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Synopisis Bullet Points: 
 
Mapping of the relationship between chromatin signatures and regions occupied by Su(H) 
identifies preferred binding context which can be conferred by cooperating transcription factors. 
 
>91% of Su(H) motifs are likely to be masked from binding due to the chromatin environment, but 
paradoxically only 7-10% of CSL motifs within favourable chromatin are bound. 
 
Rapid changes in acetylation of H3K56 occur at regulated-enhancers following Notch activation 
while many other histone modifications are unchanged 
 
H3K56ac extends over large regions, requires the histone acetyl-transferase CBP and precedes 
changes in transcription 
 
Rapid changes in H3K56 acetylation are a conserved indicator of enhancer activation 
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ABSTRACT 
The conserved Notch pathway functions in diverse developmental and disease-related processes, 

requiring mechanisms to ensure appropriate target-selection and gene activation in each context. 

To investigate the influence of chromatin organization and dynamics on the response to Notch 

signaling, we partitioned Drosophila chromatin using histone modifications and established the 

preferred chromatin conditions for binding of Su(H), the Notch pathway transcription factor. By 

manipulating activity of a co-operating factor, Lozenge/Runx, we showed that it can help facilitate 

these conditions. While many histone modifications were unchanged by Su(H) binding or Notch 

activation, we detected rapid changes in acetylation of H3K56 at Notch regulated-enhancers. This 

modification extended over large regions, required the histone acetyl-transferase CBP and was 

independent of transcription. Such rapid changes in H3K56 acetylation appear to be a conserved 

indicator of enhancer activation as they also occurred at the mammalian Notch-regulated Hey1 

gene and at Drosophila ecdysone-regulated genes. This intriguing example of a core histone 

modification increasing over short timescales may therefore underpin changes in chromatin 

accessibility needed to promote transcription following signaling activation. 
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INTRODUCTION 

Notch is the receptor in a highly conserved signalling pathway that is of major importance in many 

developmental and disease contexts (Bray, 2006; Kopan & Ilagan, 2009; Louvi & Artavanis-

Tsakonas, 2012; Miele et al, 2006). Despite a relatively simple transduction pathway, the outcomes 

of Notch activation are diverse and such diversity is essential for animal development. It is also of 

considerable significance in cancers, since Notch activity can promote tumorigenesis in some 

tissues and suppress it in others (Miele et al, 2006; Ntziachristos et al, 2014; Radtke & Raj, 2003; 

Roy et al, 2007). However, the mechanisms underlying pathway specificity remain poorly 

understood. Likewise, little is known about the genomic changes that occur during the transition of 

Notch-regulated genes to activated states.   
 

Although its effects are pleiotropic, Notch acts primarily through a single core transcription factor 

(Bray, 2006; Kopan & Ilagan, 2009) which is known generally as CSL (CBF1, Suppressor of 

Hairless, Lag1) and specifically as Suppressor of Hairless [Su(H)] in Drosophila. When Notch 

receptors are activated by ligands carried on an adjacent cell, they become susceptible to 

cleavage by Adam 10 and γ-secretase. Receptor cleavage results in the release of an intracellular 

fragment, NICD, which forms a complex with CSL and the co-activator Mastermind (Mam) (Kopan 

& Ilagan, 2009; Kovall & Blacklow, 2010). This complex recruits histone acetylases (HAT) of the 

p300 family and up-regulates expression of genes to which it is recruited (Borggrefe & Oswald, 

2009), the best characterized being genes of the HES/HEY family (Bray & Bernard, 2010). These 

include the Drosophila Enhancer of split Complex [E(spl)-C], where twelve Notch responsive genes 

are clustered in a 60kb region. 

 

Genome-wide studies in Drosophila, mouse and human cells have shown that CSL is bound at 

different target sites depending on the cell type (e.g.(Jin et al, 2013; Krejci et al, 2009; Terriente-

Felix et al, 2013; Wang et al, 2014; Wang et al, 2012). Although it is evident that tissue specific 

factors help to mediate this specificity, it is not yet clear how they do so. For example, in Drosophila 

blood cells, the Runx family transcription factor Lozenge (Lz) is necessary for activity of Notch-

regulated enhancers and it helps promote binding of Su(H) to its targets sites via an unknown 

mechanism (Terriente-Felix et al, 2013). Likewise, in mammalian T-lymphoblastic leukemia cells 

CSL-bound enhancers frequently overlapped with RUNX1 binding motifs suggesting that similar 

mechanisms could confer specificity in these cells (Wang et al, 2014). As there is no evidence for 

direct interactions between CSL and Lz/Runx, it seems likely that recruitment involves indirect 

effects. 

 

Unlike transcription factors, such as FoxA, which are capable of binding to their target motifs even 

when wrapped around the histone core (Sekiya et al, 2009; Zaret & Carroll, 2011), CSL appears to 

preferentially bind to motifs located outside the nucleosome (Lake et al, 2014). Thus one way that 
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variations in CSL binding could be specified is through changes in the organization of the 

chromatin, directed by cell-specific pioneer transcription factors. It is evident that the structure of 

chromatin differs considerably in a manner that correlates with different histone modifications and 

with the presence of architectural proteins, such as HP1 (de Wit & van Steensel, 2009; Kouzarides, 

2007). For example, specific histone tail modifications, H3K4 mono-methylation (H3K4me1) and 

H3K27 acetylation (H3K27ac), are associated with active enhancers (Calo & Wysocka, 2013; 

Creyghton et al, 2010; Smith & Shilatifard, 2014). Such modifications can be recognized by so-

called Readers, which are often constituents of complexes that alter the organization or sub-

nuclear localization of the modified locus (Lalonde et al, 2014; Swygert & Peterson, 2014). For 

example, several chromatin-remodelling complexes contain proteins with bromodomains that 

recognize acetylated histone motifs (Filippakopoulos & Knapp, 2014; Taverna et al, 2007). 

Additionally, modifications to the histone core, such as H3K56 acteylation (H3K56ac), have the 

potential to directly alter DNA interactions (Neumann et al, 2009; Simon et al, 2011). Thus it is 

possible that particular combinations of histone modifications, engineered by tissue-specific 

regulators, could be a pre-requisite for CSL recruitment at Notch-regulated enhancers.  

 

Changes to chromatin modifications and conformation may also be important for the induction of 

target gene expression following Notch activation. While there is a low level of CSL binding at 

Notch-regulated enhancers prior to pathway activation, its recruitment is greatly enhanced in the 

presence of NICD (Castel et al, 2013; Housden et al, 2013; Krejci & Bray, 2007; Wang et al, 2014). 

Additional localized chromatin alterations may contribute to enhanced stability of the CSL/NICD 

complex on DNA. Furthermore, transitions in enhancer activity are also associated with changes in 

histone modifications. For example, the presence of H3K27ac at enhancers is thought to 

distinguish active from primed enhancers (Calo & Wysocka, 2013; Smith & Shilatifard, 2014) and 

has been detected following changes to Notch activity in myogenic and leukemic cells (Castel et al, 

2013; Wang et al, 2014). Exploring the mechanisms associated with Notch-induced enhancer 

activation is important in the context of emerging therapeutic strategies targeting chromatin 

regulators (Helin & Dhanak, 2013). 

 

In order to investigate whether chromatin organization can explain the cell-type specificity of Su(H) 

recruitment and how it relates to Notch regulated enhancer activation, we took advantage of 

detailed profiling of histone modifications in Drosophila cells performed by modENCODE. 

Combining our new data on H3K56ac with modENCODE data on 23 different histone 

characteristics and DNAse I hypersensitivity (Kharchenko et al, 2011), we derived models of the 

chromatin signatures in two different cell-types and then related this to Su(H) binding profiles. We 

found that Su(H) occupancy is predominantly associated with two specific chromatin signatures, 

and that the co-operating Lz/Runx transcription factor can help to confer characteristics of the 

preferred state. Su(H) and NICD also shape the chromatin at bound regions, in particular, 
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H3K56ac is strongly increased across regulated loci following Notch activation. This modification to 

the H3 core appears to be dependent on CBP and occurs independently of transcription elongation 

from the transcribed loci. Thought to promote local DNA breathing (Neumann et al, 2009), we find 

that H3K56ac correlates with elevated transcription from the enhancer regions (intergenic RNAs). 

Analysis of H3K56ac after ecdysone stimulation indicate that changes to this histone modification 

are more generally applicable in Drosophila and our observation of similar Notch signalling 

dependent changes at the mouse Hey1 enhancer, indicate that this is a conserved mechanism.  
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RESULTS 
Relationship between chromatin states and Su(H) occupancy  
Our initial goal was to determine which aspects of the chromatin environment, as defined by the 

presence or absence of particular histone modifications, could contribute to Su(H) binding and 

hence to the cell specificity of Notch responsive genes. To achieve this we generated a map of 

chromatin states within Drosophila BG3 (CNS) and Kc167 (blood) cells, and also determined the 

positions where Su(H) was bound. Since chromatin states have not previously been derived for 

these cell types we utilised an adaptation of a previously described Hidden Markov model (HMM) 

approach (Kharchenko et al, 2011) to generate genome-wide chromatin maps for the two cell 

types.  

 

We used the available datasets for 23 histone modifications, DNase I hypersensitivity maps and 

new genome-wide H3K56ac datasets generated as part of this study (Fig. 1A, E1A). Although 

H3K56ac overlaps with key regulators of pluripotency in human cells (Xie et al, 2009), this 

modification has not been profiled in many transcriptional contexts nor included in previous 

chromatin models. In Drosophila cells we found that H3K56ac was highly enriched at enhancers 

and around active transcription start-sites (TSS), correlating most strongly with H3K9ac and 

H3K4me2 (Fig. E2). H3K56ac also showed strong relationships with the H3K27ac and H3K4me1 

modifications known to be associated with enhancers (Fig. E2). A single data matrix was therefore 

created, combining the H3K56ac and modENCODE ChIP data with DNase I accessibility, and then 

tied parameterisation was used to identify the maximum number of unique chromatin signatures 

that could be inferred before splitting a signature into two similar ones (see Extended view for more 

details). This strategy was used to minimize the risk of over-fitting, one potential drawback of this 

type of maximum likelihood HMM. The fact that we recovered similar signatures to those obtained 

through a more complex Bayesian model (Fig. E1C) indicates the success of the strategy, as did 

with results from a leave one out analysis, which demonstrates the robustness of the signatures 

(Fig. E1F). The latter also highlights that some histone modifications have more dominant roles, 

while others are less discriminatory for the chromatin signatures. 
 

The 11 chromatin signatures we recovered showed extensive similarities with the chromatin states 

generated through a comparative analysis of metazoan chromatin (Fig. 1B and Fig. E1A-C; Ho et 

al, 2014). Despite differences in the approaches used, both identified similar types of regulatory 

chromatin, indicating that our simple method adequately captured the most frequent chromatin 

patterns. In particular, the active regulatory chromatin was partitioned into three types, which we 

refer to as enhancer (Enh; red), competent (Comp; green) and active intron (aIntr; purple) (Fig. 
E1A-E). Enh encompasses canonical modifications H3K4me1 and H3K27ac associated with 

enhancers and is also enriched for H3K56ac. In BG3 cells it also corresponds to regions with 

regulatory activity, as identified by functional methods for discovering enhancers in BG3 cells 
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(STARR-seq, Fig. E1A; Yanez-Cuna et al, 2014). Competent chromatin is marked by H3K4me1 

but has low levels of the other enhancer modifications and frequently appears to represent 

enhancer regions that are not yet fully active, as supported by our subsequent experiments. The 

third regulatory chromatin, active intron, differs in its enrichment for H2B ubiquitination, one of the 

modifications important in differentiating these three types (Fig. E1F).  

 

Having generated chromatin signature maps for BG3 and Kc cells we then determined the 

genome-wide profile of Su(H)-binding in the two cell-types to determine the relationship between 

bound regions and chromatin states (e.g. see E(spl)-C, Fig. 1A). A comparable number of regions 

were bound by Su(H) in the two cell lines, of which 25-30% were bound in both cell types (Fig. 
1C). Although relatively few peaks were identified in comparison to some other DNA binding 

proteins, the low number is consistent with the observation that CSL/Su(H) exhibits low occupancy 

in the absence of NICD at many Notch-regulated enhancers (Castel et al, 2013; Housden et al, 

2013; Krejci & Bray, 2007; Wang et al, 2014) and the data were consistent across replicates (Fig 
E3A). In both cell types the mean peak width was similar (circa 500bp; Fig. E3B), but occasionally, 

in regions of high occupancy at the E(spl) locus, these peaks overlapped to generate a super-peak 

of several kb. By far the majority of the bound regions were located within Enh chromatin (red, Fig. 
1D, E). The remainder were predominantly in another active region with TSS features (aTSS, 

orange; Fig. 1D, E) with a small proportion in Comp or Polycomb domains. The few peaks that 

mapped to other types of chromatin may reflect unusual binding events but could also arise from 

false positives in the chromatin assignments or in the ChIP data. Given the representation of each 

signature across the genome, there is clearly a highly significant preference for Enh and aTSS in 

the chromatin environment at Su(H) bound loci.   

 

To assess how well the chromatin signature predicted Su(H) occupancy, we considered four high 

affinity Su(H) binding-motifs and asked what proportion of these in each chromatin state were 

occupied. Of the small fraction of bound motifs in each cell type (Fig. 2A,B; 59/11,783 bound in 

BG3 cells and 89/11,783 bound in Kc cells), the majority were in Enh and aTSS states despite 

these housing a minority of the four motifs (Fig. 2B). In contrast “Basal” (black) chromatin 

contained the largest proportion of motifs (3520 motifs in BG3; 5897 motifs in Kc), yet had 

negligible binding. These data indicate that >91% of the Su(H) motifs are likely to be masked from 

binding due to the chromatin environment. Knowledge about the chromatin state in a given cell-

type can therefore help identify which motifs are more likely to be bound by Su(H), thus rendering 

the associated loci sensitive to Notch signalling. 

 

Despite the considerable gains we observed by mapping motifs onto chromatin states there 

remains a paradox, since only 40/545 Su(H) motifs present in “favoured” Enh-chromatin were 

actually occupied in BG3 cells (Fig. 2B) and only 55/529 in Kc cells (Fig. 2B). Therefore, the 
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majority of positions in the genome where the motif was in a favourable chromatin state, with 

accessible DNA and histone modifications linked to enhancer activity, were not stably bound by 

Su(H). This suggests that, while the chromatin environment is important, additional factors and/or 

as yet unknown chromatin characteristics determine where Su(H) binds.  

 

We then examined whether the chromatin signatures could account for cell-type Su(H) binding, 

focussing again on the four high affinity motifs (Fig. 2A). For motifs that were bound in both cell 

types the situation was straightforward, as 100% of those present in Enh state in one cell type 

were also in Enh state in the other (Fig. 2D, brown). These included the Notch locus, where 

binding occurred at motifs that were in favourable chromatin state in both cell-types (Fig. 2C, top). 

For those with differential binding in the two cell types, only a subset fit the predicted pattern. 

These included bigbrain (bib), where the motif was bound by Su(H) in BG3 cells and was within 

Enh (red) chromatin, but was unbound in Kc cells, where it was in basal chromatin (Fig. 2C 

middle). Likewise myc/diminutive (dm) was bound in Kc cells in the Enh (red) state, but not in BG3 

cells where it was in Comp (green) (Fig. 2C). Overall, for approximately 30-40% of bound motifs 

that were in Enh3 in one cell type, the differential binding was correlated with a change in 

chromatin state (so that it was less favourable in the cells where the motif was unbound; Fig. 2D). 

For the remainder, there was no change in the chromatin state between the cell types to account 

for the differences in occupancy as they mapped to Enh chromatin in both (Fig. 2D). Thus, while 

Enh chromatin appears conducive to Su(H) binding, this condition is not sufficient to predict that 

binding will occur.  

 

Roles of cooperating factors and Su(H) in conferring chromatin characteristics at 
enhancers 

We have previously shown that cooperating transcription factors, such as Lz/Runx, are important 

for conferring specificity to the Notch response (Terriente-Felix et al, 2013). To ask whether Lz was 

capable of generating a favourable chromatin environment, we induced elevated Lz expression in 

Kc cells, (where Lz levels are normally low (Terriente-Felix et al, 2013)) and in BG3 cells (where Lz 

was not detectably expressed) then monitored the consequences at the pebbled locus (peb). Of 

three mapped Notch-responsive enhancers in peb, two (peb3 and peb2) were in unfavourable 

chromatin states (Comp or Pc) in both cell types and exhibited no Su(H) recruitment (Fig.3A). The 

other, peb1, was in Enh state (red) in Kc cells, where low levels of Su(H) binding below the 

threshold of detection in genome-wide ChIP but apparent in specific ChIP-PCR (Fig.3B), 

correlates with a mild (5x) induction of peb in these cells (Terriente-Felix et al, 2013).  

 

Production of Lz in each cell type strongly induced the expression of peb mRNA, which was further 

enhanced by Notch activation (Fig. 3C). The changes in RNA expression correlated with de novo 

recruitment of Su(H) at peb3 and peb2 enhancers (Fig. 3B) and with an increase in Enh 
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associated histone modifications (Fig. 3D-F). Notably, H3K4me1, H3K27Ac and H3K56Ac were all 

increased at peb3 and peb2 in both cell-types. Although detectable in both, the effects of Lz were 

much greater in Kc cells than in BG3 cells, suggesting that pre-existing factors facilitate its actions. 

Furthermore, peb1 appeared the least responsive in BG3 cells, despite manifesting an active 

conformation in Kc cells. Nevertheless, the results demonstrate that Lz expression can elicit 

changes in histone modifications to convert the chromatin at two target enhancers towards the 

active Enh state, which correlates with their ability to recruit Su(H).  

 

To assess whether Lz has more widespread effects, we profiled the changes in H3K56ac following 

Lz expression in Kc cells. These results confirmed that the acetylation was increased at several 

other loci in addition to peb enhancers, with 459 regions showing significant change (1% FDR). 

Notably these included significant relationship with Notch regulated genes (Fig. 3G), as 

exemplified by peb and klu (Fig. 3H), as well as known Crystal-cell and Lz regulated genes (Fig. 
3G) such as PPO1/Bc (Fig. 3H; Ferjoux et al, 2007). Few (3%) of the changes occurred in regions 

of Enh chromatin. Around 26% mapped to Comp chromatin (as for peb) and 14% mapped to Basal 

(as for PPO1), supporting the model that Lz expression facilitates their conversion to a more active 

chromatin state. 

 

Since Su(H) is present at many enhancers in un-activated cells it could potentially also contribute 

to the chromatin landscape, as suggested by reports that the mammalian homologue acts as a 

“bookmark” remaining on chromatin at mitosis (Lake et al, 2014). To investigate this possibility, we 

analyzed the consequences of depleting Su(H) levels by RNAi treatment on Enh modifications at 

several target enhancers in BG3 cells. Under conditions where <20% Su(H) mRNA remained, 

H3K4me1 was unchanged, but both H3K27ac and H3K56ac were markedly increased (Fig. 3I). 
These changes were specifically detected at the enhancers where Su(H) was bound in BG3 cells 

(e.g. Him, bib, dpn; Fig. 3I) not at those that were unbound (e.g. peb1, peb2; Fig. 3I). Analysis of 

target gene mRNA changes under similar conditions showed that a number of these loci were de-

repressed (e.g. E(spl)mβ−HLH, bib, Table S1). This is consistent with a model where co-

repressors associated with Su(H) recruit histone deacetylases (HDACs) that are important in 

suppressing expression from target loci in the absence of Notch signalling. Thus it appears that, 

although Su(H)-bound regions exhibit characteristics of Enh chromatin, these regions often have 

lower than average levels of H3K27ac and H3K56ac due to the presence of Su(H) (Fig. E4A). This 

does not appear to be the case for all bound regions, potentially indicative of different modes of 

regulation.  

 

Changes in histone modifications following Notch activation include robust increase in 
H3K56 acetylation 

Although CSL resides at some target enhancers prior to Notch activation, several studies have 
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shown that CSL binding, as detected by ChIP, increases substantially following Notch activation 

and that CSL is detected de novo at many loci (Castel et al, 2013; Housden et al, 2013; Krejci & 

Bray, 2007; Wang et al, 2014). To address whether such de novo binding occurs at sites located in 

different chromatin contexts, we analyzed the profile of Su(H) binding 30 minutes after eliciting 

Notch activation in BG3 cells. To achieve this temporal control we used the calcium chelator EGTA, 

which disrupts the extracellular domain of Notch making it accessible to the activating proteases 

(e.g. (Ilagan et al, 2011) (Krejci & Bray, 2007) (Gupta-Rossi et al, 2001). As anticipated, a large 

increase in the number of Su(H)-bound sites was detected under these conditions (Fig. 4A; 388 

activation-only peaks). We therefore asked whether de novo bound regions differed in their 

chromatin state from those where Su(H) was detected prior to activation. This was generally not 

the case: the distribution was broadly similar to control un-stimulated cells with the majority (70%) 

of occupied sites mapping to Enh chromatin (Fig. 4B) which increased the fraction of bound high 

affinity motifs in Enh to 16% (89/545). However, for a small fraction of loci (10%) the bound regions 

occurred in the chromatin state indicative of Polycomb regulation (Pc, blue). The majority of these 

had bivalent characteristics, with low levels of enhancer-associated modifications (such as 

H3K4me1) in addition to the H3K27me3 Polycomb-related modification.   

 

 To investigate whether Notch activation could induce changes in chromatin at the regulated loci, 

we examined a wide range of histone modifications at Su(H)-bound regions before and after Notch 

activation by EGTA (Fig 4C-E). The majority of those tested were unchanged by Notch activity. 

Notable exceptions were H2B ubiquitination (H2Bub), H3K27ac and H3K56ac which all increased 

following Notch activation, while several loci showed reduced H3K4me1. Of the changes observed, 

the increase in H3K56ac was the most unexpected as this residue, located within the histone core, 

has not previously been shown to exhibit dynamic changes and has largely been linked to DNA 

replication or damage. In contrast, recent studies in mammalian cells have reported changes in 

H3K27 acetylation with longer-term differences in Notch activity. Our results indicate that both the 

H3K27ac and H3K56ac are acute effects, occurring within minutes, and are likely related to NICD 

recruitment directly. To confirm whether the increases in H3K56ac is also directly dependent on 

Notch activity, we assayed H3K56ac in the presence of a γ-secretase inhibitor (GSI) to prevent the 

presenilin-mediated release of NICD. Treating cells with GSI (10nM Compound E) was sufficient to 

block the up-regulation of target genes (Fig. 4F). The same conditions eliminated the increase in 

H3K56ac, indicating the likelihood that it is Notch dependent (Fig. 4G). Furthermore, similar 

changes were detected in cells where NICD expression was induced using an alternate strategy 

(see below).  

 

Since there have been no previous reports of dynamic changes in H3K56ac, we assayed the 

specificity of the antibody by probing a histone peptide array containing many different 

modifications (Fig. E5A). This confirmed that the antibody was specific for the H3K56ac peptide, in 
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agreement with studies in other cells (Das et al, 2014). Further confirming our observations, we 

showed that the ChIP enrichment was eliminated in the presence of competing K56Ac peptide 

(Fig. E5B). Finally, we obtained similar results using an independent antiH3K56Ac antibody (Fig. 
E5C). Taken altogether, these data support the conclusion that the levels of H3K56ac change 

substantially at target loci upon Notch activation. 

 

Increased H3K56 acetylation after Notch activation spans large domains at regulated loci 
and is associated with intergenic RNA 

To gain a more complete picture of H3K56ac changes following Notch activation we compared 

genome-wide ChIP profiles from control and Notch activated Kc and BG3 cells. This comparison 

revealed a significant increase in H3K56ac in Notch activated cells at several specific loci (e.g. Fig. 
5, Fig.6A). The majority have Su(H) bound, are known Notch targets and/or were detectably 

Notch-regulated in these cell types (Table E1). Strikingly, increased H3K56ac was not restricted to 

the locality of the Su(H)-bound enhancers but was spread across relatively broad regions. At 

E(spl)-C, the range of increased H3K56ac in BG3 cells spanned the whole locus, while the Su(H)-

binding was restricted to specific enhancers (Fig. 5). The boundaries of the H3K56ac domain 

corresponded with chromatin state boundaries and the extent of spreading was best predicted by 

the presence of H3K4me1 (Fig. E4B). For example, in Kc cells H3K56ac covered a more restricted 

portion of E(spl)-C, exhibiting little up-regulation over distal m6/m7/m8 regions where H3K4me1 

was less enriched (Fig. 5). Up-regulation of H3K56ac in Kc cells across a similar region of the 

complex was also detected following a two-hour induction of NICD under the control of a 

metallothienin promoter (Fig. 5), along with significant changes at 656 other regions that included 

peb and klu enhancers as well as other Notch-regulated genes (e.g. Table E1). The differences in 

the H3K5ac profiles over the E(spl)-C in the BG3 and Kc cell-types correlated with differences in 

responding gene activities, as more distal genes, such as E(spl)m6-BFM were poorly up-regulated 

in Kc cells (Terriente-Felix et al, 2013); Table E1).  

 

Other loci exhibited similar cell-specific broad increases in H3K56ac. At the Him locus, the increase 

in H3K56ac after Notch activation occurred only in BG3 cells, where Him is Notch-regulated, and 

encompassed the divergently transcribed Him and Her genes up to the boundaries of neighbouring 

genes (Fig. 6A). Strikingly, when the Hidden Markov Models were re-run including the profile of 

H3K56ac from Notch activated cells, the Him enhancer was reclassified as Enh (red) from Comp 

(green; Fig. 6A). Similarly, bib also exhibited an increase in H3K56ac following Notch activation in 

BG3 cells, where the modified region spread across the intronic peak of Su(H)-binding into the 

intergenic region (data not shown). Thus, not only were changes in H3K56ac detected rapidly 

after Notch activation, they also extended through large territories associated with the regulated 

loci.  
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Since H3K56 hyper-acetylation is reported to facilitate divergent transcription (Marquardt et al, 

2014) we assessed whether any intergenic transcription of non-coding RNAs was detectable within 

the E(spl)-C and whether this increased following Notch activation. Probing several of the regions 

flanking Su(H) bound enhancers we detected low levels of intergenic RNAs whose expression 

increased substantially in the Notch activated cells (Fig. 6B). This increase was attenuated when 

the cells were treated with the γ-secretase inhibitor (GSI, CompE) indicating that it was dependent 

on the activating cleavage (Fig. 6B). Thus it appears that Notch activation results in increased 

transcription of intergenic enhancer RNAs (e-RNA) as well as an increase in H3K56ac. 

 

Increased H3K56 acetylation is CBP-dependent, transcription-independent and also occurs 
at mammalian Hey1 

Assays of total levels of H3K56ac in Drosophila and mammalian cells have demonstrated that this 

modification requires CBP/p300 histone acetylases (Das et al, 2009). Since p300 is recruited to 

target loci by a complex containing NICD and Mastermind (Fryer et al, 2002; Oswald et al, 2001; 

Wallberg et al, 2002), it is a prime candidate to mediate modifications associated with Notch 

activation. To ascertain whether the single Drosophila homologue of CBP/p300 (Nejire) is 

necessary for the H3K56ac increase following Notch activation, we treated cells with C646, an 

inhibitor that is specific for the CBP HAT domain (Bowers et al, 2010). A brief 30min treatment with 

C646, which was sufficient to prevent the up-regulation of E(spl)m3-HLH and E(spl)mβ−HLH 

mRNAs (Fig. 6B,C) and of intergenic RNAs (Fig. 6B), fully suppressed the increase in H3K56ac at 

target enhancers from E(spl)-C and from other loci (Fig. 6D). A second inhibitor, curcumin, which 

inhibits CBP as well as other acetylases, similarly blocked both mRNA up-regulation and the 

increase in H3K56ac (Fig. E6A,B). Likewise, depletion of CBP in Kc cells and in vivo (using RNAi) 

led to reduced H3K56ac and compromised expression of a Notch regulated gene (cut; Fig. E6C-
F).  In contrast, neither the changes in mRNA expression nor H3K56ac levels were prevented by 

an inhibitor that interferes with another functional domain in CBP (ICG-001; Fig. E6A,B). Together 

the results from these inhibitors suggest that the change in H3K56ac following Notch activation is 

dependent on the catalytic HAT activity of CBP. 

 

When free histone dimers undergo H3K56ac modification, they are associated with the chaperones 

CAF-1 and Asf1. Under these circumstances, the bromodomain of CBP is necessary for the 

interaction with Asf-1, which brings the enzyme in proximity to its lysine substrate (Das et al, 2014). 

To investigate whether a similar mechanism could be involved at Notch regulated enhancers, we 

tested the consequences of treating cells with two CBP bromodomain inhibitors (I-CBP112, SGC-

CBP30; (Gallenkamp et al, 2014; Hay et al, 2014). Of the two, only SGC-CBP30 inhibited Notch-

dependent transcription from E(spl)-C genes at the concentrations tested, resulting in a 4-5-fold 

reduction in the induced mRNA levels and a similar reduction in the levels of intergenic RNAs (Fig. 
6B,C). Under the same conditions, SGC-CBP30 had no effect on H3K56ac levels following Notch 
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activation (Fig. 6D), suggesting that the Notch induced modification occurs independently of the 

CBP bromodomain, although the inhibitory effects on mRNA induction imply that the domain could 

have some role in Notch-regulated transcription. 

 

A second question was whether the change in H3K56ac is a consequence of increased 

transcription at the regulated loci, since the modification also occurs at TSS. To address this, cells 

were treated with DRB, a potent inhibitor of the kinase subunit in P-TEF, which prevents entry into 

transcription elongation (Marshall & Price, 1995). Despite the fact that the drug effectively 

eliminated mRNA expression from the regulated genes (Fig. 6C), and strongly reduced the up-

regulation of intergenic RNAs (Fig. 6B) it did not affect H3K56ac levels (Fig. 6D), arguing that the 

modification occurs independently of transcription elongation. Similar results were obtained with 

flavopiridol, which also blocks transcription elongation. Flavopiridol prevented mRNA up-regulation 

without affecting the increase in H3K56ac (Fig. E6). These results suggest that H3K56ac precedes 

the effects on mRNA transcription and fit with the fact that some genes with increased H3K56Ac 

were not detectably up-regulated under the conditions used (Table E1). Taken together, the results 

from the inhibitor experiments argue that H3K56ac modification in response to Notch at regulated 

loci requires CBP HAT activity but is largely independent of both mRNA and e-RNA transcription 

elongation.  

 

Finally we asked whether such changes in H3K56ac also occur at Notch-regulated enhancers in 

mammalian cells, using mouse C2C12 cells where the binding profile of mouse CSL (also known 

as RBPJ) has been described (Castel et al, 2013). Those studies revealed that binding was 

dynamic at Notch inducible enhancers, such as Hey1, and constitutive at other loci, such as 

Krt9/14, whose expression was unchanged following Notch activation (Castel et al, 2013). C2C12 

cells were exposed to the Notch ligand (Dll1) for 2.5 and 6 hours and the consequences on 

H3K56ac at the Hey1 and Krt9/14 enhancers analyzed. Hey1 was selected because the enhancer 

is well separated from the gene body (Fig. 6E) and the RNA levels were induced 3x compared to 

controls. A robust increase in H3K56ac was detected at the Hey1 enhancer, but not at the 

constitutive Krt9/14 locus where the levels of this modification were already comparatively high 

(Fig. 6F). Thus, mammalian cells exhibit an increase in H3K56ac at the Notch inducible Hey1 

enhancer, similar to that seen in Drosophila cells.  
 
Increased H3K56 acetylation also occurs in response to Ecdysone  
Since H3K56ac is detected widely at enhancer regions, the modification may be acquired in 

response to other signals besides Notch. The steroid hormone ecdysone acts through the nuclear 

ecdysone receptor (EcR; (Thummel, 1995) and, as with NICD/CSL, hormone binding converts the 

receptor from a repressing to an activating complex (Tsai et al, 1999). We therefore assessed 

whether the response to ecdysone is accompanied by a similar change in H3K56ac, using data on 
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EcR binding and EcR responsive enhancers (Gauhar et al, 2009; Shlyueva et al, 2014) to select 

appropriate regions. For example, distal ecdysone-responsive enhancers are located between Dip-

B and pri/tal (Shlyueva et al, 2014; Chanut-Delalande et al, 2014) and EcR binding to Eip78C has 

been mapped to a regulatory enhancer in a large intron (Gauhar et al, 2009; Fig. 7A). Strikingly, 

large changes in H3K56ac were detected around these target enhancers within 1 hour of ecdysone 

exposure, and remained consistent over longer periods of stimulation (Fig. 7B). Similar large-scale 

changes also occurred at Hr4 (Fig. 7C), correlating with the robust increases in RNA levels (Fig. 
7D). Rapid increases in H3K56ac are therefore a characteristic of ecdysone-activated enhancers in 

addition to those regulated by Notch. 

 

DISCUSSION 
 
Signalling pathways such as Notch have diverse functions depending on the context in which they 

are activated and on the specific subsets of genes that are regulated in each context. This 

specificity necessitates mechanisms that enable Su(H) to recognise and bind to appropriate 

enhancers and effect relevant gene expression changes. By utilizing the comprehensive collection 

of chromatin modifications gathered by the modENCODE project (Kharchenko et al, 2011), we 

have generated maps of chromatin states in two Drosophila cell-types and related those to the loci 

that are bound by Su(H). In doing so we also analyzed the profile of H3K56ac across the genome 

and found that this core histone modification is present at enhancers, and at transcription start 

sites, similar to the reported distribution in mammalian ES cells (Xie et al, 2009). Significantly, the 

inclusion of H3K56ac binding data in the computational model helped to discriminate the active 

enhancers. Even more striking, was the robust increase in this core nucleosome modification in 

response to Notch activation. Such changes were also detected in mammalian cells and at 

ecdysone regulated genes in Drosophila, arguing that H3K56ac is likely to be a widespread 

modification associated with enhancer activation.  

 

Unlike the modifications to exposed histone tails, which primarily provide docking sites for further 

chromatin modifying proteins, H3K56ac can directly alter nucleosomal DNA accessibility by 

increasing DNA breathing and unwrapping rate (Neumann et al, 2009; North et al, 2012). As a 

consequence, this modification can influence transcription factor (TF) occupancy within the 

nucleosome (Shimko et al, 2011; Tan et al, 2013) and it has been argued that H3K56ac drives 

chromatin toward the disassembled state during transcriptional activation (Williams et al, 2008). As 

the increase in H3K56ac appears to precede transcription elongation, it fits with the latter model. 

Furthermore, as mammalian CSL has been found to bind preferentially to motifs at the nucleosome 

exit point (Lake et al, 2014), H3K56ac may enhance recruitment, giving a feed-forward benefit that 

could potentially explain the increase in occupancy following Notch activation. In addition, 

H3K56ac facilitates divergent transcription by promoting rapid nucleosome turnover (Marquardt et 

al, 2014) and also promotes small RNA production in neurospora (Zhang et al, 2014), which is 
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consistent with our detection of intergenic enhancer-templated RNAs in the modified regions 

following Notch activation.  

 

The increase in H3K56ac appears to require CBP HAT activity, which is also essential for 

catalyzing this modification on free histones (Das et al, 2009). It is plausible therefore that the 

increase in H3K56ac could occur through the incorporation of premodified nucleosomes. The 

modification of histone dimers requires interaction with the chaperones CAF1 and ASF1, and while 

genetic evidence that the chaperone subunit dCAF-1-p105 can help promote Notch signalling (Yu 

et al, 2013) favours such a model, our results suggest this is less likely. First, we find that CBP is 

required at the time of activation, making it improbable that the increase in H3K56ac is a 

consequence of loading pre-modified histones. Second, an inhibitor of the CBP bromodomain, 

which plays an important role in enabling H3K56ac on histone dimers via its interaction with 

chaperones (Das et al, 2014)), had no effect on the increase in H3K56ac. Thus it seems more 

likely that the modification occurs at the time of enhancer activation, although it may nevertheless 

involve nucleosome exchange. For example SWI/SNF nucleosome remodellers have been found 

to act in combination with H3K56ac to promote nucleosome turnover and gene activity in yeasts 

(Watanabe et al, 2014; Xu et al, 2005).  At several loci where we detected changes in H3K56Ac, 

the modification extended broadly from the site of Su(H)/NICD binding, correlating with domains 

that already possessed H3K4me1. Along with data from other studies of enhancer activation (Calo 

& Wysocka, 2013; Smith & Shilatifard, 2014), and the observation that levels of H3K56ac are 

affected by mutation of H3K4 (Guan et al, 2013), this suggests that H3K4me1 is likely to be one of 

the earliest modifications, prefiguring sites of active enhancer. It may also facilitate the spread of 

H3K56ac across the regulated regions.  

 

Our analysis of the relationship between chromatin states and regions occupied by Su(H) suggests 

that the pre-existing chromatin environment is likely to make an important contribution to 

recruitment. First, Su(H)-occupied motifs were almost exclusively located in highly accessible 

chromatin, with modifications such as H3K4me1 characteristic of enhancer states. Second, 

expression of the cooperating transcription factor Lz converted enhancers towards this preferred 

chromatin state where additional Su(H) was recruited. By having a preference for a particular 

chromatin signature the vast majority (>91%) of potential Su(H) binding-motifs will be masked by 

unfavourable chromatin. Indeed the small fraction of sites that do not fit with this pattern may 

reflect false positives in the ChIP data or in chromatin assignment. The greater paradox is that only 

7-10% of CSL motifs within the favourable Enh chromatin were bound. Furthermore, many of the 

positions that were differentially bound in two cell types existed in Enh chromatin in both cell types 

examined. These observations suggest that additional factors restrict CSL binding to a subset of 

sites located within favourable chromatin. Such factors might include currently unknown histone 

modifications, protein-protein interactions, 3D organisation and/or DNA sequence properties 
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around the CSL motif.  

 

Once bound, Su(H) itself also helps to shape the local chromatin environment. Depleting cells of 

Su(H) resulted in an increase in local histone acetylation (H3K27ac, H3K56ac) suggesting that, in 

the absence of NICD, Su(H) helps to suppress enhancer activity through its association with co-

repressors. Thus a model emerges in which Su(H) is recruited to regions that have already 

acquired regulatory competence and that it keeps these in a transitional state with low levels of 

H3K56ac. As there is considerable variability between enhancers, this suggests that each attains 

an activity that reflects the balance between the transcription factors promoting enhancer activity 

and those, such as Su(H), that can antagonize it. In those instances where Su(H)-corepressor 

complexes win out, then the enhancer is suppressed until the complimentary activity of NICD 

converts it from a transitional to an active state, a conversion that is associated with a large-scale 

increase in H3K56ac.  

   
The extent that the principles we have observed here will be of general relevance for other 

signalling pathways remains to be established, although it seems likely that their target gene 

specificity will be similarly dependant on the pre-existing chromatin substrate. However, it is 

possible that the inferred transitional enhancer states may be particularly relevant for those 

pathways/contexts where there is a fine-scale switch between repression and activation, as occurs 

for Notch and ecdysone signalling. Nevertheless, the correlation of H3K56ac with H3K4me1 

suggests that H3K56ac is likely to be of widespread importance in enhancer activation. Whether 

this will be mediated through its direct effects on DNA-histone core interactions or through 

intermediate bromodomain containing proteins that link to the core transcription machinery, such 

as Brd4, remains to be determined.   
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MATERIALS AND METHODS 
 
Computational methods.  
Details of the datasets, normalization and training for the Hidden Markov Models, are provided in 

Supplementary methods along with a summary of the algorithm used to detect differences in 

H3K56ac and of motif enrichment analysis. The BED files containing the chromatin maps are 

available on GitHub at https://github.com/rstojnic/notch-chromatin as are the data and scripts used.  

 

Cell culture, Notch activation and inhibitor treatments 

Kc cells were cultured at 25 OC in Shields and Sang M3 insect medium (Sigma, S3652), 

supplemented with 5% FBS (Sigma, F9665), 1 g/L yeast extract (Oxoid, LP0021), 2.5 g/L bacto-

peptone (BD Biosciences, 211677) and 1x Antibiotic-Antimycotic (Gibco, 15240-062). BG3 cells 

were cultured at 25 OC in Shields and Sang M3 insect medium, supplemented with 10% FBS 

(Sigma, F4135), 10 mg/L insulin (Sigma, I9278), and also 1x Antibiotic-Antimycotic.For Notch 

activation, Kc cells were treated with 4mM EGTA in PBS and BG3 cells were treated with 4mM 

EGTA in HBSS (Invitrogen, 14170) for 30min unless otherwise stated. EGTA destabilizes the Notch 

negative regulatory region, exposing the site for Adam10 and consequently results in γ-secretase 

cleavage and release of NICD e.g. (Ilagan et al, 2011; Krejci & Bray, 2007; Gupta-Rossi et al, 

2001). To demonstrate Notch dependant effects of this treatment, cells were incubated with γ-

secretase inhibitor (10nm Compound E, see Table E3). Kc cells were treated with 5µM ecdysone 

(Sigma, H5142) for 1hr or 3hr before RNA or chromatin isolation. For inhibitor treatment, BG3 cells 

were pre-treated with inhibitors, as listed in Table E3, and then incubated with EGTA or HBSS plus 

inhibitors for a further 30min. Conditions for culturing and Dll1 treatment of C2C12 cells were as 

described previously (Castel et al, 2013). 1x10^6 cells were plated onto culture dishes pre-coated 

with Delta-like 1 fused to the Fc fragment of human IgG (Dll1-Fc) or with Fc fragment of human IgG 

(Control-Fc). 20µM DAPT (Calbiochem, #565784) was included in control-Fc incubations. 

 

Chromatin Immunoprecipitation , ChIP-array and RNA isolation. 
ChIP experiments, RNA isolation, real-time PCR were basically performed as described (Krejcí and 

Bray, 2007) with the following modifications. 1% formaldehyde was used for ChIP crosslinking and 

the DNA was purified after proteinase K treatment using columns (Qiagen, 28106). 6-10x106 cells 

were used as a starting material for Su(H) ChIP arrays and the resulting DNA, along with 10ng of 

input, were amplified using the WGA2 (Sigma) for two rounds of amplification (14 and 6 PCR 

cycles). For H3K56ac ChIP-arrays, 5x106 cells and 14 amplification cycles were used. All 

antibodies used for ChIP are listed in Table E4. For whole genome analysis, 1 µg double stranded 

ChIP or input DNA was labelled with either Cy3 or Cy5-random primers using the Nimblegen Dual 

Colour Kit. Both ChIP and input were co-hybridised to NimbleGen D. melanogaster ChIP-chip 2.1M 

Whole-Genome Tiling Arrays in the Nimblegen hybridisation station at 42°C for 16 hours, then 
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washed according to the NimbleGen Wash Buffer Kit instructions. The arrays were scanned at 5 

µm resolution with a GenePix 4000B (Axon) dual laser scanner at individually optimised PMT gain 

settings and images processed with NimbleScan software (Roche-Nimblegen) with Loess spatial 

correction. The data were then normalised using quantile normalisation across the replicate arrays 

in R. Window smoothing and peak calling was performed using the Bioconductor package Ringo 

(Toedling et al, 2007) with a winHalfSize of 600bp and min.probes = 5. Probe levels were then 

assigned p-values based on the normalNull method, corrected for multiple testing using the 

Hochberg-Benjamini algorithm and then condensed into regions using distCutOff of 300bp. Data 

from genome-wide ChIP experiments have been deposited in the National Center for 

Biotechnology Information Gene Expression Omnibus (GEO, www.ncbi. nlm.nih.gov/geo/) and are 

accessible through GEO Series accession number GSE66227. 

 

In RNA isolation, DNAse treatments (Ambion, AM1906) were performed before RNA reverse 

transcription. To assess non-coding/intergenic transcription, 5ug RNA was reverse transcribed with 

random primers and Superscript III. The product was then diluted 1:5 and 2μl was used in each 

real-time PCR reaction. “No reverse transcription” control was performed in parallel to confirm the 

absence of genomic DNA. All primers used in real-time PCR are listed in Table E5. 
 

Lz overexpression, NICD expression and Su(H) RNAi in cells lines 

Kc and BG3 cells were transfected with pMT-puro plasmid, pMT-puro-Lz or pMT-puro-NICD 

construct and then grown under permanent selection with 2μg/ml puromycin (Sigma). Expression 

of Lz and NICD were induced by adding 500μM CuSO4 (Sigma) to cell culture medium for 3 days 

or for 2 hours respectively. pMT-puro was a gift from D. Sabatini (Center for Cancer Research, MIT, 

Cambridge, USA), Lz cDNA plasmid was a gift from M. Haenlin (Centre de Biologie du 

Développement, Toulouse, France). For Su(H) RNAi, BG3 cells were transfected with 20ug dsRNA 

in Fugene 6 (Promega, E2691) in 10 cm plates according to the standard protocol and then 

incubated for 72h.  
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FIGURE LEGENDS 
 
Figure 1: Relationship between Su(H) binding and the chromatin state.  
(A) E(spl)-C along with the histone modification data used to generate the chromatin signatures, 

where enrichment is shaded brown (highly enriched) to blue (depleted). Su(H) binding profile for 

BG3 cells (brown graph: fold enrichment, Log2 scale is -1.2 to 3.89 and  blue shading indicates 

significant peaks 1% FDR) aligned with the chromatin map colour-coded as in B. Gene models are 

depicted in blue. (B) Summary of the 11 chromatin signatures derived from Hidden Markov model, 

showing enrichments for a subset of histone modifications, brown (highly enriched) to blue 

(depleted); see Fig. E1 for full profiles and comparisons. (C) Numbers and extent of overlap in 

Su(H) occupied regions between Kc and BG3 cells, the Su(H) motif was highly enriched in both 

data sets (p-values 4.2·10-10 and 2.12·10−14). (D) Distribution of Su(H) bound regions according to 

chromatin type in BG3 (upper) and Kc (lower) cells; chromatin is colour coded according to the 

scheme in B and Fig. E1A. Grey bars indicate the proportion of the genome in each chromatin 

signature.  

 

Figure 2: Differences in chromatin correlate with Su(H) binding at some, but not all, loci. 
(A) High affinity motifs used in the analysis and numbers occupied by Su(H) in each cell type as 

indicated. (B) Distribution of bound and unbound motifs according to chromatin type. Colour code 

indicates chromatin type, the number of motifs in each state are indicated. (C) Examples where 

Su(H) binding is concordant with chromatin. Each panel depicts a gene region with the chromatin 

map (colours as in Fig. 1B), Su(H) binding profiles for each cell type (fold enrichment Log2 with 

ranges -1.2 to 3.89 for BG3 and -0.86 to 2.09 for Kc167; significant 1% FDR peaks are shaded in 

blue) and positions of Su(H) motifs indicated. Gene models are depicted beneath each plot. (D) 

Graph summarizing the relationship between binding and chromatin in the two cell types. Brown 

bars, loci bound in both cell types; chromatin environment of bound motifs in Kc cells that were 

bound in Enh chromatin in BG3 cells. 100% are in Enh chromatin in both cell types. Green bars, 

motifs bound in Kc but not in BG3; chromatin environment of unbound motifs in BG3 cells that 

were bound in Enh chromatin in Kc cells. Blue bars, motifs bound in BG3 but not in Kc; chromatin 

environment of unbound motifs in Kc cells that were bound in Enh chromatin in BG3 cells. Some 

unbound motifs in each cell type are in less favourable chromatin but many remain in Enh even 

though not detectably bound. 

 

Figure 3: Roles of a cooperating factor and of Su(H) in conferring chromatin characteristics 
at bound enhancers 
(A) peb region with chromatin maps, Su(H) binding profiles and H3K4me1 heat maps for each cell 

type, the known Su(H)/Notch-regulated peb enhancers are indicated, along with primers used. (B) 

Fold-change in RNA levels in Kc and BG3 cells in the presence of Lz compared to control 



Skalska, Stojnic, Li et al. 

 27

conditions (con: empty pMT) and to cells with Notch activation (Nact). Lz expression was induced 

for 3 days prior to the experiment and RNA was analyzed 30 minutes after exposing cells to control 

conditions or to EGTA to elicit Notch activation. (C) Bound Su(H) was captured by ChIP from Kc 

(grey/black) and BG3 (light/dark green) cells, with (black, dark green) or without (grey, light green) 

ectopic Lz, and the levels of the indicated enhancers analyzed. Binding was significantly enriched 

at peb3 in BG3 and Kc cells and at peb2 in Kc cells (p<0.05) (D-F) Enrichment of the indicated 

histone modifications detected by ChIP in Kc (D,E) and BG3 cells (F); control cells (grey; empty 

pMT), with ectopic Lz (black). peb regions analyzed correspond to those depicted in A (primers) 

and enrichment was calculated relative to total H3. Changes in the modifications at peb3 and peb2 

were significant in all cases (p<0.05) (G-H) Differences in the profile of H3H56ac upon expression 

of Lz. (G) Percentage of regions with significant differences located in proximity to 224 

Notch/Su(H) regulated genes (green, p=1.6x10-18; Krejci et al, 2009), to 31 known crystal cell 

expressed genes (brown, p=0.00057; Ferjouz et al, 2007) and to 269 genes with defined GATA-

RUNX motif (blue, p=0.0019; Ferjoux et al, 2007). (H) Regions with significant differences detected 

at Notch regulated enhancers in peb and klu and at the Lz regulated enhancer in PPO1 (Ferjoux et 

al, 2007). Gene regions with chromatin maps showing difference in H3K56ac, regions where the 

difference is significant (1% FDR) are shaded. (I) Fold change in enrichment of the indicated 

histone modifications at enhancers following RNAi treatment to deplete Su(H) compared to control 

(GFP RNAi). Increase in H3K27ac and H3K56ac occur at mβ-1, mβ-2, m2, m3, him, bib, dpn, 

which are bound by Su(H) in BG3 cells but not at peb2, peb3 which are not bound by Su(H) in BG3 

cells. All graphs depict average results from ≥ 3 experiments, error bars are standard error of the 

mean, significance was determined by t-test for graphed results and hypergeometric test for pie 

chart.  

  
Figure 4: Changes in histone modifications after Notch activation: rapid and robust 
increase in H3K56 acetylation  
(A) Venn diagram summarizing the relationship between Su(H) bound regions in control and Notch 

activated (EGTA treated for 30 mins) cells. (B) Distribution of de novo Su(H) peaks, detectable only 

in activated cells, according to chromatin state. (C,D) Representative experiment comparing the 

enrichment of the indicated histone modifications at several loci in control and Notch activated (30 

minutes) cells. Details of loci analyzed are provided in Supplementary Material. (E) Changes in 

enrichment of the indicated modifications at selected loci 30 minutes after Notch activation 

compared to control treated cells. (F) Treatment with a γ-secretase inhibitor (GSI: 10nM Compound 

E) prevents the increase in mRNA levels in Notch activated cells. (G) Treatment with a γ-secretase 

inhibitor (GSI: 10nM Compound E, conditions as in F) prevents the increase in H3K56ac in Notch 

activated cells. Graphs in E-G depict average results from ≥ 3 experiments, error bars are standard 

error of the mean, differences were all significant (p≤0.05, t-test) 
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Figure 5: Increase in H3K56 acetylation at E(spl)-C in BG3 and Kc cells extends across the 
60kb locus 

E(spl)-C genomic region. For each cell type, the enrichment profiles for H3K56ac ChIP from control 

and Notch activated (EGTA-treated) cells are plotted in brown (Log2, scales are: -3.39-4.35 in BG3 

and -2.92-5.19 in Kc167), with the differences plotted below in dark green and the regions of 

significant difference shaded (1%FDR see Supplementary Methods).  For Kc cells, differences in 

H3K56ac in NICD expressing cells (after 2hr induction) versus controls are also plotted in the same 

way. Chromatin maps, colour coded as in Fig. 1B, Su(H) binding profiles for each cell type and 

enrichment maps for H3K4me1 from ModENCODE are shown as indicated. For BG3, Su(H) 

binding profile in Notch activated cells and the consequences on chromatin state from the changes 

in H3K56ac are also shown. For Su(H) ChIP profiles,  Log2, scales are -1.205-3.89 BG3 controls; -

1.145-4.03 BG3 Nact; -0.862-2.09 Kc controls and shaded regions indicate significant peaks (1% 

FDR). Gene models are depicted in dark blue. 

 

Figure 6: Selective increase in H3K56 acetylation is dependent on CBP HAT activity, 
independent of transcription elongation and occurs at Hey1 enhancer in mammalian cells.  
(A) Him-Her gene region, showing that Notch activity induces changes in H3K56ac in BG3 cells 

but not in Kc Cells. Graphs and details as in Fig. 5A. Nact chromatin shows the results from 

running the HMM using the data from the Notch activated BG3 cells, the Su(H) bound region has 

gained an Enh (red) signature. (B) Fold change in expression of intergenic RNAs at E(spl) locus 

after Notch treatment (30 mins EGTA) in the presence and absence of the indicated inhibitors. 

Upper panel summarizes the primers used to detect non-coding RNAs and their relationship to 

Su(H) binding profile (plotted as in Fig. 5). Graphs summarize the expression of intergenic RNAs 

and coding RNAs under the conditions indicated. (C) Effects of indicated inhibitors (see Table E2) 
on E(spl)mβ−HLH and E(spl)m3−HLH RNA levels following Notch activation. RNA levels from 

untreated (-) and Notch activated (+; EGTA-treated) cells were normalized to rp49. (D) Effects of 

the indicated inhibitors (see Table E2) on the fold-change in H3K56ac in Nact cells compared to 

control, measured by the enrichment for the indicated loci in anti-H3K56ac ChIP. (E) Hey1 locus in 

mouse cells with previously documented CSL/RBPJ and p300 profiles (Castel et al, 2013) and 

positions of primers used in D. (F) Enrichment for H3K56ac at the indicated positions relative to 

control region (Hey1-L4; Kr9/14-con) in control cells (grey; exposed to Fc and DAPT) or in Notch 

activated cells, (blue: exposed to Fc-DLL1) after 2.5hr (light shading) or 6hr (dark shading). Graphs 

in B, C, D, F depict average results from ≥ 3 experiments, error bars are standard error of the 

mean. In B and C, differences between each treatment and control condition (DMSO) were all 

significant (p<=0.05, t-test). In D, all CBP-HAT C646 values were significantly different from DMSO 

(p≤0.05, t-test) but none of those with CBP-BRM SGC or DBR were significant (p>0.05, t-test). In F 

Hey1, Pr, L2, L1 and R1 were all significantly different from control condition (p≤0.05, t-test) while 

none of the Kr9/14 levels were significantly different (p>0.05, t-test). 
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Figure 7: Changes in H3K56Ac also accompany gene activation at ecdysone-regulated loci  
(A) Eip78C and DlpB-pri/tal gene regions showing chromatin maps and H3K56ac in un-stimulated 

cells, along with positions of primers used in B. Ecdysone responsive enhancers for DlpB-pri/tal 

are those identified in S2 cells (Shlyueva et al, 2014), EcR DamID peaks, regions bound by EcR in 

Kc cells (Chanut-Delalande et al, 2014; Gauhar et al, 2009). (B) Fold-change in H3K56ac at the 

indicated regions following 1hr (grey) or 3hr (black) treatment with 20-hydroxy-ecdysone. (C) Fold 

change in H3K56ac across Hr4, under the same conditions as B. See Supplementary Methods for 

primers. (D) Fold change in RNA levels for the indicated loci following 20-hydroxy-ecdysone 

treatment as in B. Graphs in B- D depict average results from ≥ 3 experiments, error bars are 

standard error of the mean. In B, pri/tal-bef, pri/tal-1, pri/tal-2, Eip78C-EcR were significantly 

different from control treatment (p≤0.05, t-test). In C, primers 2,3,4 and 5 showed significant 

differences from controls in both conditions (p≤0.05, t-test). In D, pri/tal, Dip-B, Eip-78, Hr4 and 

Eip75 mRNA levels were significantly increased (p≤0.05, t-test). 
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