
An investigation of SUDOKU-inspired non-linear
codes with local constraints

Jossy Sayir and Joned Sarwar
University of Cambridge, U.K.

Abstract—Codes with local permutation constraints are de-
scribed. Belief propagation decoding is shown to require the com-
putation of permanents, and trellis-based methods for computing
the permanents are introduced. New insights into the asymptotic
performance of such codes are presented. A universal encoder for
codes with local constraints is introduced, and simulation results
for two code structures, SUDOKU and semi-pandiagonal Latin
squares, are presented.

I. INTRODUCTION

The codes we investigate are sets of codewords that satisfy
a number of local non-linear constraints. As such, they are
described by factor graphs just like low-density parity-check
(LDPC) codes. Unlike LDPC codes for which the constraint
nodes enforce linear constraints over fields, in the codes treated
here the constraint nodes enforce non-linear constraints of the
SUDOKU type. Each constraint requires that all variables
involved take on different values over the code alphabet. For
example, for a code alphabet {0, 1, 2, 3} and a constraint
node of degree 4, the variables involved could take on the
values (2, 1, 0, 3) or (3, 0, 2, 1) but not (2, 2, 0, 1) because 2
is repeated. Note that it is not imperative that the constraint
node degree dc equals the alphabet size q, but this will be the
case in all the structures we will investigate, in which case the
constraint can equivalently be described as enforcing that the
variables involved take on values over the set of permutations
of the code alphabet.

These codes are inspired by SUDOKU puzzles and their
study was initially motivated as a tool for teaching belief
propagation decoding for LDPC codes via its analogy with
solving SUDOKU puzzles. Note that in general, there is no
particular reason to arrange the variables in our codewords in
a square q × q grid as they would be in a classic SUDOKU
puzzle. The reason for arranging them in this manner is to
visualise the constraints corresponding to rows and columns
of the square. In this paper, we will look at some regular
structures that can be visualised as squares with row-column
constraints, but also cover some general structures that are best
represented as a common one-dimenstional array of variables
constrained by constraint nodes in a factor graph with random
connections.

In Section II, we will discuss iterative decoding for codes
with permutation constraints and show that the operation in the
constraint node is equivalent to computing a set of permanents
[1]. We will then show how to compute these permanents
using a trellis-based approach, and specialise this approach for

Funded in part by the European Research Council under ERC grant
agreement 259663 and by the FP7 Network of Excellence NEWCOM# under
grant agreement 318306.

decoding over erasure channels. In Section III, we will discuss
asymptotic performance analysis for codes with permutation
constraints. In Section IV, we will present a universal approach
to encoding codes with local constraints and discuss its limita-
tions. In Section V, we will present simulation measurements
of the performance of two specific code structures, SUDOKU
and semi-pandiagonal Latin squares, over the erasure channel.

II. ITERATIVE DECODING, PERMANENTS AND TRELLISES

A. General belief propagation decoding

Iterative decoding over factor graphs with non-linear con-
straints follows the same rules as iterative decoding for graphs
with linear constraints. The belief propagation algorithm oper-
ates Bayesian estimation under the assumption that messages
from the graph are independent observations, as described in
[2] and references therein. We will express messages as q-
ary probability mass functions, although it may be sensible
in calculations to transfer them to the logarithmic or log-
likelihood ratio domain. For a variable node, the operation
is the same as that of variable nodes for linear codes. For a
constraint node, the operation is

bij = ξi
∑

(j1,...,ji=j,...,jq)∈Sq

∏
k 6=i

akjk . (1)

where aij is the j-th component of the i-th incoming message
to the constraint node, bij is the j-th component of the i-th
outgoing message of the constaint node, ξi is a normalisation
constant, and Sq is the symmetric group on {1, 2, . . . , q}. This
can also be written as

bij =
perm(Aij)

perm(A)
, (2)

where A is the q × q matrix of incoming messages. For any
matrix M , we write perm(M) for the permanent of M , mij

for the i, j-th element of M , and Mij for the matrix obtained
by removing the i-th row and j-th column from M .

Computing a permanent is a high complexity operation. A
direct evaluation of

perm(M) =
∑

(i1,...,iq)∈Sq

m1iqm2i2 . . .mqiq

requires (q − 1)q! multiplications and q! − 1 additions. The
best known efficient algorithm for computing an approximation
of the permament of a matrix with positive entries has a
probabilistic polynomial complexity, which polynomial is of
degree 11 and does not provide any benefits for the alphabet
sizes of interest to us, i.e., q = 9 or less, perhaps q = 16. Still,
even for q = 9, the number of multiplications is about 3×106,

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Apollo

https://core.ac.uk/display/42338777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


∅ {1} {12} {123} {1234}

{2}

{3}

{4}

{13}

{14}

{23}

{24}

{34}

{124}

{134}

{234}

Fig. 1. Trellis-based permanent computation

which would need to be computed q(q2 + 1) = 801 times at
each constraint node at each iteration in order to evaluate (2),
resulting in a total number of multiplication, say for 10 itera-
tions for a SUDOKU codeword (81 variables, 27 constraints),
of about 6.3 × 1011 per decoding operation. An efficiently
programmed simulation of a transmission path for a sufficient
number of codewords to measure error performance would
hence be beyond the ability of a modern Gflop computer.

A solution to this is to compute the permanent using a
trellis. This can be seen as a generalization of Laplace’s co-
factor expansion for computing the permanent or determinant.
In Laplace’s co-factor expansion, depending on where we
start, we only compute the co-factors in the first row and the
permanent of the matrix, whereas to evaluate (2), we need all
the co-factors, corresponding to repeating Laplace’s expansion
starting with every row in turn. Figure 1 represents the model
for the trellis-based computation of the permanent and all co-
factors of a 4 × 4 matrix. We start with an empty set at the
root of the trellis. Every trellis stage corresponds to a row of
the matrix. At row 1, we can pick any of the four elements,
resulting in four paths from the empty set to the atomic sets
{1}, {2}, {3} and {4}. At every further stage in the trellis, you
can only advance using columns that have not been visited yet,
so for example there a three paths leading forward from {1}
to {1, 2}, {1, 3} and {1, 4}. The termination (or “toor”) of the
trellis corresponds to the set {1, 2, 3, 4} where all the columns
have been visited.

Multiplying matrix elements on every edge and adding
them in the nodes of the trellis will compute the permanent
of the matrix and the co-factors of its last row, and is com-
pletely equivalent to Laplace’s co-factor expansion. This is also
equivalent to the forward iteration of the BCJR [3] or forward-
backward algorithm. Applying the full BCJR algorithm to
the trellis yields the permanent and all the co-factors we
need, which result as the sum of the products of the forward
sums and the backward sums of all edges corresponding to
an element in a row. For example to compute the co-factor
M23 using the trellis in Figure 1, we need to multiply the
forward-sums and the backward-sums in all the transitions
corresponding to a 3, i.e., {1} to {1, 3}, {2} to {2, 3}, and
{4} to {3, 4}, then sum those to obtain perm(M23).

The number of multiplications in the trellis-based perma-
nent computation excluding the last stage for computing the
co-factors is

2

q−1∑
i=1

(
q

i

)
(q − i) = q(2q − 2),

which is still exponential in the alphabet size, but provides
a significant reduction in complexity at the alphabet sizes of
interest to us. For example, for q = 9, we now need to evaluate
only 4590 multiplications per constraint node per iteration,
or, repeating the evaluation above for decoding a SUDOKU
codeword, 1.2× 106 multiplications per decoding operation.

B. Decoding for the erasure channel

The trellis-based approach described can be further simpli-
fied when decoding for an erasure channel. When decoding
for a q-ary erasure channel, messages start up as atomic
distributions for non-erased positions, and uniform q-ary distri-
butions for erased positions. Through the iterations, messages
of varying supports will appear but all messages are always
uniform distributions over their support. Hence, we can replace
distribution-valued messages by 0/1 indicators or subsets of
possible values.

The subset-valued rule for constraint nodes of an erasure
decoder has been stated in [2] and we repeat it here. Letting
mv→c(i) ⊆ {1, . . . , q} be the incoming subset message to a
constraint node on its i-th edge, the resulting constraint node
rule for generating the j-th outgoing message mc→v(j) ⊆
{1, . . . , q} is

mc→v(j) = {1, . . . , q} −
⋃
n

An

where An is any set such that

∃J ⊂ {1, . . . , q} such that


j /∈ J ,
An =

⋃
j∈J mv→c(j),

and #J = #An,

where #S denotes the cardinality of the set S. In other words,
the rule is that whenever the union of a number of incoming
messages has cardinality that number, you can eliminate the
members of that union from all remaining outgoing messages.
For example, if incoming messages i and j are both {1, 2},
then the values 1 and 2 can be reserved for the variables i
and j and can be eliminated from all remaining variables in
the constraint. This rule is familiar to those who like solving
SUDOKU puzzles.

A direct evaluation of the rule above requires to examine
the union of every combination of incoming messages, result-
ing in a loop over 2q instances. Again, much can be gained by
realizing the constraint node operation on a trellis. Let A be
the matrix of incoming messages, where aij = 1 if element
j belongs to the subset of incoming message i and aij = 0
otherwise. Using the same trellis structure as we did for the
evaluation of the permanent, the following steps are applied:

1) Starting from the root node on a trellis with all edges
blanked out, draw a forward path for every edge coming
out of a node that satisfies the conditions

(i) the edge exists in the full trellis; and
(ii) there is a 1 in the matrix corresponding to the trellis

stage and the symbol added by this edge.
2) Prune any paths that did not terminate in the “toor” node.
3) Insert a 1 in the outgoing message wherever there is an

edge corresponding to that symbol in the trellis stage for
that row.



∅ {1}

{2}

{3}

{4}

{12}

{13}

{14}

{23}

{24}

{34}

{123}

{124}

{134}

{234}

{1234}

Fig. 2. Forward drawing step of the trellis based constraint node operation

∅ {1}

{2}

{3}

{4}

{12}

{13}

{14}

{23}

{24}

{34}

{123}

{124}

{134}

{234}

{1234}

Fig. 3. Pruning step of the trellis based constraint node operation

The method is illustrated for the incoming message matrix

A =

 1 1 1 1
1 0 1 0
1 1 0 0
1 1 0 0


in Figure 2 (forward drawing step) and Figure 3 (pruning

step), resulting in the outgoing message matrix

B =

 0 0 0 1
0 0 1 0
1 1 0 0
1 1 0 0


An analysis of the complexity of this method would be difficult
as the choice of elementary operations to be counted was
unclear to us. Furthermore, the number of operations is not
a direct function of the number of ones in a row as it would
vary according to the position of the ones. In our simulations,
we observed an acceleration of several orders of magnitude
by switching from the direct approach of iterating over the
2q configurations of incoming subsets to the trellis-based
approach, and this acceleration was more pronounced as the
alphabet size increased. On the other hand, the trellis-based
approach is not easy to implement and requires several pages
of code, while the direct approach is trivial and only a few
lines long in most programming languages.

III. ASYMPTOTIC PERFORMANCE ANALYSIS AND
DENSITY EVOLUTION

Density evolution can be applied to analyse the asymptotic
performance of codes with non-linear constraints in a manner
similar to LDPC codes. The elements of this analysis have
been presented in [2] and we will not dwelve on them here.
However, we take this opportunity to correct two inaccuracies

TABLE I. BP THRESHOLDS FOR REGULAR (3, q) GRAPHS

q 3 4 5 6 7 8
Threshold θ 0.8836 0.7251 0.6209 0.5492 0.4965 0.4559
1− Rcf 0.6845 0.5692 0.5063 0.4656 0.4365 0.4143

in [2] and report on new insights obtained from [4] that cast
a new light on the results in [2].

As explained in [2], finding the asymptotic rate of a code
with non-linear constraints when the block length goes to
infinity while maintaining fixed constraint and variable node
degree distributions is not as easy as it is is for linear codes.
For linear codes, the so-called “design rate” is a direct function
of the degree distributions, and it is easy to show that the true
rate for randomly chosen graphs is unlikely to deviate much
from the design rate. In [2], we conjectured an expression for
a rate estimate but were unable to give it a full justification.
As it turns out, this estimate was not accurate at all. We can
now make the following precise statement:

Lemma 1: If a factor graph with regular constraint node
degree q equal to the alphabet size is a tree, then the rate of
the corresponding code tends to log((q − 1)!)/(q − 1) as the
number of nodes tends to infinity.

Proof: Start drawing the tree from its root with one constraint
node and its associated q variables. The combination of vari-
ables can take on q! values. Now add constraint nodes to
any variable in the tree one at a time. With each addition,
the combination of new q − 1 variables added can take on
(q − 1)! values. Hence the set of values for a tree with k
constraint nodes is q!((q − 1)!)k−1 for a number of variables
q + (k − 1)(q − 1), which tends to the expression given for
k −→∞.

While this statement is correct, it is of little use for
estimating the asymptotic rate of the code. We were mislead
by the convergence theorem of density evolution, which states
that, for a finite number of iterations, the horizon of a variable
node converges to a cycle-free graph as the block length grows
to infinity. While this is true for a finite number of iterations, it
obviously does not remain true when the number of iterations
grows to infinity, which would be necessary for the rate of the
overall code to converge towards the rate of a tree. We now
call this quantity the cycle-free rate Rcf .

Furthermore, the threshold calculations for variable degree
dv = 3 codes in [2, Table III] were erroneous, and we state
the correct values in Table I along with 1−Rcf . Beyond q =
8, it becomes infeasible to compute thresholds using density
evolution with our limited computational resources. We note
that the thresholds are greater than 1 − Rcf , which goes to
show that Rcf is a bad estimate of the true rate since we would
otherwise be violating Shannon’s converse coding theorem.

In [4], Vontobel was able to obtain what he believes to be
an accurate estimate of the rate of a regular (dv, q) factor graph
with permutation constraints using the Bethe approximation of
the partition function of the factor graph. This approach yields

Rest = max (0, (dv/q) · log2(q!)− (dv − 1) · log2(q)) ,

or using Stirling’s approximation q! ≈
√
2πq(q/e)q ,

Rest ≈ max
(
0, log2(q · (2πq)dv/(2q)/edv )

)
.



Source
1,0,1,1,. . .

Arithmetic
Encoder 3,1,4,2,. . .

Message
Selector

Belief
Propagation

Encoding Failure

Successful Encoding

Fig. 4. A universal encoder structure for graphs with local constraints

This estimate is zero for all alphabet sizes q up to and including
11. As a result, the asymptotic analysis of codes with local
permutation constraints is caught between a rock and a hard
place: there are sub-exponentially many codewords for all
alphabet sizes up to 11, but we are unable to perform density
evolution for alphabet sizes larger than 8.

IV. UNIVERSAL ENCODING AND PREFIX RESERVATION

We now return to finite length codes for which the consider-
ations of the previous section do not apply. The rate of a finite
length N code with non-linear constraints is R = (logM)/N ,
where M is the number of sequences that fulfill the constraints.
The number of valid classsical q × q SUDOKU grids for
various q has been counted or estimated, as reported in [5],
yielding, for q = 9, M9=6,670,903,752,021,072,936,960 and
for q = 16, M16 ≈ 5.9584 × 1098, resulting in rates of
R9 = (log9M9)/81 = 0.28 and R16 ≈ 0.32. The number M9

was obtained through tedious counting of all valid SUDOKU
grids after excluding as many symmetries as possible. This
process yields a valid enumeration of SUDOKUs that could
potentially be used for encoding purposes.

Nevertheless, we investigate a general structure illustrated
in Figure 4 that can be used to encode any sequence with
local constraints. It is inspired by Richardson and Urbanke’s
method to encode LDPC codes [6] using an erasure decoder.
However, unlike in [6] it is not possible to start encoding by
assigning information symbols to the systematic part of the
codeword. There is no equivalent to the systematic property
for general non-linear codes, and certainly for permutation
constraints there is no part of a codeword beyond a single
variable that can be assigned at will without taking constraints
into account. Thus, our approach in Figure 4 starts with an
empty grid. At every step, belief propagation is used to exclude
incompatible values for the undetermined variables. Following
that, the message selector takes the first variable whose set of
possible values has cardinality k > 1, and asks an arithmetic
encoder to convert source randomness into a uniform k-ary
variable and uses this to determine the value of the free
variable. The reason for using an arithmetic encoder is that
the cardinality k may vary from one step to the next, while
the source has a constant alphabet.

Let us for example encode a 4 × 4 classic SUDOKU
grid. The first decoding operation on the empty grid makes
no advance at all, and we begin by requesting a choice of
cardinality 4 from the arithmetic encoder to determine the top
left variable. Say the value assigned is 3, then the decoder will
automatically exclude the value 3 from all remaining variables
in the first row, first column, and first 2× 2 subsquare. After

this, the first available variable is the second element of the
first row whose value can be 1, 2 or 4 and hence we request
a uniform choice between 3 possibilities from the arithmetic
encoder. Say this choice is 3, so we pick the third possible
element 4 for our variable. This continues until the grid is
filled. With this method, the encoding rate may vary from one
codeword to the next and the true rate is the average of the
individual codeword rates.

The problem with the method proposed is that it will
not always succeed. If we had access to an optimal erasure
decoder, the predictions for the possible values of a variable
would always be accurate. Belief propagation on the other
hand is a sub-optimal erasure decoder that treats each local
constraint independently. The consequence of this is that the
decoder may for example predict three possible values for a
given variable, say 1, 4 and 7 in a 9-ary alphabet, but one
of these possibilities, say 1, is in fact illegal as there exists
no codeword that combines the determined values with a 1
in this position. An optimal decoder would never propose
1 as a possible value in this context. With a sub-optimal
decoder, when a wrong prediction occurs, we are left in a
precarious situation. Unlike SUDOKU puzzle solvers who can
then simply backtrack and follow one of the other possibilities,
we cannot do this because the decoder will never know that
there was an illegal option among the 3. Decoding may fail
because the decoder misinterprets the mapping of information
sequence to codeword, even if the transmitted codeword was
decoded correctly. Hence, the encoding process may terminate
in an encoding failure, as indicated in Figure 4.

A way around this is to reserve a prefix of the tree of
possible codewords for subsequent encoding attempts. For
example in a 9 × 9 SUDOKU, we may exclude the value 9
for the first variable, effectively constraining the encoder to
make a choice between 8 possibilities for this variable. Should
the encoding process result in an encoding failure, all source
symbols consumed in this encoding operation are returned to
the source, and encoding begins again but is preceded by the
reserved prefix 9. The decoder recognises that the reserved
prefix has been used, hence knows that no source symbol has
been consumed to produce the first code symbol. This techique
can be applied recursively for example by reserving a prefix
within the prefix for the case when the encoder fails again, and
so forth until the probability of an encoding failure becomes
negligible. Furthermore, although the prefix may appear wasted
in terms of rate, it can in theory be balanced exactly against
the probability of failure so that the resulting encoder is rate
optimal. Another way of seeing this is that the sub-optimal
erasure decoder overestimates the size of the code tree. We
compensate for this by reducing the tree by the reserved prefix.

This prefix reservation approach is practical if the proba-
bility of encoding failure is quite small. We will see in the next
section that the probability of an encoding failure for 9 × 9
SUDOKU is about 1.6%, making them very suited for the
encoding technique we described in this section.

V. SIMULATION OF SUDOKU AND SEMI-PANDIAGONAL
SQUARES

There are a number of regular graph structures for finite
code design that we have considered in our work:



Latin squares: q2 variables over an alphabet of size q. The
constraints are best visualised by arranging the variables as a
q × q square and correspond to all rows and columns.

SUDOKU: q2 variables over an alphabet of size q, where√
q must be an integer. A Latin square with extra constraints

corresponding to the q subsquares of dimension
√
q ×√q.

Pandiagonal Latin squares: a Latin square with further per-
mutation constraints corresponding to the broken right and left
diagonals [7] (i, j+ i) and (i, j− i−1) for i = 0, 1, . . . , q−1.
These are also called Knut Vik designs.

Semi-pandiagonal Latin squares: a Latin square satisfying
the broken right diagonal (i, j+i) constraints. These have also
been called Semi Knut Vik designs in [7].

As shown in [7], there are no semi-pandiagonal Latin
squares for q even. We have counted the semi-pandiagonal
Latin squares for various q and obtained 3! for q = 3, 3 × 5!
for q = 5, 635× 7! for q = 7, and 489,300×9! for q = 9.

In our simulations, we focused on SUDOKU and on semi-
pandiagonal Latin squares, mainly because for q = 9, both
these correspond to regular (9,3) factor graphs, differing only
on the last 9 of 27 constraints. We were surprised to find that,
despite these apparent topological similarities, the properties
of the code varies greatly. The table below shows the rate and
probability of encoding failure for the two cases:

Factor Graph SUDOKU Semi-pandiagonal
True Rate R = 0.2824 R = 0.1455
Probability of
Encoding Failure 0.016 0.9995

We see that semi-pandiagonal Latin squares have a lower rate
and an extremely high probability of encoding failure close to
1, making them unsuitable for the type of encoding suggested
in the previous section. However, there is a rich literature
on enumerating pandiagonal Latin squares [8], [9], [10], [11]
and it may be possible to apply some of these techniques to
semi-pandiagonal Latin square, thereby providing a method
to encode them without using the factor graph or belief
propagation on the erasure channel.

The simulated performance of both codes on the erasure
channel is shown in Figure 5. The results show that the
codes again have very different characteristics, with the semi-
pandiagonal Latin square’s error performance flattening out
while the SUDOKU exhibits a steeper waterfall but overall
further from its threshold 1−R = 0.72.

VI. CONCLUSION

We have described non-linear codes with local permutation
constraints inspired by SUDOKU puzzles. For the decoder,
we showed that permutation constraints require the evaluation
of a permanent using a trellis. We specialised this decoder
to erasure channels, where the operation becomes a trellis
search. For the encoder, we described a universal approach
to encoding a code with local constraints, and discussed its
limitations when based on a sub-optimal decoder. We also
gave some insight regarding asymptotic performance, and
simulation results for select finite length codes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10−5

10−4

10−3

10−2

10−1

100

Erasure Probability

B
lo

ck
E

rr
or

Pr
ob

ab
ili

ty

9× 9 SUDOKU code
9× 9 Semi-pandiagonal code

Fig. 5. Block error performance of a SUDOKU and a semi-pandiagonal
code. Each data point was averaged over 100 codewords and each codeword
was subjected to a sufficient number of erasure sequences to observe at least
100 block errors.

Having started as a tool for teaching belief propagation, the
study of codes with non-linear constraints is having unexpected
repercussions: it has brought up some interesting technical
hurdles, taught us a few things about non-linear constraints
and how different they behave from linear constraints, and in
the process also highlighted a few properties that we take for
granted in linear codes but are in fact quite surprising. In future
work, it is worth paying more attention to structures such as
pandiagonal Latin squares for which enumerations have been
devised. Another line of enquiry are improved decoding rules
that combine constraints in belief propagation.

ACKNOWLEDGMENT

The authors wish to thank Gottfried Lechner for suggesting
to compute permanents with a trellis, as described in Section II.

REFERENCES

[1] A.-L. Cauchy, “Mémoire sur les fonctions qui ne peuvent obtenir que
deux valeurs égales et de signes contraires par suite des transpositions
opérées entre les variables qu’elles renferment,” Journal de l’École
Polytechnique, pp. 91–169, 1815.

[2] C. Atkins and J. Sayir, “Density evolution for sudoku codes on the
erasure channel,” in Proc. Int. Symp. on Turbo Codes & Rel. Topics,
Bremen, Germany, Aug. 2014.

[3] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, pp.
284–287, Mar. 1974.

[4] P. Vontobel, “Comments on your paper,” Sep. 2014, private communi-
cation.

[5] “The mathematics of Sudoku,” article in Wikipedia. [Online]. Available:
http://en.wikipedia.org/wiki/Mathematics of Sudoku

[6] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity
check codes,” IEEE Trans. Inf. Theory, no. 2, pp. 638–656, 2001.

[7] A. Hedayat and W. T. Federer, “On the nonexistence of Knut Vik
designs for all even orders,” The Annals of Statistics, no. 2, pp. 445–447,
1975.

[8] A. Hedayat, “A complete solution to the existence and nonexistence
of Knut Vik designs and orthogonal Knut Vik designs,” Journal of
Combinatorial Theory (A), pp. 331–337, 1977.

[9] A. O. L. Atkin, L. Hay, and R. G. Larson, “Enumeration and constructon
of pandiagonal Latin squares of prime order,” Comput. Math. Appl.,
no. 2, pp. 267–292, 1983.

[10] J. Bell and B. Stevens, “Constructing orthogonal pandiagonal Latin
squares and panmagic squares from modular n-queens solutions,”
Journal of Combinatorial Designs, no. 2, pp. 221–234, May 2007.

[11] V. Dabbaghian and T. Wu, “Recursive construction of non-cyclic pan-
diagonal Latin squares,” Discrete Mathematics, pp. 2835–2840, 2013.


