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ABSTRACT 

Dislocations are one-dimensional topological defects which occur frequently in functional thin 

film materials and which are known to degrade the performance of InxGa1-xN-based 

optoelectronic devices. Here, we show that large local deviations in alloy composition and 

atomic structure re expected to occur in and around dislocation cores in InxGa1-xN alloy thin 
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films. We present energy-dispersive X-ray spectroscopy data supporting this result. The methods 

presented here are also widely applicable for predicting composition fluctuations associated with 

strain fields in other inorganic functional material thin films. 
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MAIN TEXT 

Dislocations are ubiquitous one-dimensional topological defects that are found within thin 

films of nitride semiconductors, originating at the interface with the substrate, and threading up 

through the active region of the device before terminating at the crystal surface1. These 

dislocations can severely degrade device efficiencies2,  and lifetimes3 and are responsible for a 

broad range of undesirable behavior such as leakage currents4 and properties such as reduced 

internal quantum efficiencies5 and defect states6,7,8,9,10 that can act as non-radiative recombination 

centers. InxGa1-xN-based alloy semiconductors are used in light-emitting diodes11, laser diodes12 

and solar cells13, which can be tuned to emit or absorb respectively over the entire visible 

spectrum by varying the In composition14. InxGa1-xN is subject to very high threading dislocation 

densities of up to 1011 cm-2 and typically around 109 cm-2 when grown by metalorganic vapour-

phase epitaxy15 (MOVPE), of which the majority have a-type (‘edge’) or (a+c)-type (‘mixed’) 

Burgers vectors with < 1%16 being c-type (‘screw’). High dislocation densities are associated 

with short lifetimes in InGaN-based optoelectronic devices17. The electronic properties of 

dislocations are determined by the local bonding in the region of the dislocation core8. It is 

therefore important to determine whether or not there are local differences in the alloy 

composition near dislocation cores in InxGa1-xN. Such composition fluctuations are likely to 
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affect the electronic properties of the dislocations and would therefore affect device 

performance. 

Each dislocation is associated with a strain field determined by its Burgers vector. Since the In 

atom is larger than the host Ga atom, it is expected that if the In atoms are sufficiently mobile 

during growth, then they will segregate to the tensile part of the dislocation strain field 18. 

Previous theoretical work has shown that the extreme case of a pure InN c-type dislocation core 

in an InxGa1-xN alloy is more energetically favorable compared to the equivalent InxGa1-xN core19, 

and also that it is favorable for In atoms to bind  to a c-type dislocation core in GaN20. Due to the 

sensitivity required to detect small variations in alloy concentration on short length scales, it is 

difficult to find unambiguous evidence for segregation. Early reports21 suggested In segregation 

to dislocations in InGaN but subsequent work indicated that apparent In segregation was actually 

an artifact produced by electron-beam induced sample damage in TEM22 which could occur 

preferentially at dislocation cores. Features have been observed in 3D atom probe data that could 

be explained by In segregation around dislocations23, and a combined cathodoluminescence and 

atomic force microscopy study by Sugahara et al.24 has provided evidence supporting the 

segregation of In to c-type and (a+c)-type dislocations. 

In this work, we simulate plausible equilibrium microstructures in InxGa1-xN for all Burgers 

vectors by applying a combination of classical atomistic simulations and Metropolis Monte Carlo 

methods. Empirical Stillinger-Weber-style potentials have been developed for GaN25,26 and InN27. 

These potentials have previously been used with success to study dislocations in GaN26,28, 29 InN30 

and InxGa1-xN alloys31 including quantum dot systems32 and strained InxGa1-xN quantum well 

systems33 where the potentials were additionally validated by comparison to ab initio Density 

Functional Theory results. Here, we use these Stillinger-Weber potentials with the LAMMPS 
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molecular dynamics code34 to implement our model. Our simulation cells are 64a×64×64c unit 

cells in size, and contain a dislocation dipole defined initially by an appropriate displacement 

field35. There are sometimes multiple atomic configurations possible at the core for each Burgers 

vector, and these are typically referred to by the number of atoms in the atomic rings that make 

up the core. For a-type dislocations, these are the 5-atom/7-atom ring, 8-atom ring and 4-atom 

ring cores36. For (a+c)-type dislocations, double-5-atom/6-atom ring cores, 5-atom/7-atom ring 

cores28 and 9-atom/4-atom/7-atom ring cores37 are possible. In this work, the 5/7-atom ring a-

type core is favored since it is considered to be the most stable9, though other core types are 

considered, while the 5/7-atom ring (a+c)-type core is not studied since it has not been observed 

experimentally16 and instead the 9/4/7-atom ring (a+c)-type core is favoured. Likewise, only the 

most stable c-type core38, and the double-5/6-atom ring a+c-type core28 were studied. 

The initial structure is relaxed, and Ga atoms are replaced by In atoms at random until the 

desired composition is reached, before the cell is relaxed again. The cell dimensions are 

constrained such that they match that of an InGaN epilayer strained to a GaN substrate, such that 

our results are applicable to an InxGa1-xN quantum well in a GaN matrix, which would be typical 

for an InxGa1-xN-based device. 

To produce a plausible equilibrium microstructure from this initial random configuration, a 

Metropolis Monte Carlo algorithm39 is implemented under the canonical ensemble. First, the cell 

is relaxed to find the initial energy, Einitial. Then an In and Ga atom are selected at random and 

swapped, and the cell relaxed again to find a trial energy, Etrial. This trial swap is accepted with 

probability: 

��� 1,��� − 𝐸%&'() − 𝐸'*'%'() /𝑘𝑇  
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for temperature T and Boltzmann’s constant k, or else the In and Ga atoms are swapped back to 

their original sites. 

This is then repeated many times, with a single Monte Carlo step defined as N attempted atom 

swaps, where N is the number of In and Ga atoms in our model. This model implicitly assumes 

that atoms are not added or removed from the system, and that therefore the dislocations are not 

able to climb or dissociate during the simulation. This model can only predict equilibrium 

structures and is agnostic to diffusion pathways and how the atom swaps occur in practice. 

Despite this, it is likely that there is substantial mobility of alloy atoms on the growth surface 

during growth, with the activation energy for diffusion of In atoms being particularly low 40, 

which would allow such rearrangement to take place. It is also possible that dislocations provide 

preferential diffusion pathways for In atoms41, or that atoms could swap by diffusion of 

vacancies. Additionally, previous kinetic Monte Carlo simulations for perfect, undefected 

InGaN42 incorporated vacancy diffusion explicitly, and found that cation vacancies in GaN do 

not interact with themselves or with In atoms, and that therefore if only the final, equilibrium 

microstructures are of interest, it is not necessary to employ a kinetic Monte Carlo model. The 

static Monte Carlo approach employed here has also been previously used with success to model 

undefected InGaN 43. 

To minimize computational complexity, swaps were only permitted within a cut-off radius of 

14a (where a is the lattice parameter of GaN) of the dislocation core, since only the immediate 

core region is likely to determine electronic properties: beyond this radius the binding energy of 

the In atoms to the core will be sufficiently low20 that the In and Ga atoms in the InxGa1-xN alloy 

will be randomly distributed on the metal atom sites. The lattice is allowed to relax within the 
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larger radius of 12a when a swap is performed to prevent edge effects for swaps that occur with 

an atom near the 10a boundary.   

Simulations were performed at two compositions, x = 0.0625 and x = 0.1875, to match the 

InGaN compositions found in typical devices44, and also to avoid the higher In content regime 

where spinodal decomposition may occur45 and the assumption of a random alloy in the bulk no 

longer holds. These compositions correspond to 3.22 eV and 2.81 eV46 respectively at 0 K for a 

strained InGaN layer, and actual device emission wavelengths will depend on the quantum well 

thickness. The temperature is set to match typical growth conditions at 750ºC.  

Convergence to equilibrium was found after approximately a single Monte Carlo step, though 

the rate of convergence does vary between core types with c-type cores and higher In 

concentration cores taking longer to converge, as illustrated in Figure 1(a). The distribution of 

𝐸%&'() − 𝐸'*'%'() values is symmetrical and centered close to zero at −0.00115 eV, confirming 

suitable geometry optimization has occurred for each attempted swap. After equilibration, the 

total energy of the cell fluctuates about a constant value. This gives an estimate of the difference 

in energies for the random core compared to the segregated core, ΔEsegregation, and shows that 

segregated cores are in all cases more energetically favorable, with the largest stabilization 

occurring for the (a+c)-type and a-type cores, as summarized in Table 1. The stated energy 

differences will necessarily depend on the choice of cut-off radius, since additional strain 

relaxation could occur due to segregation at larger radii in the additional volume allowed to relax 

away from the core. This has been verified by repeating the simulations with increasing cut-off 

radii for the a-type core, where the local composition at the core was found to be insensitive to 

the cut-off radius provided the cut-off radius is at least 10a, validating our choice of cut-off radii 

for these simulations. Relative comparison of ΔEsegregation between core-types is considered 
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appropriate provided that the cut-off radius is fixed for all simulations, as it has been in this 

work. In the case of a single In atom in GaN, a binding energy can be defined which is the 

difference in energy between the In atom at an bulk-like site compared to a site close to the 

dislocation core. If this binding energy is greater than approximately 1-2kT18, it is thought that 

segregation would not occur. Our calculations show that the limiting radius beyond which the 

binding energy would be too low is approximately 18 Å for an (a+c)-type core, well within our 

cut-off radius. The temperature-dependence of the Metropolis algorithm used in this work should 

take this effect into account implicitly. 

In all cases, significant enrichment at the core was seen. Figure 1(b) shows the local 

composition at the core region relative to the bulk composition, whereby an enrichment of about 

double the bulk concentration observed for a-type and (a+c)-type cores at lower indium 

concentrations, with a slightly lower enrichment around a-type cores, as displayed in Table 1.  

Additional simulations were performed using the same InGaN simulation cells, but this time 

without constraining the in-plane a lattice parameter to match that of GaN. A further simulation 

was also performed at a slightly lower temperature of 700ºC. In both cases, no significant change 

in the resulting core structures or extent of In segregation was found. The results showed minor 

run-to-run differences in In content at the core, but these differences were deemed not to be 

statistically significant relative to the expected statistical spread of In contents at the 

core resulting from the Monte Carlo model. 

The spatial arrangement of In atoms for example equilibrium configurations can be seen in 

Figure 2. The dislocations with an a-type component can exhibit an enriched region where the 

larger In atoms relieve tensile strain on one side of the dislocation, with a corresponding depleted 

region on the opposite side. For the corresponding simulations of c-type dislocations in InGaN, 
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an In-enriched region is also observed near the core, but there is no corresponding In-depleted 

region. This is because c-type cores have only a deviatoric stress field near the core. Therefore, 

the average In content within a 1 nm radius of the core is the same as the background In content 

for dislocations with an a-type component, but higher than the background In content for the c-

type dislocations, despite the fact that In segregation at the core clearly occurs for all core types. 

Therefore, experimental compositional mapping techniques with sub-nm spatial resolution are 

required to detect In segregation at a-type and (a+c)-type dislocations in InGaN.  

Simulations of the 4-atom ring a-type dislocation core (not shown) reveal that glide of this 

core is possible in response to local changes in In concentration at the core, whereby the 4-atom 

ring glides into an 8-atom ring configuration and then another 4-atom ring. This was not 

observed for the other core structures, and the extent of glide is sensitive to the initial random 

distribution of In atoms, with different initial structures resulting in differing degrees of glide. In 

contrast, the 5/7-atom ring a-type core configuration remains constant under segregation, as seen 

in Figure 3(a,b), as does the c-type core. 

Simulations of the (a+c)-type cores reveal a much more disrupted core structure than the a-

type cores, as seen in Figure  3(c,d). For both In contents, the local bonding at the (a+c)-type 

core is highly disordered, with higher In contents associated with increased disorder. In some 

simulations, the resulting core configuration of the (a+c)-type core is ambiguous, and cores that 

resemble both the double-5/6-atom ring and the 9/4/7-atom ring (a+c)-type cores have been 

observed. Previous work on GaN has shown37 that the dislocation line energies of the double-5/6-

atom ring and 9/4/7-atom ring cores are similar, and it is likely that the resulting core structures 

in InGaN will therefore be highly sensitive to the local In content, which will vary randomly 

along the dislocation line even in the case of the segregated dislocation core structure.  
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This large degree of segregation is expected to result in markedly different material properties. 

In addition to the band gap being highly sensitive to In composition, it can also affect the 

localization of excitons leading to increased efficiencies47,48. A locally higher In concentration 

will lead to localization of hole states49 with chains of In–N–In–… atoms being particularly 

associated with this localization50,51,52,53. These simulations predict much longer In–N–In–… 

chains present in the vicinity of the core than would be expected in a random alloy of similar 

composition43. Indeed, for the x = 0.1875 simulations, in most cases there are unbroken chains of 

In–N–In–… atoms running along the dislocation line, while for x = 0.0625 there are many short 

In-N-In-… chains present in the vicinity of the dislocation core.  

To test these theoretical predictions, a representative InxGa1-xN epilayer of composition x = 

0.06 ± 0.0154, was grown on low-dislocation density GaN templates grown on c-plane sapphire 

by MOVPE at temperatures typically used for growth of InGaN-based device structures (710–

750ºC), and with growth parameters optimized as given in previous studies55. 

This was then studied using energy-dispersive X-ray spectroscopy (EDXS) and high resolution 

high-angle annular dark field (HAADF) imaging on an aberration-corrected Titan G2 

ChemiSTEM electron microscope. The (a+c)-type cores were studied because they are (a) easier 

to locate than a-type cores, (b) present in our samples in proportions (in contrast to the pure c-

type cores which comprise only ~1% of all dislocations in our samples), (c) they reveal the 

effects of both a-type and c-type Burgers vectors components and (d) the highest energetic 

stabilization of In segregation is predicted for this core type and therefore it is most likely to be 

observed experimentally. 

Figure 4 shows an (a+c)-type dislocation core, as identified by Burgers circuit analysis that 

reveals the a-type component, while the presence of Eshelby-Stroh twist56 confirms the c-type 
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component. A V-pit marks the termination of the dislocation core at the film surface, as is typical 

for InxGa1-xN epilayers57, with a side length of approximately 40 nm. Precise identification of the 

core configuration is not possible due to ambiguous contrast at the core, which could be 

consistent with a disrupted, rather than highly symmetrical, core configuration consistent with 

the highly segregated In-rich cores predicted as seen in Figure 3(c). Local strain-relaxation at the 

V-pit, in addition to the In atoms preferentially occupying sites of reduced N coordination as the 

In-N bond is longer and weaker than the Ga-N bond58,59, would mean that segregation of In to the 

V-pit edges would be expected, and this has been observed in our samples. However, this is not a 

sufficient explanation for the high-In concentration streak in Figure 4(c), since this is only seen 

in the direction of a single V-pit edge rather than all six edges. Geometric phase analysis60 of the 

STEM-HAADF micrograph of the core region confirms that the segregation is correlated 

approximately the region of tensile stress around the dislocation, as shown in Figure 4(d). The 

semi-quantitative absorption corrected Cliff-Lorimer61 analysis shown in Fig4(e) suggests an In 

composition of x ~ 0.04 ± 0.01 in the matrix (at a specimen thickness of 150 nm). This value is 

less than that which is revealed by a combined X-ray diffraction and Rutherford back-scattering 

study on the same material54, but without standard specimens of known composition absolute 

quantification of EDXS data is challenging, especially for the four detector geometry of the 

Super-X detector system where the effects of sample tilt and channeling are still being 

investigated. Relative concentrations are more reliable and the line scan in Fig4(d) shows an In 

enrichment at the dislocation core of approximately double that found in the bulk, which is in 

good agreement with our theoretical predictions. Additionally, due to scale of the streak and the 

size of the STEM probe, channeling artifacts are unlikely to explain this strong In signal.  

However, the length of the streak, at approximately 14 nm, is much longer than that predicted 
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theoretically. A possible explanation is that movement of the dislocation during growth tracks an 

In-rich trail in its path, thus explaining the streak observed, or that there is a more complex 

interaction between the V-pit and the dislocation resulting in a larger energetic stabilization of 

segregation than would otherwise be expected. 

In this work, we have shown that the local concentration of In surrounding dislocations is 

likely to be very different compared to the bulk. This has important consequences for future 

modeling of dislocation cores and their properties, since the assumption of a core structure that 

reflects that of the host material does not hold. Segregation of the degree predicted here could 

significantly affect electronic properties of dislocations and hence affect device performance. 

The method presented here has a wide arrange of applicability not just to other nitride systems, 

but other inorganic functional material thin films including oxides where properties of 

dislocations are of considerable interest62,63, and could be applied more generally to predict 

composition fluctuations for any strain field. 

 

 

 

 ΔEsegregation  [eV Å-1] xcore / x 

Core Type x = 0.0625 x = 0.1875 x = 0.0625 x = 0.1875 

a-type -1.40 ± 0.11 -2.47 ± 0.10 2.25 ± 0.27 1.34 ± 0.07 

c-type -0.62 ± 0.09 -1.53 ± 0.11 2.34 ± 0.24 1.56 ± 0.07 

(a+c)-type -1.97 ± 0.12 -3.03 ± 0.10 2.73 ± 0.27 1.71 ± 0.10 
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Table 1. Summary of difference in total energies of the simulation cell per unit dislocation line 
length for the random and segregated InxGa1-xN dislocation cores, and a summary of the average 
composition in the core region at equilibrium, xcore, relative to the bulk composition, x. 

 

 

Figure 1. (a) Total potential energy of the system relative to initial random configuration, 

showing convergence to equilibrium. (b) Local composition at the dislocation core region, xcore, 

defined as a radius of 1 nm from the center of the dislocation, against Monte Carlo step. 



 

 13 

 

Figure 2. Kernel density estimators showing the distribution of indium atoms averaged from 

four different equilibrium configurations of a-type cores for compositions (a) x = 0.0625 and (b) 

x = 0.1875, (a+c)-type cores for (c) x = 0.0625 and (d) x = 0.1875 and c-type cores for (e) x = 

0.0625 and (f) x = 0.1875. Plots are projections along the [0001] direction, with axes given in 

angstroms and dislocation cores located at the center of their respective plots. Color scale is red 

to blue, with red giving a high probability of finding an indium atom at that location, and blue a 

low probability.  
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Figure 3. Example equilibrium core configurations for a-type cores for (a) x = 0.0625 and (b) x 

= 0.1875, (a+c)-type cores for (c) x = 0.0625 and (d) x = 0.1875 and c-type cores for (e) x = 

0.0625 and (f) x = 0.1875. The 5/7-atom ring a-type core structure and the double-5/6-atom ring 

(a+c)-type core structure are indicated by the numbers in red. N atoms shown in light grey, Ga 

atoms in dark grey, In atoms in green, rendered using Ovito64. 
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Figure 4. (a) Bright-field image of an (a+c)-type dislocation ending as a V-pit at the surface of 

our sample, with approximate location of V-pit edges marked, and its corresponding EDXS 

elemental map (b) showing the In signals and (c) In and Ga signals confirming the segregation of 

In at the apex of the V-pit and along the direction of a V-pit edge. (d) shows the geometric phase 

analysis of the dislocation core, showing the εxx strain component with characteristic 

compression and dilatation of the region close to the dislocation core. (e) is a line profile for the 

rectangle shown in (c), perpendicular to the In-rich streak, showing enrichment at the dislocation 

core, with peak composition at the core approximately double relative to the bulk, with shaded 

regions showing approximate error in quantification. 
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