweighed by an overwhelming abundance of 

advantages.  Some of the critiques contain misconceptions of fracture mechanics.  They 

are based on the restrictive notion that toughness represents only a critical instability 

condition.  That assertion disregards the basis of fundamental Griffith–Irwin fracture 

mechanics, with misplaced distinctions between stable and unstable equilibrium states.  

Recent attempts to recast indentation mechanics in term of simplistic critical stress 

notions reflect a tendency to ignore these fundamentals.  Those attempts focus on 

standardized toughness measurements, a role for which indentations were never proposed 

in the original papers.  The dangers arising from fixation on accurate toughness numbers 

are twofold:  that refutation of indentation analysis as a standard measurement tool 

should derail the broader range of applications listed in the Introduction;  and in so doing, 

that a wealth of rigorous indentation analysis over more than half a century should be 

bypassed. 

   Indentation is a versatile tool for exploring a rich diversity of material responses, 

in a uniquely visual and quantitative way.  Indentation toughness relations are based on 

rigorous fracture mechanics analyses of crack growth in inhomogeneous but well-

documented stress fields.  The principal limitation of the toughness equations lies in the 
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values of the coefficients, although that hardly detracts from the wider utility of the 

method.  Apart from enabling evaluation of material properties, indentation offers rare 

insight into the way damage evolves in brittle materials—the competition and interaction 

between cracking and various forms of deformation, and the mechanisms of crack 

nucleation and initiation at the microstructural level.  It quantifies intrinsic size effects 

and the associated concept of brittleness.  Indentation also establishes a physical basis for 

modeling strength and wear properties.  Even departures from ideal behavior can tell us a 

great deal about the material complexion, including residual stress states.  At the same 

time, application of the technique demands due caution, with full awareness of caveats, as 

outlined in the original articles.   
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Figures 
 

1. Blunt-indenter patterns formed by contact with hard spheres.  (a) Schematic, 

showing formation of cone crack in flat specimen.  (b) Underside view of near 

axisymmetric cone crack formation in silica glass slab, in Hertzian elastic field.23  

(c) Surface view of indentation on (111) diamond surface in elastic contact, 

showing modifying effect of crystallographic cleavage.24  (d) Half-surface views 

of indentation in silicon nitride: upper—fine-grain, showing cone cracks in elastic 

contact; lower—coarse grain, showing quasiplastic impression.25  (e) Surface 

view of indentation in coarse grain alumina after cyclic loading, showing local 

grain deformation and dislodgement.26  (f) Section view of indentation in 

fine/coarse grain silicon nitride bilayer, showing surface and subsurface crack 

modes.7   

 

2. Sharp-indenter patterns formed by contact with fixed-profile diamond indenters.  

(a) Schematic, showing radial–median (R–M), lateral (L) and cone (or ring) 

cracks (C).  (b) Surface view of well-formed radial cracks from Vickers 

indentation in soda-lime glass.27  (c) Surface view of subthreshold and 

postthreshold Berkovich indentations in silicon.28  (d) TEM views of 

nanoindentations in single crystals: upper—Berkovich, surface view of hexagonal 

silicon carbide, showing radial cracks and interacting dislocation slip;29  lower—

small sphere, side view of silicon, showing slip bands and phase 

transformations.30  (e) Surface view of Vickers-induced debonding of monazite-

coated sapphire fiber in fine-grain alumina matrix.31  (f) Side view of spontaneous 

post-indentation ejection of particulates from release of intense internal residual 

stresses in β-eucryptite.32   
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