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ABSTRACT

We describe a simple metric for image patches similarity, to-
gether with a robust criterion for unsupervised patch match-
ing. The gradient orientations at corresponding positions in
the two patches are compared and the normalized errors are
accumulated. Based on the a contrario framework, the match-
ing criterion validates a match between two patches when this
cumulative error is too small to have occurred as the result of
an accidental agreement. The method is illustrated in the val-
idation of keypoint matches.

Index Terms— patch matching, a contrario validation,
false positives

1. INTRODUCTION

Image patches, as opposed to entire images [1], represent a
good trade-off between informativeness and robustness to lo-
cal deformations or occlusions, a highly desirable quality in
various computer vision tasks. Discovered using specific de-
tectors [2] or unsupervised learning [3], or simply sampled
densely over the entire image [4], image patches appear un-
der different representations in a wide range of applications:
image retrieval [5], image classification [6], object recogni-
tion [7], (cross-domain) image matching [8], image editing
[4], to name only a few.

Regardless of the application, appropriate metrics are
needed to reason about patch similarity in a robust way. Sim-
ple metrics like L1 norm, L2 norm, or SSD (Sum of Squared
Differences) over the intensity values of the patch pixels [9],
despite their computational efficiency, have high sensitivity to
small local deformations and noise, making them unsuitable
for reliable estimation of patch similarity. Ardo and Astrom
use a Bayesian formulation and learn from videos prior dis-
tributions of correlation coefficients to add robustness to the
matching procedure [10].

To cope with metrics sensitivity, a large amount of re-
search works focused on designing efficient descriptors of
image patches that encode desired geometric and appearance
invariances, using histogram representations, e.g. SIFT [11,
12], ASIFT [13], Shape Contexts [14], Self-Similarity de-
scriptors [8], etc. Robust to predefined deformations, patch

comparison based on these descriptors can then be performed
more reliably using the simple metrics mentioned above, re-
sulting in scalable recognition or indexing systems. For in-
depth comparative studies on image patch detectors and de-
scriptors we refer the reader to [15, 16, 17].

Despite their wide use in various setups due to their dis-
criminative power, reasoning in the space defined by these
descriptors is far from trivial in applications that require di-
rect image matching, e.g. image registration for mosaicing
[18], or stereo image matching [19]. Often, matches are found
using nearest neighbour schemes [20], together with a hard-
coded threshold, for a predefined distance function. A more
robust criterion to match SIFT-like descriptors uses a thresh-
old on the ratio between the nearest neighbour and the second
nearest neighbour [11]. Hard-coded thresholds limit the flexi-
bility of the methods, whilst the latter criterion fails in images
containing repetitive patterns. To counteract these issues, Ra-
bin et al. [21] proposed a framework based on the a con-
trario theory for robust parameterless SIFT descriptor match-
ing. The method requires learning the distribution of the de-
scriptor space and uses the earth mover distance to quantify
the descriptor similarity.

In this paper we show that it is possible to obtain a simple
unsupervised parameter-free matching criterion by reasoning
directly in the image space, bypassing histogram representa-
tions. This is a natural extension of the work described in [22]
for symmetry detection. Based on the a contrario theory [23],
our method integrates the normalised gradient orientation er-
rors between two patches and evaluates the probability of ob-
serving such an error as a result of an accidental agreement.
If this probability is small, the match is considered as valid.
In the following, we describe in detail the error computation
procedure, together with the theoretical setup underlying the
matching criterion (sect. 2). The applicability of the proposed
approach is illustrated for SIFT keypoint matches validation,
and is supported with qualitative results (sect. 3).

2. PATCH MATCHING

The proposed patch matching validation procedure is based
on the a contrario theory, which relies mainly on the non-
accidentalness principle [24, 25]; informally, this principle



states that there is no perception in noise. In the words of
D. Lowe, “we need to determine the probability that each re-
lation in the image could have arisen by accident, P (a). Natu-
rally, the smaller that this value is, the more likely the relation
is to have a causal interpretation” [25, p. 39]. In our context,
we need to assess the existence of a causal relation between
two patches, based on an appropriate metric. If the distance is
bigger than the expected distance for a pair of patches drawn
from a random model, the match is rejected as there is not
enough evidence to discard an accidental match.

More formally, given a candidate pair of patches P and
Q of equal size, a distance function d(P,Q) will be defined,
together with a stochastic model H0 for random patches
used to evaluate accidentalness. We denote by DH0

a ran-
dom variable corresponding to the distance between two
random patches drawn from H0. To assess the accidental-
ness of a match (P,Q), we need to evaluate the probability
P[DH0 ≤ d(P,Q)] of observing under H0 a distance DH0

smaller than the observed one d(P,Q). When this probability
is small enough, there exists evidence to reject the null hy-
pothesis and declare the candidate meaningful. However, one
needs to consider that usually multiple patch pairs are tested.
For example, if 100 tests are performed, it would not be sur-
prising to observe an event that appears with probability 0.01
under random conditions. The number of tests NT needs to
be included as a correction term, as it is done in the statistical
multiple hypothesis testing framework [26] (see [27, sect.4.4]
for more details). Following the a contrario methodology
[23], we define the Number of False Alarms (NFA) of a pair:

NFA(P,Q) = NT · P
[
DH0 ≤ d(P,Q)

]
.

Pairs with NFA ≤ ε, for a predefined ε value, are accepted as
matches. One can show [23, 27] that under H0 the expected
number of pairs with NFA ≤ ε, is bounded by ε:

EH0

 ∑
(P,Q)∈NT

1NFA(P,Q)≤ε

 < ε,

whereNT is the set of NT tests. As a result, ε corresponds to
the mean number of false detections per random image pair.
In most practical applications, the simple value ε = 1 is suit-
able; we will set it once and for all in our application as well.
With this choice, the expected number of false positive patch
matches per random image pair is guaranteed to be upper-
bounded by 1.

Regarding the choice of d(·, ·) and H0, we suggest that
a robust evaluation of patch similarity can be obtained by
analysing the gradient orientation errors of the correspond-
ing pixels in the candidate pair of patches. Let pi and qi be
the corresponding i-th pixels of patches P and Q, extracted
from images I1 and I2, respectively. The index i takes val-
ues in {1, . . . , Np}, where Np is the number of pixels in the
patches, which are of equal size. Then the orientation error

of the pair of pixels is given by
∣∣Angle

(
OI1(pi),OI2(qi)

)∣∣,
where OI1(pi) is the image gradient at pi and OI2(qi) is the
image gradient at qi. The metric1 d(P,Q) can now be de-
fined as the additive normalised orientation error of the pairs
of pixels:

d(P,Q) =

Np∑
i=1

∣∣Angle
(
OI1(pi),OI2(qi)

)∣∣
π

.

A perfect match has d(P,Q) = 0, whilst the worst has
d(P,Q) = Np.

With this choice, an appropriate (unstructured) null hy-
pothesis H0 is an isotropic gradient field whose orientations
are i.i.d. random variables, uniformly distributed over [0, 2π].
These properties hold in a Gaussian white noise model, under
certain conditions of sub-sampling [23, p. 67].

Within this setup, DH0
corresponds to the sum of Np in-

dependent and uniformly distributed random variables taking
values in [0, 1]. Using the Irwin-Hall distribution [28], for a
given d, with 0 ≤ d ≤ Np, we obtain:

P[DH0
≤ d] = 1

Np!

bdc∑
i=0

(−1)i
(
Np

i

)
(d− i)Np ,

where bdc is the largest integer not bigger than d. Moreover,
it can be observed that the first term of the sum gives an up-
per bound of this probability. For computational reasons, we
keep only this first term, as it is a sufficient approximation2 to
evaluate the NFA test. Thence:

P
[
DH0 ≤ d(P,Q)

]
≤
[
d(P,Q)

]Np

Np!
.

Finally, to complete the reasoning, we need to compute
the number of tests NT . This term needs not be very accu-
rate; it only has to reflect the order of magnitude of the num-
ber of tests to ensure that the proposed validation adapts to
the image sizes while keeping under control the false posi-
tives for increasing image size (which implicitly leads to in-
creased number of match candidates). The number of tests
is determined by the number of patch pairs potentially eval-
uated, which is dependent on the problem being considered.
For example, when comparing patches at a single scale and in
the same image, the number of patches would be given by the
number of pixels (each pixel of the image represents a patch
centre) times the number of orientations; then, the number of
tests would be equal to the number of pairs of patches, which
is roughly the square of the number of patches. In multiscale

1It is simple to verify that d(·, ·) is a proper metric for orientation fields,
satisfying the non-negativity, identity, symmetry, and subadditivity condi-
tions.

2We performed exact (but slow) computations of this probability using
arbitrary-precision arithmetic (GMP library http://gmplib.org/); the
insignificant differences compared to the approximate computation confirm
this choice for our problem.



Fig. 1. Three 18x18 image patches and their corresponding
16x16 orientation fields used for matching; centered differ-
ences are used to compute gradient orientations. The first two
validate as a match, while the third is rejected when compared
with any of the former two.

comparisons, the number of scales multiplies the number of
patches considered in the previous case. The next section il-
lustrates the computation of the number of tests for the par-
ticular problem of keypoint matching.

To conclude, a pair of patches is accepted as valid match
if its NFA satisfies the simple test:

NFA(P,Q) =
NT

Np!

 Np∑
i=1

∣∣Angle
(
OI1(pi),OI2(qi)

)∣∣
π

Np

≤ 1.

3. KEYPOINT MATCHES VALIDATION

To illustrate the applicability of the proposed method, we per-
formed matches validation for SIFT keypoints. The classic
method [11] to match SIFT keypoints basically creates a patch
descriptor in the form of a histogram of the gradient orienta-
tions in the neighbourhood of the keypoint. Then, a match is
accepted if the ratio between the distance to the nearest neigh-
bour descriptor and the second nearest neighbour is below a
predefined threshold.

Our method compares directly the gradient orientations of
the patches. We use SIFT keypoints [11, 12] defined by loca-
tion, scale, and orientation. For matching, we extract square
image patches centered on the keypoints location, with the
scale indicated by the keypoints scale, and rectify the patches
to compensate for rotation. The patches are extracted by fil-
tering with a Gaussian filter and then sampling using bilin-
ear interpolation. Then the orientation fields are computed.
Fig. 1 shows three examples of patches and the correspond-
ing orientation fields. A threshold is applied on the gradient
magnitude, in order to prevent comparing features that are not
contrasted enough to be visible: if both corresponding pixels
magnitudes are under a threshold, the pair is not counted in
Np; if only one of them is valid, a maximum normalised er-
ror of one is added to d(P,Q); when both pixels are valid,
the normalized error is computed as described in the previous

section. Empirically, the threshold was fixed to 3.
Finally, we need to specify the number of tests for this

particular application. When matching an image I1 of size
m1 × n1 with an image I2 of size m2 × n2, the number of
possible centres for patches in I1 is aboutm1n1; similarly, we
have about m2n2 patch centres in I2. We consider

√
m1n1

different patch orientations in I1 and
√
m2n2 in I2. To ac-

count for multiple scales, we consider log2
(
max(m1, n1)

)
scales in I1 and log2

(
max(m2, n2)

)
scales in I2. All-in-all,

the number of tests writes

NT = (m1n1)
3
2 · log2

(
max(m1, n1)

)
·

(m2n2)
3
2 · log2

(
max(m2, n2)

)
.

Our motivation here is to give a proof of concept by
comparing the proposed validation method with the widely
used SIFT second nearest neighbour criterion. (We used the
implementation from [12].) Fig. 2 shows two examples that
illustrate this comparative analysis. The first example is from
the well-known VGG dataset (http://www.robots.
ox.ac.uk/˜vgg/data/data-aff.html); the second
one is from a dataset with repetitive structures [21].

The first example illustrates the typical behaviour of the
two methods: SIFT shows favourable results, the proposed
method found less matches; however, qualitatively, the re-
sults are comparable. The second example shows clearly the
advantage of the proposed method when repetitive structures
are present. It is well known that this is a problematic case
for the SIFT criterion, which results in a reduced number of
matches. The proposed method handles naturally repetitive
structures as it evaluates how good a match is independently
of other matches, allowing to produce multiple matches for a
single patch, as shown in the figure.

These preliminary results are encouraging, and future
work will explore the applicability of the proposed method
in retrieval applications, using directly the orientation field as
keypoint descriptor, and our method for matching validation.

4. CONCLUSION

We presented a metric for image patches and an unsuper-
vised method to validate patch matches. Its use was illustrated
in validating matches between SIFT keypoints. Our method
works out of the box to compare patches surrounding the key-
points; the results are comparable to SIFT’s second nearest
neighbour criterion. The proposed method is able to handle
naturally repetitive structures and is able to produce multiple
matches per patch. The control of false matches, based on
the a contrario framework, results in reliable matches. Future
work will concentrate on providing a solid foundation to the
thresholding of the gradient, as well as improving the robust-
ness to affine transformations.

Acknowledgments: We thank Julie Delon for kindly provid-
ing test images and Ives Rey-Otero for numerous suggestions.



Fig. 2. Comparison of the proposed method with SIFT second nearest neighbour criterion. 1st row: SIFT. 2nd row: proposed
method. 3rd row: SIFT. 4th row: proposed method.
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[27] V. Pătrăucean, Detection and Identification of Elliptical
Structure Arrangements in Images: Theory and Algo-
rithms, Ph.D. thesis, Institut National Polytechnique de
Toulouse, France, 2012.

[28] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continu-
ous univariate distributions, Distributions in statistics.
Wiley, New York, NY [u.a.], 2. ed. edition, 1995.


